
Frontiers in Endocrinology | www.frontiersi

Edited by:
Cheng-Chao Ruan,

Fudan University, China

Reviewed by:
Xiaoxiang Yan,

Shanghai Jiao Tong University, China
Wai San Cheang,

University of Macau, China

*Correspondence:
Anne Dutour

Anne.DUTOUR@ap-hm.fr

Specialty section:
This article was submitted to

Cellular Endocrinology,
a section of the journal

Frontiers in Endocrinology

Received: 17 June 2021
Accepted: 27 July 2021

Published: 16 August 2021

Citation:
Lasbleiz A, Gaborit B,

Soghomonian A, Bartoli A, Ancel P,
Jacquier A and Dutour A (2021)
COVID-19 and Obesity: Role of
Ectopic Visceral and Epicardial

Adipose Tissues in Myocardial Injury.
Front. Endocrinol. 12:726967.

doi: 10.3389/fendo.2021.726967

REVIEW
published: 16 August 2021

doi: 10.3389/fendo.2021.726967
COVID-19 and Obesity: Role of
Ectopic Visceral and Epicardial
Adipose Tissues in Myocardial Injury
Adèle Lasbleiz1,2, Bénédicte Gaborit 1,2, Astrid Soghomonian1, Axel Bartoli 3,4,
Patricia Ancel2, Alexis Jacquier3,4 and Anne Dutour1,2*

1 Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, Marseille, France, 2 Aix Marseille Univ,
INSERM, INRAE, C2VN, Marseille, France, 3 Aix Marseille Univ, CNRS, CRMBM, Marseille, France, 4 Department of Medical
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In March 2020, the WHO declared coronavirus disease 2019 (COVID-19), caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a global pandemic.
Obesity was soon identified as a risk factor for poor prognosis, with an increased risk of
intensive care admissions and mechanical ventilation, but also of adverse cardiovascular
events. Obesity is associated with adipose tissue, chronic low-grade inflammation, and
immune dysregulation with hypertrophy and hyperplasia of adipocytes and
overexpression of pro-inflammatory cytokines. However, to implement appropriate
therapeutic strategies, exact mechanisms must be clarified. The role of white visceral
adipose tissue, increased in individuals with obesity, seems important, as a viral reservoir
for SARS-CoV-2 via angiotensin-converting enzyme 2 (ACE2) receptors. After infection of
host cells, the activation of pro-inflammatory cytokines creates a setting conducive to the
“cytokine storm” and macrophage activation syndrome associated with progression to
acute respiratory distress syndrome. In obesity, systemic viral spread, entry, and
prolonged viral shedding in already inflamed adipose tissue may spur immune
responses and subsequent amplification of a cytokine cascade, causing worse
outcomes. More precisely, visceral adipose tissue, more than subcutaneous fat, could
predict intensive care admission; and lower density of epicardial adipose tissue (EAT)
could be associated with worse outcome. EAT, an ectopic adipose tissue that surrounds
the myocardium, could fuel COVID-19-induced cardiac injury and myocarditis, and
extensive pneumopathy, by strong expression of inflammatory mediators that could
diffuse paracrinally through the vascular wall. The purpose of this review is to ascertain
what mechanisms may be involved in unfavorable prognosis among COVID-19 patients
with obesity, especially cardiovascular events, emphasizing the harmful role of excess
ectopic adipose tissue, particularly EAT.

Keywords: epicardial adipose tissue, COVID-19, obesity, cardiac injury, adipose tissue, ectopic fat,
inflammation, immunity
n.org August 2021 | Volume 12 | Article 7269671

https://www.frontiersin.org/articles/10.3389/fendo.2021.726967/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.726967/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.726967/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:Anne.DUTOUR@ap-hm.fr
https://doi.org/10.3389/fendo.2021.726967
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2021.726967
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2021.726967&domain=pdf&date_stamp=2021-08-16


Lasbleiz et al. COVID-19 and Epicardial Adipose Tissue
INTRODUCTION

Since December 2019, a global pandemic of coronavirus disease
2019 (COVID-19), caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), first reported in Wuhan, China,
has been raging (1). Obesity, whose prevalence is rising
worldwide, is currently a major public health issue. It was soon
recognized as a risk factor for worse outcomes of COVID-19 (2),
including the occurrence of acute respiratory distress syndrome
(ARDS), but also adverse cardiovascular events in up to 28% of
hospitalized patients (3). The role of ectopic fat depots, especially
increased amounts of epicardial adipose tissue (EAT), has drawn
interest in the COVID-19 setting because this cardiac adiposity
could fuel critical illness in patients with obesity. The purpose of
this review is to ascertain what mechanisms may be involved in
the unfavorable prognosis of COVID-19 patients with obesity,
especially cardiovascular events, emphasizing the harmful role of
excess ectopic adipose tissue, particularly EAT.
COVID-19 PATHOGENESIS—KEY POINTS

The mechanisms of SARS-CoV-2 viral transmission and
pathogenesis are now better understood and may explain why
some patients appear to be at greater risk of severe forms. SARS-
CoV-2 infects the host cells by binding of the viral spike (S)
proteins, present on the viral envelope, to cellular angiotensin-
converting enzyme 2 (ACE2) receptors and then by employing
cellular serine protease TMPRSS2 for S protein priming and
plasma membrane fusion (4). This enables endocytosis of the
virion and entry of the viral genome into the host cell cytoplasm,
followed by endosomal acidification, viral replication, and
shedding of virion particles (5). Type II alveolar cells, kidney
cells, myocardial cells, nasal, ileum, esophagus epithelial cells,
pancreatic cells, and, interestingly, adipocytes (6–8) have been
identified with high ACE2 expression and could increase SARS-
CoV-2 infection and replication as demonstrated in a mouse
model and HeLa cells (9, 10). Infection results in cell apoptosis,
which triggers the activation of pro-inflammatory cytokines and
chemokines. It has been demonstrated that SARS-CoV-2-infected
patients, especially those requiring admission to intensive care
units (ICUs), have large amounts of pro-inflammatory cytokines
than healthy patients without SARS-CoV-2 infection (11). One of
the mechanisms explaining rapid disease progression could be the
“cytokine storm”, a dysregulated, excessive systemic cytokine
release (12). Studies have shown that serum levels of IL-6,
tumor necrosis factor (TNF-a), granulocyte colony-stimulating
factor (G-CSF), interferon-g-inducible protein 10 (IP-10),
monocyte chemoattractant protein 1 (MCP-1), or macrophage
inflammatory protein 1-a, among others, are higher in patients
with severe conditions (i.e., requiring transfer to an ICU or
mechanical ventilation or who died) than in other infected
patients (13, 14). Obesity is known to be associated with a state
of chronic low-grade inflammation that might be a risk factor for
developing a cytokine storm form during COVID-19 disease.
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OBESITY: A RISK FACTOR FOR BAD
COVID-19 OUTCOMES

Obesity is increasing worldwide and is today clearly recognized
as a critical risk factor for various infections, post-infection
complications, and mortality from severe infection (15, 16). In
particular, since the 2009 influenza A H1N1 outbreak, patients
with obesity have been found to be at greater risk of severe
disease and have needed more mechanical ventilation (17, 18).
During the COVID-19 pandemic, poor prognostic factors have
emerged such as male sex, older age, diabetes mellitus,
hypertension, and the presence of prior cardiovascular or
respiratory disease. These factors were associated with a greater
risk of developing critical or fatal conditions (2, 19). Obesity was
also soon recognized as an independent risk factor associated
with worse outcomes (20, 21). The United Kingdom was the first
to reveal in March 2020, through a report from the Intensive
Care National Audit and Research Centre (ICNARC), that two-
thirds of patients who developed serious or fatal complications
following infection were overweight or obese. A US study
including 5,700 patients hospitalized in New York City for
COVID-19 reported that the prevalence of obesity in recovered
patients was twice that in the population around the hospital
(41.7% vs. 22%) (22). A pooled meta-analysis including 19
studies showed that individuals with obesity were 113% more
at risk of hospitalization (p < 0.0001) (23). This was confirmed by
another study including 45,650 participants from nine countries
worldwide and showing an odds ratio of 2.36 (95%CI: 1.37, 4.07,
P = 0.002) for hospitalization, and 2.63 (95%CI: 1.32, 5.25, P =
0.006) for invasive mechanical ventilation support (24). It has
also been shown that individuals with obesity are more likely to
be managed in ICUs with a need for orotracheal intubation for
mechanical ventilation especially if patients are young (23,
25–27). In CORONADO, a multicentric French study of
COVID-19 infection in hospitalized patients with diabetes,
body mass index (BMI) was the only pre-admission criterion
associated with orotracheal intubation and death at D7 especially
in patients younger than 75 years (28, 29). In a French cohort of
5,795 patients hospitalized for COVID-19 infection, obesity
doubled mortality in all age groups (30).
ECTOPIC FAT AND ADIPOSE TISSUE
DYSFUNCTION: KEY ELEMENTS IN THE
COMPLICATIONS OF OBESITY

Regional distribution of adipose tissue and the development of
ectopic fat are major determinants of metabolic and
cardiovascular diseases (31, 32). Dysfunction of subcutaneous
adipose tissue (SAT) limits its expandability and leads to ectopic
fat deposition.

Adipose Tissue Dysfunction
During weight gain, adipose tissue undergoes multiple structural
and cellular remodeling processes (33) leading to a dysfunctional
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tissue. Firstly, during chronic positive energy balance, mature
adipocytes expand, becoming hypertrophic to store more fat. If
this extra energy is not used, cell numbers increase in adipose
tissue, which then becomes hyperplastic (34). Hyperplastic and
hypertrophic adipocytes are often hypoxic, partly explaining the
development of inflammation (35). Secondly, hypoxia also
induces the production of HIF-1a, which in turn leads to a
potent profibrotic transcriptional program with extracellular
matrix (ECM) component accumulation, leading to fibrosis
and adipose tissue dysfunction (36, 37). Concurrently, immune
cells infiltrate the adipose tissue, and pro-inflammatory
cytokines are overexpressed (33). Under lean conditions,
high M2/M1 ratio, eosinophils, and regulatory T cells, which
secrete IL-4/IL-13 and IL-10, lead to an anti-inflammatory
phenotype. In obesity, activation of several stress pathways
such as endoplasmic reticulum stress, oxidative stress, and
inflammasome (38), but also hypoxia, induces a shift in innate
immunity and lymphoid cells and a modification of macrophagic
signature with a rapid shift in polarization toward an M1
phenotype, associated with adipose tissue inflammation and
insulin resistance (35, 39, 40). A chronic low-grade
inflammation state is therefore mainly explained by immune
cell imbalance in dysfunctional adipose tissue. Stressed
adipocytes release free fatty acids (FFAs) and secrete
chemokines that lead to inflammatory immune cell infiltration
secreting pro-inflammatory cytokines (41). Intestinal microbiota
dysbiosis can also trigger inflammation by activation of immune-
signaling pathways (42). The dysfunction of SAT leads to the
release of FFAs to peripheral organs and ectopic fat deposition
such as EAT.

Epicardial Adipose Tissue and
Cardiovascular Risk
In the last decade, it has been demonstrated that ectopic fat
depots localized around the heart contribute to the pathogenesis
of cardiovascular disease, independently of other visceral depots
(43, 44). EAT is an ectopic fat depot located between the
myocardium and the visceral pericardium in close contact with
coronary vessels (45). With no fascia separating the tissues, local
interaction and cellular crosstalk between myocytes and
adipocytes can occur. EAT is an extremely active endocrine
organ with a high capacity for releasing and taking up FFAs. It is
thought that EAT has protective functions as a mechanical shock
absorber against pulse waves, a regulator of FFA homeostasis,
and, in a more recent work, a thermogenic factor (46–49). It is a
major source of adipokines, chemokines, and cytokines,
interacting paracrinally or vasocrinally with vascular cells or
myocytes (44). Expression and secretion of pro-inflammatory
cytokines (IL-6, IL-1b, MCP-1, TNF-a, etc.) have been found to
be higher in EAT than in subcutaneous fat (50), partly by the
upregulation of nuclear factor kB (NF-kB) and c-Jun N-terminal
kinase (JNK). It was hypothesized to accentuate vascular
inflammation, plaque instability via apoptosis (TNF-a), and
neovascularization (MCP-1).

Using a pangenomic and unbiased lipidomic approach, we
previously reported that EAT has a specific transcriptomic and
Frontiers in Endocrinology | www.frontiersin.org 3
lipidomic signature particularly enriched in inflammation,
extracellular matrix remodeling, immune signaling,
thrombosis, beiging, coagulation, apoptosis, and lipotoxic
pathways with an enrichment in ceramides, diglycerides, and
monoglycerides compared with SAT, especially in patients with
coronary artery disease (CAD) (47, 51). Furthermore, we
previously demonstrated that human EAT secretome induced
marked fibrosis of myocardial atria through the secretion of
adipo-fibrokines, such as activin A (52). Activin A was shown to
be enhanced in patients with heart failure and reduced ejection
fraction and was abundantly expressed in EAT of type 2 diabetes
(T2D) patients with obesity (53).

EAT thickness, volume, and density can be assessed by
various imaging techniques such as echocardiography (54),
computed tomography (CT), and magnetic resonance imaging
(55). Higher EAT volume and lower density were associated with
coronary calcification and serum levels of plaque inflammatory
markers (56). EAT has been shown to be associated with CAD
and the occurrence of major adverse cardiovascular events in
many studies (57–60). It is correlated with the extent and severity
of CAD, chest pain, unstable angina, and coronary flow reserve
(61, 62) and could be a marker of the atherosclerotic burden even
in asymptomatic patients (63, 64). EAT may also play a role in
the development of atrial fibrillation (AF) (65) by infiltration of
adipocytes in the atrial myocardium, mechanical effect on left
atrial pressure stretch and wall stress, fibrosis, and inflammation,
which can lead to structural and electrical remodeling and
cardiac automatic system activation (44).

Obesity thus leads to an increase in ectopic fat deposition,
particularly at the epicardial level, which may partly explain the
increase in adverse cardiovascular events in this condition.
Moreover, the pro-inflammatory phenotype of adipose tissue
makes this organ a target for further immune amplification by
external pathogens, such as SARS-CoV-2. In the current context
of COVID-19 infection, we will see how dysfunction of the
adipose tissue leads to a higher risk of severe-form COVID-19.
DYSFUNCTIONAL ADIPOSE TISSUE IN
OBESITY: A KEY TO UNDERSTANDING
BAD OUTCOMES DURING THE COVID-19
PANDEMIC

Immune and Metabolic Derangement
as a Possible Link to Worse
Outcomes in Obesity
It has been demonstrated that host cell entry of SARS-CoV-2
depending on ACE2 receptors and overexpression of human
ACE2 can increase viral infection and replication. Some studies
have demonstrated that the expression of ACE2 in adipocytes is
higher than that in the lungs, which can act as an important viral
reservoir (7, 66). Experimental studies on mice showed an
increased expression of ACE2 in adipocytes in case of a high-
fat diet (67). In obesity, excess adipose tissue may thus increase
SARS-CoV-2 infection and accessibility to the tissue, leading to
August 2021 | Volume 12 | Article 726967
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an increased viral systemic spread, entry, and prolonged viral
shedding (68), as seen during the influenza A epidemic. After
infection of host cells, the recruitment of pro-inflammatory
cytokines and impaired lymphocyte T cells culminates in a
cytokine storm associated with progression to ARDS and
multi-organ failure (13). In severe respiratory forms, patients
with COVID-19 infection showed macrophage activation
syndrome. There is a depletion of lymphocytes CD4 and CD8
(69) but a higher ratio of pro-inflammatory Th17 cells and high
secretion of pro-inflammatory cytokines IL-2, IL-6, and TNF-a
(70, 71). In obesity, dysfunctional hypertrophic adipocytes over-
produce pro-inflammatory cytokines, leading to a chronic low-
grade inflammation state. This in turn causes metabolic and
immune derangement, making a cytokine storm more likely
(72). The dysfunction of an adaptative immune system with
increased pro-inflammatory LTCD4+ and impaired T-cell
function could also increase this risk. In this regard, the PD-1/
PDL-1 immune checkpoint could increase within the visceral
adipose tissue (VAT) of individuals with obesity. PD-1 is
expressed by T cells and interacts with receptor PDL-1 to
inhibit cytotoxic T cell responses. A recent study showed that
T cells of individuals with obesity increased PD-1 expression,
leading to T-cell exhaustion and dysfunction (73). During severe
COVID-19, the number of TCD4+ and TCD8+ is also reduced,
and expression of PD-1 is increased (74). Interestingly, Alzaid et
al. observed particularly low levels of cytotoxic CD8+

lymphocytes and increased monocyte size and monocytopenia
restricted to classical CD14Hi CD16− monocytes, which were
specifically associated with severe COVID-19 in patients with
T2D requiring intensive care (75). Monocyte loss was
accompanied by morphological alteration and a hyper-
inflammatory expression profile consistent with the type 1
interferon pathway (IL-6, IL-8, CCL2, and INFB-1). This
particular immunophenotype could be a clue to a better
understanding of the increased risk of severe forms in
individuals with obesity by the escape of SARS-CoV-2 from lysis.

More recently, a significant increase in IL-1b level in plasma
was reported in COVID-19 patients (11), suggesting that the
NOD-like receptor family pyrin domain-containing 3 (NLRP3)
inflammasome might be involved in the pathogenesis of
infection and lung injury. NLRP3 is a multiprotein complex
present in macrophages, dendritic cells, and other non-immune
cells. The activation of NLRP3 as a pivotal component of the
innate immune system plays a critical role in the host defense but
is also associated with metabolic and inflammatory conditions
(76). During SARS-CoV-2 infection, the intense and rapid
stimulation of immune system response could trigger
activation of the NLRP3 inflammasome pathway and the
release of its products including IL-6 and IL-1b (77), which
could be involved in maintaining inflammation. Viral infection
could potentiate this underlying systemic inflammatory state,
which could partly explain worse outcomes in obese
patients (78).

It has also been demonstrated that individuals with obesity
display white adipose tissue depot in large airway walls,
proportionally to BMI, which could lead to airway thickening,
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immune cell infiltration, and then tissue damage and fibrosis in
the lungs (79, 80). Also found in the lungs, lipofibroblasts,
adipose-like cells composed of lipid droplets and located in the
alveolar interstitium, could transdifferentiate to myofibroblasts
and lead to pulmonary fibrosis (5, 7).

There would then be a higher expression of ACE2 and
TMPRSS2 in lung epithelial cells from individuals with obesity
than in those without, as demonstrated in vitro (81).

These conditions could be another basis for the elevated
occurrence of ARDS in obese individuals with obesity.

These different elements partly explain the role of adipose
visceral tissue in critical COVID-19 infection, as a viral reservoir
and by increasing immune responses with consequences for
cytokine cascade amplification and severe forms of the disease.
VAT and EAT could be markers of severity, and recent studies
also show that it could be implicated in myocardial injury.

Visceral Adipose Tissue and Epicardial
Adipose Tissue as Markers of
Myocardial Injury
Cardiac complications have been reported in 28% of patients
hospitalized for COVID-19 infection (3, 82, 83). Myocardial
injury and myocarditis with elevated troponin occurs in 7%–17%
of hospitalized patients and are associated with an increased risk
of adverse outcomes (84, 85). Acute myocarditis represents a
significant diagnostic challenge because of its varied clinical
presentations and risk of worse outcomes such as heart failure.
Changes in electrocardiograms, elevated cardiac biomarkers, and
impaired cardiac function should be considered as alerts
pointing to acute myocarditis (86). Remarkably, no culprit
injury was found in 40% of patients with COVID-19
presenting ST-elevation myocardial infarction (87), which
could be promoted by hypercoagulability, endothelial
dysfunction, microvascular damage, hypoxia-induced injury,
myocarditis, or systemic inflammatory cytokine storm
syndrome. In several studies, cardiac troponin I level was
found to be associated with more severe disease and mortality,
making myocardial damage a prognostic factor (88, 89).
Furthermore, dysrhythmias linked to hypoxia, inflammatory
stress, and therapeutics affect up to 17% of hospitalized
patients (90, 91). Finally, some studies report that heart
failure may be present in 23% of patients hospitalized for
COVID-19, half of whom had no history of hypertension or
cardiovascular disease.

The mechanisms of these cardiac events are not fully clarified,
and ectopic fat and EAT could be important triggers of their
development. More than just BMI, several reports have shown
that VAT volume measured by CT is associated with critical
illness in patients with COVID-19 entailing hospitalization (92),
intensive care need, or death (93–96). According to Favre et al., a
visceral fat area ≥128.5 cm2 was the best predictive value for
severe COVID-19 (93). Further, EAT, known to be strongly
correlated with VAT, has been associated with the occurrence of
cardiac events in COVID-19 infection.

CT imaging of the EAT allows adipose tissue inflammation
to be characterized by quantifying CT threshold attenuation.
August 2021 | Volume 12 | Article 726967
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The group of Iacobellis showed that density of EAT, reflecting
inflammatory changes, significantly increased with increasing
COVID-19 severity compared to discharged patients (97).
Furthermore, EAT mean attenuation was negatively correlated
to high-sensitivity troponin T levels and peripheral oxygen
saturation (97). Another international multicenter study on
109 patients showed that volume and attenuation of EAT
measured by CT was associated with extent of pneumonia and
were independent predictors of clinical deterioration or death
(98). This study used a fully automated three-dimensional
measurement of EAT and demonstrated that EAT volume can
predict clinical deterioration or death independently of clinical
factors such as age, diabetes, hypertension, or smoking history
(99). This suggests the importance of automated measurement of
EAT for COVID-19 risk stratification. An increased EAT volume
was associated with lung dysfunction even in healthy individuals
(100), and the close proximity of EAT to the pulmonary
circulation could enable direct diffusion of inflammatory
mediators. According to Wei et al., EAT volume appeared to
be an independent predictor of myocardial injury in patients
with COVID-19 (OR = 3.06) with a maximal cutoff value of
137.1 cm2 (89) after adjustment for age, weight, history of
cardiovascular disease, and dyslipidemia. This work performed
in a large cohort of 400 patients from six Chinese hospitals
clearly indicates that EAT volume enlargement may predict the
development of myocardial injury. However, the cutoff needs
to be evaluated in ethnically diverse cohorts. Furthermore, EAT
was significantly higher in severe cases of COVID-19 groups,
i.e., with signs of respiratory distress (101). In a recent study,
Iacobellis et al. showed that on 427 infected patients, use of
Frontiers in Endocrinology | www.frontiersin.org 5
dexamethasone reduced EAT attenuation (102). EAT could
therefore also serve as a therapeutic target for anti-
inflammatory treatment. All these studies indicate that EAT
volume and inflammation itself are associated with COVID-19
severity and adverse cardiac events.

The mechanisms of these cardiac events are not fully
elucidated, and EAT could be a clue to understanding them.
First, epicardial fat cells seemed to express higher levels of ACE2
than subcutaneous fat cells, which could make them a viral
reservoir in COVID-19 infection. A study on EAT and SAT
biopsies from 43 patients who underwent open-heart surgery
identified higher levels of ACE2 (p < 0.05) but lower ADAM-17
(p < 0.001), with its cleavage enzyme in EAT compared with
subcutaneous fat. Obesity and T2D exacerbated this difference in
patients with cardiovascular disease (103). In an animal study,
ACE2 was upregulated in murine EAT in association with high-
fat diet. Loss of ACE2 in knock-out diet-induced-obesity
(ACE2KO-DIO) mice increased macrophage polarization to a
pro-inflammatory phenotype and EAT inflammation compared
with wild-type and control diet mice. The same study showed that
in human EAT from obese patients with heart failure, ACE2 was
increased and was also associated with pro-inflammatory
macrophage phenotype compared with lean patients (104, 105).
Voluminous and hypervascularized EAT in individuals with
obesity could facilitate viral spread, immune response, and
greater pro-inflammatory cytokine secretion. Volume of EAT
was positively correlated with inflammatory biomarkers during
COVID-19 infection in a study of 100 patients (106), with a
significant positive mild association with neutrophil-to-
lymphocyte ratio (r = 0.33, p = 0.001) and platelet-to-
FIGURE 1 | Impact of obesity and inflammation of epicardial adipose tissue on COVID-19 outcome. CVD, cardiovascular disease; EAT, epicardial adipose tissue;
OSA, obstructive sleep apnea; T2D, type 2 diabetes.
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lymphocyte ratio (r = 0.25, p = 0.01) but a negative correlation
with lymphocyte-to-C-reactive protein (CRP) ratio (r = −0.25,
p = 0.02). Pro-inflammatory cytokines such as TNF-a and IL-6
are expressed at higher levels in EAT of individuals with obesity
linked to a reduction of inotropic effect and cardiac function
resulting in hypoxia and systemic myocardial inflammatory
response (43). By taking advantage of more ACE2-binding sites,
which ultimately lead to an augmented inflammatory signaling
cascade, EAT inflammation could contribute to myocardial
complications, such as myocarditis or cardiomyocyte
dysfunction (107), and then heart failure. Furthermore, it has
recently been shown that EAT adipocytes can release exosomes
that can enter cardiac cells via endocytosis (105). This suggests
numerous mechanisms by which EAT could impair cardiac
function, particularly via the transfer of microRNAs from EAT
to the myocardium and could help mediate SARS-CoV-2 entry
into the heart, causing direct cardiac effects.

COVID-19 thus induces an immune-mediated inflammatory
response, and EAT may transduce this inflammation to the
heart. It can be implicated in COVID-19 myocarditis by its
contiguity with the myocardium and its pro-inflammatory
secretome reaching the myo-pericardium directly by the vasa
vasorum and paracrinally (108–110).

EAT thus contributes to bad outcomes during COVID-19
infection. We and others have shown that EAT significantly
responds to drugs targeting the fat (44). EAT not only is a marker
of inflammation, but it can be a target to anti-inflammatory
treatment. Further studies on the impact of COVID treatment on
EAT volume and inflammation are needed.

All these elements are summarized in Figure 1.
Frontiers in Endocrinology | www.frontiersin.org 6
CONCLUSION

Obesity is a major risk factor for COVID-19. Identifying patients
with obesity who are at high risk of ICU need is crucial. Multiple
studies have demonstrated that ectopic fat accumulation,
especially EAT, is a major driver of COVID-19 severity in such
patients. This unique potentially inflamed EAT depot may play a
direct role in COVID-19 cardiac injury, acting as a fuel through
its specific anatomical contact with the myocardium and its
inflammatory status. Large studies with systematic evaluation of
EAT volume and CT scan attenuation together with evaluation
of pulmonary involvement are needed. Deep learning algorithms
leading to new fully automated three-dimensional methods for
the measurement of EAT will help improve clinical
risk stratification.
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62. Sade LE, Eroglu S, Bozbas ̧H, Ozbiçer S, Hayran M, Haberal A, et al. Relation
Between Epicardial Fat Thickness and Coronary Flow Reserve in Women
With Chest Pain and Angiographically Normal Coronary Arteries.
Atherosclerosis (2009) 204:580–5. doi: 10.1016/j.atherosclerosis.2008.09.038

63. Yerramasu A, Dey D, Venuraju S, Anand DV, Atwal S, Corder R, et al.
Increased Volume of Epicardial Fat Is an Independent Risk Factor for
Accelerated Progression of Sub-Clinical Coronary Atherosclerosis.
Atherosclerosis (2012) 220:223–30. doi: 10.1016/j.atherosclerosis.2011.09.041

64. Bachar GN, Dicker D, Kornowski R, Atar E. Epicardial Adipose Tissue as a
Predictor of Coronary Artery Disease in Asymptomatic Subjects. Am J
Cardiol (2012) 110:534–8. doi: 10.1016/j.amjcard.2012.04.024

65. Friedman DJ, Wang N, Meigs JB, Hoffmann U, Massaro JM, Fox CS, et al.
Pericardial Fat Is Associated With Atrial Conduction: The Framingham
Heart Study. J Am Heart Assoc (2014) 3:e000477. doi: 10.1161/
JAHA.113.000477

66. Al-Benna S. Association of High Level Gene Expression of ACE2 in Adipose
Tissue With Mortality of COVID-19 Infection in Obese Patients. Obes Med
(2020) 19:100283. doi: 10.1016/j.obmed.2020.100283

67. Gupte M, Boustany-Kari CM, Bharadwaj K, Police S, Thatcher S, Gong MC,
et al. ACE2 Is Expressed in Mouse Adipocytes and Regulated by a High-Fat
Diet. Am J Physiol Regul Integr Comp Physiol (2008) 295:R781–788.
doi: 10.1152/ajpregu.00183.2008

68. Maier HE, Lopez R, Sanchez N, Ng S, Gresh L, Ojeda S, et al. Obesity
Increases the Duration of Influenza A Virus Shedding in Adults. J Infect Dis
(2018) 218:1378–82. doi: 10.1093/infdis/jiy370

69. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of
Immune Response in Patients With COVID-19 in Wuhan, China. Clin
Infect Dis (2020) (15):762–8. doi: 10.1093/cid/ciaa248

70. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K,
Antoniadou A, Antonakos N, et al. Complex Immune Dysregulation in
COVID-19 Patients With Severe Respiratory Failure. Cell Host Microbe
(2020) 27:992–1000.e3. doi: 10.1016/j.chom.2020.04.009

71. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and
Immunological Features of Severe and Moderate Coronavirus Disease 2019.
J Clin Invest (2020) 130:2620–9. doi: 10.1172/JCI137244

72. Mirsoian A, Bouchlaka MN, Sckisel GD, Chen M, Pai C-CS, Maverakis E,
et al. Adiposity Induces Lethal Cytokine Storm After Systemic
Administration of Stimulatory Immunotherapy Regimens in Aged Mice.
J Exp Med (2014) 211:2373–83. doi: 10.1084/jem.20140116

73. Wang Z, Aguilar EG, Luna JI, Dunai C, Khuat LT, Le CT, et al. Paradoxical
Effects of Obesity on T Cell Function During Tumor Progression and PD-1
Checkpoint Blockade. Nat Med (2019) 25:141–51. doi: 10.1038/s41591-018-
0221-5

74. Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and
Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019
(COVID-19). Front Immunol (2020) 11:827. doi: 10.3389/fimmu.2020.00827
Frontiers in Endocrinology | www.frontiersin.org 8
75. Alzaid F, Julla J-B, Diedisheim M, Potier C, Potier L, Velho G, et al.
Monocy topen ia , Monocy t e Morpho log i ca l Anoma l i e s and
Hyperinflammation Characterise Severe COVID-19 in Type 2 Diabetes.
EMBO Mol Med (2020) 12:e13038. doi: 10.15252/emmm.202013038
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103. Couselo-Seijas M, Almengló CM, Agra-Bermejo R, Luis Fernandez Á,
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