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Introduction
Humans are exposed to mixtures of chemicals that may be 
influential for cancer risk. For example, risk of non-Hodgkin 
lymphoma (NHL) is suspected to be associated with several 
chemicals through environmental or occupational routes of 
exposure, and geographic variation in NHL rates suggests the 
importance of environmental risk factors.1 Positive associations 
have been found with persistent organochlorine chemicals, 
including polychlorinated biphenyls (PCBs),2 particularly PCB 
congener 180,3–5 and dichlorodiphenyldichloroethylene.2,3

Environmental exposure patterns are typically complex 
with inherent correlations among co-occurring chemicals or 
their metabolites.6 For example, many PCB congeners exhibit 
a high degree of correlation. Important questions in the analy-
sis of mixtures include whether and how the health effect of 
one chemical should be adjusted for other chemicals present, 
even when those chemicals are highly correlated. Further-
more, the relationship between environmental chemicals and 
health effects (eg, cancer risk) is not always constant across a 
study area.6 Exposure levels may be different spatially due to 
environmental factors. For example, pesticide levels measured 

in house dust may be higher in agricultural communities (eg, 
in Iowa) or those in temperate climates where more pesticides 
are applied throughout the year (eg, Los Angeles) compared 
to the levels in urban locations (eg, Detroit). Acknowledg-
ing the principle that “the dose makes the poison,” the risk of 
adverse health effects such as NHL is greater in regions where 
exposure is higher. Thus, environmental health models that 
account for these spatially changing exposure/risk regions can 
be informative.

Models with spatially varying coefficients include geo-
graphically weighted regression (GWR7), which is similar to 
local linear regression (eg, references 8–10) in that both meth-
ods use a kernel function to calculate weights that are applied 
to observations in a series of local weighted regression models. 
One issue with GWR is that GWR models have been found 
to be affected by local collinearity.11–15 Local collinearity in 
weighted explanatory variables can lead to GWR coefficient 
estimates that are correlated locally and across space, have 
inflated variances, and are at times counterintuitive and con-
tradictory in sign to the global regression estimates, ie, evi-
dence of the reversal paradox.12,16
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To illustrate, Wheeler and Tiefelsdorf11 highlighted the 
issue of collinearity in GWR in a simple model to explain 
white male bladder cancer mortality rates (1970–1994) in the 
508 State Economic Areas of the US. Their model consisted 
of two explanatory variables: population density, a proxy for 
environmental and behavioral differences in urban/rural life, 
and lung cancer mortality rates, a proxy for the risk factor 
smoking, a known risk factor for bladder cancer. These two 
variables had a global correlation estimate of –0.59; how-
ever, local correlation estimates were generally more extreme 
(ie, more strongly negative; median = –0.63; Q3 = –0.71 as 
approximated from their Fig. 4), with strongest inverse asso-
ciation in parts of Northeastern and Midwestern US (their  
Fig. 3). The resulting maps of GWR coefficients for popula-
tion density and the smoking proxy showed a clear inverse 
map pattern. When the local smoking proxy parameter was 
high (primarily in the West and Northeast), the local popula-
tion density parameter was negative. When the local smok-
ing proxy parameter was negligible, the population density 
parameter was large and positive (primarily in the Midwest 
and Southeast). As noted by Wheeler and Tiefelsdorf,11 the 
important question is whether this complementary relation-
ship in the parameters is real, meaningful, and interpretable, 
or whether it is an artifact of the statistical method. The natural 
research question is whether such inverse patterning in regres-
sion coefficients is an example of the reversal paradox16 due to 
strong local correlations between the two variables.

According to the reversal paradox, the association between 
two variables can be reversed, diminished, or enhanced when 
another variable is statistically controlled for.16 For example, 
consider two explanatory variables, x1 and x2, where the 
bivariate correlation between x1 and y is 0.2, and between x2 
and y is 0.1. Figure 1 presents the standardized beta coeffi-
cients in the multiple regression model µ = β0 + β1x1 + β2x2. 
As the correlation between the variables increases, the regres-
sion coefficient associated with x1 increases and the coefficient 
associated with x2 becomes large and negative – which could 
lead to a misleading interpretation of the association between 
x2 and y. Use of statistical models with correlated data may 
produce consistent, replicable, yet erroneous results.16

To address the issue of collinearity with GWR and to 
limit its effects, the geographically weighted lasso (GWL) 
adds a constraint on the magnitude of the estimated regres-
sion coefficients.14 The GWL also performs local model selec-
tion by potentially shrinking some of the estimated regression 
coefficients to zero in some locations of the study area, thereby 
diminishing the adverse effects of the correlation pattern. 
However, when accurate variable selection is the focus of 
the analysis, such a strategy makes it difficult to determine 
whether a variable was excluded from the model due to a lack 
of association with the outcome or due to its correlation with 
variables in the model.

Our objective in this study is to evaluate the impact of 
collinearity of the geographically weighted regression models 

GWR and GWL in a chemical exposure and risk assessment 
context. We use a simulated data set for which the truth is 
known and further assess the ability of GWL to control col-
linearity effects, such as the reversal paradox, when the effects 
of correlated environmental chemicals are of interest. We 
begin by describing the process used to simulate data that 
we propose are environmentally relevant – ie, regions with 
low exposure and regions with higher exposures and where 
different chemicals may have related exposure patterns but 
not necessarily the same association with a health effect of 
interest. We conduct GWR and GWL analyses in a scenario 
with independent chemicals and a scenario with correlated 
chemicals.

Methods
Simulating spatially varying exposure- and dose- 

dependent association with an outcome. Consider the sce-
nario in which there are three predictor variables (eg, environ-
mental chemicals) that vary over space in a study area (Fig. 2). 
We assumed that the first predictor variable, x1, was present 
at high enough levels to be associated with an increase in the 
mean response in the upper region of the study area, while 
being present only at background levels where there is no 
increase in mean response in the lower region of the study area. 
Furthermore, we assumed that both x2 and x3 were present at 
uniform levels across the study area and that x2 was not related 
to the response variable, while the relationship between x3 and 
the response was moderate. Additionally, we considered two 
cases for the relationships among the predictor variables: Case 
1, where the predictor variables were independent (ie, multi-
variate normal with zero correlation), and Case 2, where the 
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predictor variables were correlated (ie, ρ12 = 0.7, ρ13 = 0.3, and 
ρ23 = 0). We used a unit grid as the study area and divided the 
grid into three equal-sized rows. A total of 500 locations were 
randomly generated inside the study area, and locations fall-
ing in the upper one-third of the study area were defined as 
belonging to Region 1 (n1 = 160), while locations falling in the 
lower two-thirds of the study area were defined as belonging 
to Region 2 (n2 = 340)

For each case, multivariate normal data were simulated 
separately for Region 1 and Region 2. We assumed that the 
levels of x1 were the highest in Region 1 (mean of 3.0) and 
negligible in Region 2 (mean of 0.1). We further assumed that 
the mean of both x2 and x3 was constant (mean of 0.1) across 
the entire study area. In the case of independence, an identity 
matrix was used for the covariance, while for the correlated 
case, the aforementioned correlation pattern was imposed. To 
simulate the corresponding mean related to the three predictor 
variables, we used the following nonlinear threshold model:

	     µ β β δ β β= + > + +0 1 1 1 2 2 3 3( )x x x x 	 (1)

with parameters defined as β0 = β2 = 0, β1 = 2, β3 = 1, and  
δ = 2. The response variable, y, was generated by adding a 
standard normal error term to the mean. Using this model, we 
imposed that x1 was active in Region 1 and inactive in Region 2.  
More specifically, we allowed x1 to be present at high enough 
levels to be associated with an increase in mean response in 
Region 1, while being present only at background levels (ie, less 

than the threshold) and not associated with the mean response 
in Region 2. This specification effectively removed β1 from the 
model in Region 2, with β1 = 0 for almost all of the locations 
in Region 2 for both the correlated and uncorrelated cases. The 
parameter β1 was equal to 2.0 in the majority of locations in 
Region 1. Hence, there was a simple spatially varying relation-
ship for x1 and the outcome variable. Finally, we imposed that 
x2 was not related to the response variable, while the relation-
ship between x3 and the response was moderate and uniform 
across the study area. A total of 100 data sets of size N = 500 
were generated for each case, and the results are later presented 
aggregated over the 100 simulated data sets.

GWR model. In GWR, the spatial coordinates of data 
are used in the calculation of distances that are input into a 
kernel function to determine weights for spatial dependence 
among observations. Local regression models are related 
through shared data, but the dependence between regression 
coefficients at different locations is not specified. For example, 
consider n observations measured at different locations. The 
GWR model at location i is represented as follows:

	     yi i i i= +X β ε 	 (2)

where yi is the dependent variable at location i, Xi is the row 
vector of explanatory variables at location i, βi is the column 
vector of regression coefficients at location i, and εi is the ran-
dom error at location i. The vector of estimated regression 
coefficients at location i is

X1 X2 X3

(3,4]
(2,3]
(1,2]
(0,1]
(−1,0]

Case 2: Correlation 

Case 1: Independence

X1 X2 X3

(3,4]
(2,3]
(1,2]
(0,1]
(−1,0]

Figure 2. Plots of average simulated concentration values across 100 simulated data sets over a square study area for two scenarios: independent 
chemicals (Case 1) and correlated chemicals (Case 2).
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where X is the design matrix of explanatory variables; Wi is 
the diagonal weights matrix that is calculated for each loca-
tion i and applies weights to observations j = 1, …, n; and y 
is the vector of dependent variable values. Examples of kernel 
functions for defining the weight matrix include the Gauss-
ian function, the bi-square nearest-neighbor function, and the 
exponential function, used herein. The weight from the expo-
nential kernel function between any location j and the model 
location i is calculated as

	   
w i

d
j
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exp

φ
	 (4)

where dij is the distance between locations i and j, and φ is the 
kernel bandwidth parameter.

GWL model. The lasso is defined17 as.
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where λ controls the amount of shrinkage of the regression 
coefficients, the value of which is chosen through algorithms 
such as least-angle regression (LARS)18 to find the low-
est root-mean-square prediction error (RMSPE). Wheeler14 
extended lasso to a geographically weighted version by defin-
ing a weighted X matrix as

	     X W XW i= 1 2/ 	 (6)

and estimating a lasso model with the LARS algorithm cor-
responding to each of the ith locations, i = 1, …, n.

Evaluation of models. The focus of the study was to 
determine whether the methods were able to correctly detect 
a strong relationship between x1 and the mean response  
(β1 = 2) in the upper third of the study grid and a moderate 
but uniform relationship between x3 and the mean response 
(β3 = 1) over the entire study area. Additionally, we were also 
interested in whether or not the methods can correctly dis-
cern that there is 1) no relationship between x1 and the mean 
response in the lower two-thirds of the study grid and 2) no 
relationship between x2 and the mean response over the entire 
study area. To evaluate the performance of GWR and GWL 
in identifying the spatially varying patterns in the coefficients, 
we started by mapping the average of the coefficient estimates 
at each location over the study area for both methods.

For each model, we calculated the root-mean-square error 
(RMSE) from estimation, the RMSPE, and the R2 value. The 
RMSE is defined as

	   
RMSE

n
y yi i

i

n
=  −

=
∑1 2

1

 	 (7)

while RMSPE is defined as

	   
RMSPE

n
y yi i

i

n
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=
∑1 2

1

 ( ) 	 (8)

where y i ( ) is the predicted value of observation i with location 
i left out of the estimation data set. We then described these 
summary statistics using the median and interquartile range 
(IQR) over the 100 simulations.

To evaluate the performance of GWL in terms of vari-
able selection, the percentages of coefficient estimates that 
were positive, negative, or zero were calculated by region for 
each simulated data set. We summarized the results across the 
simulated examples using medians and IQRs. Because GWR 
does not perform variable selection, we calculated the percent-
age of coefficient estimates that were positive and negative 
within each region. Additionally, in an effort to further evalu-
ate the performance of GWR, we approximated the variance 
of the estimated GWR regression coefficients and created 
confidence intervals for the estimates at each location based 
on one and two standard errors (SEs) (ie, β β� �

ik ik± (      )SE  and  
β  β�  �

ik  ik± (      ),2SE  for the i = 1, …, n locations, and k = 0, …, p  
parameters). The estimates were then classified as positive if 
the confidence interval was above zero, negative if the con-
fidence interval was below zero, and zero (negligible) if the 
confidence interval contained zero. The covariance of the esti-
mated regression coefficients was approximated19 as

Var i
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where the estimated error variance, σ 2 , is given as

	 
σ 2

2

1

2= −( ) − ( ) − ( )( )( )
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i

T
n

/ trace traceH H H 	 (10)

with the ith row of the hat matrix defined as

	     H X X W X X Wi i
T

i
T

i= ( )−1
	 (11)

Results
The average observed concentration levels across the 100 simu
lated examples are plotted over the study area for each case in 
Figure 2, wherein we see that the average levels of x2 and x3 
are uniform over the study area, while the mean level for x1 
is higher in Region 1 (the upper one-third of the grid space) 
as desired. The observed means for both the predictor and 
response variables are consistent with the study design and 
are summarized by case and region in Table 1. The observed 
correlation patterns were also consistent with the study design 
(results not shown).

The summary statistics across the 100 data sets are listed 
in Table 2. GWL outperformed GWR in terms of RMSPE 
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in the uncorrelated case, while in the correlated case, GWL 
outperformed GWR in terms of both RMSPE and RMSE, 
with a greater improvement for prediction of the outcome 
(RMSPE) than for estimation of the outcome (RMSE).

Pairwise plots of the average regression coefficients are 
shown in Figure 3. Correlation in the parameter estimates is 
evident for both GWR and GWL in the cases of both inde-
pendent and correlated chemicals. In the uncorrelated case, 
the relationship is most pronounced between the intercept 
and β1 parameters (denoted by b0 and b1, respectively). In 

the correlated case, there is a noticeable pattern among all of 
the parameter estimates, with a strong linear relationship evi-
dent between the estimates for β2 and β3 (denoted by b2 and 
b3, respectively). While GWL breaks up some of the strong 
correlation among the parameter estimates that is evident in 
GWR, strong relationships are still present between many of 
the regression coefficients.

As demonstrated in the box plots of the averaged regres-
sion coefficients from the models for the 100 simulated data sets 
(Fig. 4), GWR appears to accurately capture the importance 

Table 1. Average predictor and response values across the 
100 simulated data sets for the cases of independent chemicals 
(Case 1) and correlated chemicals (Case 2).

X1 X2 X3 Y

Case 1

Region 1 3.00 0.11 0.09 5.63

Region 2 0.10 0.11 0.10 0.23

Case 2

Region 1 3.00 0.11 0.11 5.62

Region 2 0.10 0.10 0.11 0.25
 

Table 2. Median (interquartile range) of summary statistics for GWR 
and GWL models across the 100 simulated data sets for the cases of 
independent chemicals (Case 1) and correlated chemicals (Case 2).

RMSPE RMSE R2

Case 1

GWR 1.4 (1.4, 1.5) 1.0 (1.0, 1.2) 0.9 (0.9, 0.9)

GWL 1.2 (1.1, 1.2) 1.1 (0.7, 1.2) 0.9 (0.9, 1.0)

Case 2

GWR 1.4 (1.4, 1.5) 1.2 (1.0, 1.2) 0.9 (0.9, 0.9)

GWL 1.2 (1.1, 1.2) 1.1 (0.7, 1.2) 0.9 (0.9, 1.0)
 

Case 1: Independence (GWR, left panel; GWL, right panel) 
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Figure 3. Pairwise plots of average regression coefficients across the 100 simulated data sets for the cases of independent chemicals (Case 1) and 
correlated chemicals (Case 2) for GWR and GWL.
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of x1 in Region 1, with distributions centered around 2.0 for 
the β1 estimates in both the independent and the correlated 
cases. However, we also see that GWR overstates the impor-
tance of x1 in Region 2, with distributions centered above zero 
for the β1 estimates regardless of the relationship among the 
predictor variables. Furthermore, GWL performs shrinkage 
as expected, demonstrated by the frequent reduction in the 
magnitude of the parameter estimates when comparing GWR 
to GWL. However, in both the independent and the corre-
lated cases, GWL often understates the importance of x1 in 
Region 1 and overstates its importance Region 2, with dis-
tributions for the β1 estimates centered below 2.0 in Region 1  
and around 1.0 in Region 2.

The GWR and GWL regression coefficient estimates 
from the 100 simulated data sets were averaged at each loca-
tion and are plotted in Figure 5. The coefficient maps reveal 
a high degree of correlation between the GWR estimates of 
β0 and β1 in both the independent and the correlated cases. 
This strong negative relationship is also evident in the pair-
wise scatter plots of the regression coefficients (Fig. 3). Simi-
larly, correlation in the intercept and β1 is also apparent in the 
GWL models, although the correlation between the estimates 
is not as strong and is largely positive. When examining the 
coefficient maps for β1 in both the independent and the cor-
related cases, GWR and GWL correctly identified Region 1 
as the area of highest activity for x1 but tended to oversmooth 
the effect into the upper part of Region 2 (ie, the second row 
of the grid space). GWL also tended to overshrink the para
meter estimates for β1 in Region 1, thereby underestimating 
the effect of x1 in the region of activity.

When considering the estimated β2 coefficients, GWR 
appears to identify several clusters of positive and negative 
associations in the independent case, while in the case of 
correlation, it finds a positive association in Region 1 and a 
negative association in Region 2, probably a reflection of the 
high degree of correlation between the predictors x1 and x2. 
Although the estimates are small in magnitude, it is clear 
that GWR is identifying artificial patterns in the β2 regres-
sion coefficients. In contrast, the maps of the GWL estimates 
for β2 demonstrate little-to-no systematic patterning in both 
the correlated and uncorrelated cases, suggesting that GWL 
is able to break up some of the artificial patterning seen in the 
GWR estimates of β2.

Finally, with respect to β3, GWR appears to incorrectly 
identify several clusters of a stronger positive relationship 
between x3 and the response variable in the uncorrelated case. 
Furthermore, in the correlated case, GWR incorrectly identi-
fies a strong spatial pattern in the β3 estimates, with Region 1 
appearing to be an area of high activity. The similarity in the 
GWR coefficient maps of β2 and β3 (Fig. 5) reflects the strong 
linear positive relationship demonstrated in the pairwise plots 
of the estimated GWR regression coefficients in the corre-
lated case (Fig. 3). The artificial spatial pattern in the GWR 
estimates of β3 parallels the true spatial variation in β1 and is 
probably induced by the correlation between x1 and x3 In con-
trast, GWL is able to reduce the correlation between the β2 
and β3 estimates and appears to correctly identify the uniform 
moderate relationship between x3 and the response, regardless 
of the relationship among the predictor variables.

The percentages of positive and negative GWR coefficient 
estimates are summarized by region for each correlation case 
in the left side of Table 3. We see that across the simulated data 
sets, the GWR estimates of β1 were positive nearly 100% of 
the time in Regions 1 and 2 for both the independent and the 
correlated cases. This is further evidence that GWR overstates 
the importance of β1 in Region 2. When considering β2, 53%  
of the GWR estimates in Regions 1 and 2 were negative in 

Case 1:  Independence (GWR, left panel; GWL, right panel) 
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Figure 4. Box plots of average GWR and GWL regression coefficients 
across 100 simulated data sets for the two study regions for the cases of 
independent chemicals (Case 1) and correlated chemicals (Case 2).
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the case of independence for at least half of the simulated data 
sets, while 28% and 77% of the GWR estimates in Regions 
1 and 2, respectively, were negative in the case of correlation. 
Given that x2 has no relationship with the outcome in the sim-
ulated data, we suspect the presence of the reversal paradox, 
which could lead to incorrect inference about the impact of 
this predictor.

Similarly, as shown in the right side of Table  3, the 
GWL estimates of β1 were positive nearly 100% of the time in 
Regions 1 and 2 for both the independent and the correlated 
cases. This indicates that GWL failed to appropriately per-
form variable selection for x1 in Region 2, the region of inac-
tivity. Furthermore, in at least half of the simulated examples, 
17% and 35% of the GWL estimates of β3 in Regions 1 and 2, 
respectively, were zero in the case of independence, and 15% 
and 35% of the estimates of β3 in Regions 1 and 2, respec-
tively, were zero in the case of correlation. Given that x3 is 
moderately positively associated with the outcome across the 
study area, these results could lead to the incorrect conclusion 

that this predictor is not positively associated with the adverse 
outcome.

The results of applying one and two SEs to the GWR 
estimated coefficients to classify them as positive, negative, or 
zero are listed in Table 4. Using the one-SE criteria, GWR 
incorrectly classified 83% of β1 estimates in Region 2 as posi-
tive at least half of the time for the independent case and incor-
rectly classified 84% of β1 estimates in Region 2 as positive 
at least half of the time when the predictors were correlated. 
Similarly, when applying the two-SE criteria, GWR incor-
rectly classified 64% of β1 estimates in Region 2 as positive at 
least half of the time for the independent case and incorrectly 
classified 66% of β1 estimates in Region 2 as positive at least 
half of the time in the correlated case. This implies that GWR 
frequently yields nonnegligible positive estimates of β1 in the 
region of inactivity.

Furthermore, when applying the one-SE rule, we see 
that in the case of independence, GWR correctly classified 
64% and 72% of the β2 estimates as zero in the upper and 

Case 1:  Independence (GWR, top panel; GWL, bottom panel) 

b0 b1 b2 b3
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Case 2:  Correlation (GWR, top panel; GWL, bottom panel) 
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Figure 5. Average GWR and GWL regression coefficient estimates over 100 simulated data sets for the cases of independent chemicals (Case 1) and 
correlated chemicals (Case 2).
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Table 3. Median (interquartile range) percentage of GWR and GWL coefficient estimates that were positive, negative, and zero across the 
100 simulated data sets for the cases of independent chemicals (Case 1) and correlated chemicals (Case 2).

GWR GWL

ββ0 ββ1 ββ2 ββ3 ββ0 ββ1 ββ2 ββ3
Case 1

Region 1

  Positive 12 (6, 21) 100 (100, 100) 47 (39, 64) 100 (100, 100) 62 (16, 68) 100 (100, 100) 27 (0, 36) 83 (72, 86)

 N egative 88 (79, 94) 0 (0, 0) 53 (36, 61) 0 (0, 0) 0 (0, 35) 0 (0, 0) 27 (4, 38) 0 (0, 1)

  Zero – – – – – – – – 38 (33, 49) 0 (0, 0) 55 (44, 63) 17 (14, 26)

Region 2

  Positive 76 (66, 86) 96 (92, 99) 47 (40, 61) 100 (100, 100) 7 (5, 27) 100 (47, 100) 15 (0, 23) 65 (61, 81)

 N egative 24 (14, 34) 4 (1, 8) 53 (39, 60) 0 (0, 0) 19 (18, 21) 0 (0, 12) 16 (9, 21) 0 (0, 0)

  Zero – – – – – – – – 74 (51, 76) 0 (0, 37) 81 (52, 85) 35 (18, 39)

Case 2

Region 1

  Positive 15 (8, 25) 100 (100, 100) 73 (64, 83) 100 (100, 100) 57 (17, 66) 100 (100, 100) 0 (0, 36) 85 (75, 88)

 N egative 85 (75, 93) 0 (0, 0) 28 (18, 36) 0 (0, 0) 1 (0, 30) 0 (0, 0) 42 (26, 53) 0 (0, 1)

  Zero – – – – – – – – 42 (34, 51) 0 (0, 0) 44 (37, 55) 15 (13, 23)

Region 2

  Positive 78 (69, 89) 97 (92, 100) 23 (13, 31) 100 (100, 100) 8 (5, 26) 100 (46, 100) 0 (0, 20) 65 (63, 82)

 N egative 22 (11, 31) 3 (0, 8) 77 (69, 87) 0 (0, 0) 19 (17, 22) 0 (0, 12) 28 (26, 31) 0 (0, 1)

  Zero – – – – – – – – 74 (50, 76) 0 (0, 40) 68 (54, 72) 35 (16, 37)

Note: On average, the true β1 parameter was nonzero (ie, β1 = 2) at 84% of locations in Region 1 and 3% of locations in Region 2 for both Case 1 and Case 2.

Table 4. Median (interquartile range) percentage of GWR coefficient estimates that were positive, negative, and zero across the 100 simulated 
data sets when considering ±1 and ±2 standard errors of regression coefficient estimates for the cases of independent chemicals (Case 1) and 
correlated chemicals (Case 2).

GWR (1 SE) GWR (2 SE)

ββ0 ββ1 ββ2 ββ3 ββ0 ββ1 ββ2 ββ3
Case 1

Region 1

  Positive 4 (1, 10) 100 (100, 100) 16 (6, 27) 100 (99, 100) 0 (0, 3) 100 (100, 100) 1 (0, 6) 98 (96, 100)

 N egative 73 (64, 82) 0 (0, 0) 15 (8, 28) 0 (0, 0) 53 (44, 63) 0 (0, 0) 2 (0, 6) 0 (0, 0)

  Zero 21 (16, 28) 0 (0, 0) 64 (54, 73) 0 (0, 1) 45 (36, 54) 0 (0, 0) 94 (88, 98) 2 (0, 4)

Region 2

  Positive 35 (22, 44) 83 (73, 92) 12 (7, 18) 100 (100, 100) 8 (4, 14) 64 (54, 78) 1 (0, 3) 99 (98, 100)

 N egative 3 (1, 6) 0 (0, 1) 14 (7, 22) 0 (0, 0) 0 (0, 0) 0 (0, 0) 1 (0, 3) 0 (0, 0)

  Zero 60 (53, 70) 17 (8, 24) 72 (65, 77) 0 (0, 0) 91 (86, 96) 36 (23, 46) 96 (94, 99) 1 (0, 2)

Case 2

Region 1

  Positive 6 (1, 10) 100 (100, 100) 39 (30, 53) 100 (100, 100) 0 (0, 4) 100 (100, 100) 12 (5, 20) 100 (98, 100)

 N egative 64 (51, 73) 0 (0, 0) 8 (3, 13) 0 (0, 0) 33 (23, 45) 0 (0, 0) 1 (0, 3) 0 (0, 0)

  Zero 28 (21, 38) 0 (0, 0) 51 (42, 59) 0 (0, 0) 64 (53, 72) 0 (0, 0) 86 (79, 93) 0 (0, 3)

Region 2

  Positive 39 (27, 50) 84 (69, 92) 3 (0, 9) 100 (100, 100) 8 (3, 16) 66 (49, 76) 0 (0, 0) 99 (97, 100)

 N egative 3 (0, 6) 0 (0, 0) 50 (41, 63) 0 (0, 0) 0 (0, 0) 0 (0, 0) 31 (20, 42) 0 (0, 0)

  Zero 58 (48, 68) 16 (8, 29) 44 (35, 53) 0 (0, 0) 91 (84, 96) 34 (24, 50) 69 (57, 79) 1 (0, 3)

Notes: On average, the true β1 parameter was nonzero (ie, β1 = 2) at 84% of locations in Region 1 and 3% of locations in Region 2 for both Case 1 and Case 2.  
A parameter estimate was counted as zero if its confidence interval based on one or two standard errors contained zero.
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lower regions, respectively, at least half of the time. In the case 
of correlated predictors, only 51% and 44% of the β2 estimates 
were correctly classified at least half of the time in the upper 
and lower regions, respectively. Finally, when using the two-
SE criteria, 29% of the β2 estimates in Region 1 were incor-
rectly classified as positive at least half of the time when the 
predictors were correlated. Thus, even when allowing “small” 
estimates to be considered as negligible, GWR results can still 

Case 1:  Independence: GWR one SE (top panel), GWR two SE (middle panel), and GWL 
(bottom panel) 
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Case 2: Correlation: GWR one SE (top panel), GWR two SE (middle panel), and GWL (bottom 
panel) 
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Figure 6. Estimated regression coefficients from GWR and GWL for one simulation of data under the cases of independent chemicals (Case 1) and 
correlated chemicals (Case 2).

lead to erroneous inferences about the nature of a predictor 
variable that is not associated with the response.

As an illustrative example, we randomly chose one simu-
lated data set for each correlation case and plotted the cor-
responding estimated regression coefficients from GWR and 
GWL, using open circles for the negligible estimates (ie, 
GWR estimates with confidence intervals containing zero 
or GWL estimates of zero) (Fig.  6). This example visually 

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Czarnota et al

126 Cancer Informatics 2015:14(S2)

supports the aggregate results given in Tables 3 and 4. GWR 
accurately identified Region 1 as the region of high activity 
for x1 but overstated the effect of x1 in Region 2, in which the 
predictor is inactive. In addition, in the correlated case, GWR  
produced a cluster of nonnegligible positive estimates for β2 
in Region 1 and nonnegligible negative estimates for β2 in 
Region 2. Finally, while GWL was able to correctly perform 
variable selection for x2 with some frequency (ie, estimate that 
β2 was zero, as shown by the open circles), we see that GWL 
was again unable to correctly identify the spatially varying pat-
tern of β1 in the cases of both independence and correlation. 
More specifically, GWL estimated a nearly uniform effect for 
β1 across the study area, understating the effect of x1 in Region 
1 and failing to perform appropriate variable selection for x1 in 
Region 2 (implying that x1 is active in Region 2).

Discussion and Conclusion
We have evaluated the ability of the geographically weighted 
regression methods of GWR and GWL to detect signal from 
noise in the context of modeling the associations of environ-
mental chemicals and an adverse health effect using a simula-
tion study with both independent and correlated chemicals. 
We found that GWR was able to identify regions of high 
activity for an important chemical when the predictors were 
independent and when they were highly correlated, but it 
demonstrated a tendency to overstate the importance of this 
chemical in its region of inactivity. Furthermore, GWR suf-
fered from the reversal paradox for less-important chemicals 
when the chemicals were correlated, as the variable that was 
not associated with the outcome was largely positive in the 
upper study region and largely negative in the lower study 
region. We also found that with GWL, the signal of the most 
important chemical was diminished, with less distinction 
between the inactive and active study regions, regardless of 
the correlation among the chemicals.

Previous work has addressed the issue of collinearity in 
GWR. Wheeler and Tiefelsdorf11 first demonstrated the link 
between collinearity in GWR and correlation of estimated 
regression coefficients using simulation studies. These authors 
introduced systematic collinearity into the model by adding 
correlation to a pair of covariates and found consistent evidence 
of increasing correlation in GWR coefficients with increas-
ing collinearity. Wheeler and Calder13 used two simulation 
studies to evaluate the coverage probability and accuracy of 
the regression coefficients from GWR. Results of the simula-
tion studies include low coverage probabilities for the GWR 
coefficients and consistently increasing error in the coefficients 
when collinearity is increased. Wheeler12 conducted a simple 
experiment by systematically increasing collinearity in a data 
set to demonstrate that a penalized form of GWR, geographi-
cally weighted ridge regression, reduces the extreme effects of 
collinearity that afflict GWR. More recent simulation study 
work confirms that a nonnegligible amount of spatial varia-
tion of and correlation between GWR coefficient surfaces is 

inherently generated by the method.15 This work finds that 
the false-positive rates for GWR coefficients are typically 
much higher than convention would mandate, from ,10% 
to .50% of the time (depending on the true correlation level 
between two covariates) when the true underlying process is 
stationary.

Wheeler14 expanded the simulation study of Wheeler 
and Calder13 to contain four explanatory variables and 196 
observations in a study of the performance of GWR and 
GWL. This work compared the coefficient accuracy and the 
predictive performance of the models in the presence of col-
linearity. In these experiments, 100 realizations of a data-
generating process were used with the true local coefficients 
sampled from a multivariate normal distribution. These simu-
lation studies show that the performance of GWR in terms of 
both prediction and coefficient accuracy can be improved by 
constraining the magnitude of its regression coefficients with 
techniques designed to remediate collinearity. However, the 
experiments reported in that study show that the correlation 
between local coefficients is reduced but not eliminated with 
GWL, and that although GWL can shrink some coefficients 
to zero to stabilize the model, the estimates still tend to be 
positively correlated with those from GWR.15

We have extended these results in the case of three 
environmental chemicals to identify evidence of the reversal 
paradox and evaluate the correct identification of local “hot 
spots” or regions of high activity for one chemical. Our results 
demonstrate that while GWR can correctly identify a region 
of high activity for one chemical, it has difficulty in identify-
ing regions of inactivity or low exposure. Additionally, GWR 
artificially induces spatial patterning and suffers from the 
reversal paradox in the setting of highly correlated predictor 
variables. Finally, we have shown that while GWL reduces 
the correlation among the coefficient estimates and tempers 
the reversal paradox that is problematic with GWR, it suf-
fers from an inability to adequately distinguish local regions of 
high activity regardless of the relationship among the predic-
tor variables. The implications of our findings for environmen-
tal risk analysis is that GWR may incorrectly identify some 
chemicals as positively or negatively associated with disease 
risk, and GWL may not correctly estimate the magnitude of 
association for an important chemical in some regions of the 
study area. Given these findings, more methodological devel-
opment is required to better estimate the effects of correlated 
environmental chemicals on diseases associated with environ-
mental factors, such as many cancers.
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