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Cells consist of molecular modules which perform vital biological
functions. Cellular modules are key units of adaptive evolution
because organismal fitness depends on their performance. Theory
shows that in rapidly evolving populations, such as those of many
microbes, adaptation is driven primarily by common beneficial
mutations with large effects, while other mutations behave as if
they are effectively neutral. As a consequence, if a module can be
improved only by rare and/or weak beneficial mutations, its
adaptive evolution would stall. However, such evolutionary stall-
ing has not been empirically demonstrated, and it is unclear to
what extent stalling may limit the power of natural selection to
improve modules. Here we empirically characterize how natural
selection improves the translation machinery (TM), an essential
cellular module. We experimentally evolved populations of
Escherichia coli with genetically perturbed TMs for 1,000 genera-
tions. Populations with severe TM defects initially adapted via mu-
tations in the TM, but TM adaptation stalled within about 300
generations. We estimate that the genetic load in our populations
incurred by residual TM defects ranges from 0.5 to 19%. Finally,
we found evidence that both epistasis and the depletion of the
pool of beneficial mutations contributed to evolutionary stalling.
Our results suggest that cellular modules may not be fully opti-
mized by natural selection despite the availability of adaptive
mutations.
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Biological systems are organized hierarchically, from molecules
to cells, organisms, and populations (1–5). At the lowest level,

macromolecules form cellular modules, such as the translation
machinery, or other metabolic pathways (4, 6–9). Different mod-
ules perform different cellular functions, which together deter-
mine the fitness of the organism. Adaptive mutations improve
these modules, enabling organisms to consume new resources (10,
11), become resistant to drugs (12–14), thrive in otherwise harsh
conditions (15–17), etc. However, not all beneficial mutations
have the same chance of becoming fixed in populations. The
evolutionary dynamics that govern the fates of mutations can be
very complex, particularly in large populations with limited re-
combination (14, 18–23). Recent theoretical models and experi-
mental observations characterized these dynamics at the genetic
and fitness levels (18, 21, 22, 24–27). However, our understanding
of these dynamics at the level of cellular modules and their im-
plications for the evolution of physiological functions remains
poor (28).
When beneficial mutations are rare [i.e., if the population

evolves in the successional mutations regime (24)], or when re-
combination rates are high, the instantaneous speed of adapta-
tion of each module depends only on the supply and the fitness
effects of mutations in that module alone (29). Natural selection
can only improve a module if there are mutations available to
improve it (that is, the module is not at a local performance
peak) and if their fitness benefits are above ∼1/N, the inverse of
the population size (30–33). Module adaptation may also stop
before reaching this threshold, when a balance is reached be-
tween fixations of mutations that improve the module and those

that degrade it (31, 34–36). Regardless of the reasons for why
some modules are not improvable, in this regime, all improvable
modules keep adapting simultaneously (albeit at possibly different
rates).
In many populations, particularly in microbes, beneficial muta-

tions are common, and recombination is rare, so that the evolu-
tionary fates of different adaptive mutations are not independent
(14, 19, 20, 23). In this so-called concurrent mutations regime,
adaptation is primarily driven by mutations with large fitness ef-
fects, whereas the evolutionary fates of mutations whose effects fall
below a certain "emergent neutrality" threshold are largely deter-
mined by the genetic backgrounds in which they arise (26, 37, 38).
The emergent neutrality threshold depends on the supply and the
fitness effects of all adaptive mutations in the genome. Thus, the
rate of adaptation in any one module depends not only on the
mutations in that module but also on mutations in all other
modules, through the emergent neutrality threshold.
Coupling of modules by the emergent neutrality threshold has

important implications for the evolutionary dynamics of individual

Significance

Cellular modules, such as the translation machinery (TM), are key
units of adaptive evolution because fitness depends on their
performance. In rapidly evolving populations, natural selection
may not be able to improve all modules simultaneously because
adaptive mutations in different modules compete against each
other. We hypothesize that adaptation in some modules would
stall, despite the availability of beneficial mutations. We empir-
ically demonstrate such evolutionary stalling in the TM module
in experimental populations of Escherichia coli. Natural selection
initially improved the TM, but its focus shifted away to other
cellular modules before TM’s performance was fully restored.
This work shows that rapid shifts in the focus of selection can
slow down the improvement of individual cellular components
in nature.

Author contributions: S.V., S.K., and B.K. designed research; S.V., R.M., S.H.S., S.K., and
B.K. performed research; S.V., S.K., and B.K. analyzed data; and S.V., S.K., and B.K. wrote
the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution License 4.0
(CC BY).

Data deposition: The script, modified reference genomes, and the raw data (except for
raw sequencing data) used for analysis can be found at GitHub (https://github.com/san-
deepvenkataram/EvoStalling). Raw sequencing data for this project have been deposited
into the National Center for Biotechnology Information (NCBI) Sequence Read Archive
(SRA) under project PRJNA560969.
1Present address: Molecular Engineering Group, Fate Therapeutics Inc., San Diego,
CA 92121

2S.K. and B.K. contributed equally to this work.
3To whom correspondence may be addressed. Email: betul@arizona.edu or skryazhi@
ucsd.edu.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1921881117/-/DCSupplemental.

First published July 17, 2020.

18582–18590 | PNAS | August 4, 2020 | vol. 117 | no. 31 www.pnas.org/cgi/doi/10.1073/pnas.1921881117

https://orcid.org/0000-0002-2012-2633
https://orcid.org/0000-0001-9128-8705
https://orcid.org/0000-0002-0482-2357
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1921881117&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/sandeepvenkataram/EvoStalling
https://github.com/sandeepvenkataram/EvoStalling
http://www.ncbi.nlm.nih.gov/sra/PRJNA560969
mailto:betul@arizona.edu
mailto:skryazhi@ucsd.edu
mailto:skryazhi@ucsd.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1921881117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1921881117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1921881117


modules. In particular, improvable modules accumulate adaptive
mutations only if such mutations arise frequently and provide
fitness benefits above the emergent neutrality threshold. In con-
trast, modules that are improvable only by rare mutations, or
mutations whose fitness benefits are too small, will not adapt (29).
We refer to a failure of an otherwise improvable module to ac-
cumulate adaptive mutations as “evolutionary stalling.”
Evolutionary stalling can theoretically limit the power of nat-

ural selection to improve a module, but whether stalling occurs
in biological systems is unclear. There are plausible scenarios in
which evolutionary stalling would not occur. For example, if
many modules are improvable by mutations with similar rates
and fitness effects, all of them would improve simultaneously,
without exhibiting evolutionary stalling. Some evolution experi-
ments appear to support this possibility (18, 39–43). However, in
some conditions, natural selection focuses on improving a single
module or a handful of modules (40, 42, 44–53). For example,
resistance mutations in bacteria often occur in the protein
complex whose function is inhibited by an antibiotic (12, 13, 54).
Similarly, compensatory mutations after a severe genetic per-
turbation are often concentrated in a handful of pathways with
functional relationships to the perturbation (40, 42, 44, 48, 49,
52, 53). The fact that adaptive mutations are not observed in
some other modules can be interpreted in two ways. Either these
modules exhibit evolutionary stalling or they are not improvable
in the first place. Previous studies have not attempted to dis-
tinguish between these two possibilities.
Whenever there are modules whose adaptation is stalled, we

would generically expect the focus of natural selection to shift
over time from some modules to others, even in a constant se-
lective environment. Such shifts should occur because the
emergent neutrality threshold that determines which modules
adapt and which ones stall is a dynamic quantity. As mentioned
above, this threshold depends on the supply and the effects of all
adaptive mutations in the genome, which themselves change over
time by at least two genetic mechanisms. First, as a population
adapts, the supply of available adaptive mutations is being de-
pleted, with large-effect mutations being depleted first (41).
Second, genetic interactions (epistasis) can modulate the fitness
benefits of mutations (39, 55–57) or even open up and close down
large pools of adaptive mutations (10, 40, 58, 59). A recent study
of a 60,000-generation-long evolution experiment in Escherichia
coli found evidence that both of these genetic mechanisms cause
temporal shifts in the statistical distribution of mutations among
genes and operons (41). However, this study did not identify the
specific modules in which adaptive evolution stalled or resumed,
nor did it quantify whether evolutionary stalling imposes any limit
on the power of selection to improve any specific module.
Here we use experimental populations of the bacterium E. coli

to explicitly demonstrate the onset of stalling in the evolution of
the translation machinery and to quantify the fitness cost im-
posed by it. In E. coli, the core macromolecular complexes that
carry out translation are encoded by a well-annotated set of
about 200 genes (8, 9, 60). We operationally define this set as the
translation machinery (TM) module. To detect evolutionary
stalling, we first disrupt the TM by replacing the native elonga-
tion factor Tu (EF-Tu) in E. coli with several of its orthologs (61,
62). We then evolve these strains in rich media where rapid and
accurate translation is required for fast growth (63). We thus
expect natural selection to favor adaptive mutations in the TM.
In addition to such TM-specific mutations, mutations that improve
the performance of other cellular modules could also be adaptive.
We refer to such mutations as “generic.” We show that the TM-
specific and generic mutations compete against each other in our
populations. We then demonstrate that TM adaptation stalls in at
least some populations and estimate the genetic load caused by
stalling. Finally, we characterize the genetic mechanisms that
contribute to evolutionary stalling in our populations.

Results
We previously replaced the native EF-Tu in E. coli with its
orthologs from Salmonella typhimurium, Yersinia enterocolitica,
Vibrio cholerae, and Pseudomonas aeruginosa and one recon-
structed ancestral variant (61) (Table 1 and Dataset S1). EF-Tu
is encoded in E. coli by two paralogous genes, tufA and tufB, with
the majority of the EF-Tu molecules being expressed from tufA
(64). To replace all EF-Tu molecules in the cell, the tufB gene
was deleted, and the foreign orthologs were integrated into the
tufA locus (61). We also included the control strain in which the
tufB gene was deleted and the original E. coli tufA was left intact.
We refer to the engineered founder E. coli strains as E, S, Y, V, A,
and P by the first letter of the origin of their tuf genes (Table 1).
We first quantified the TM defects in our founder strains

(Materials and Methods). Kacar et al. showed that EF-Tu replace-
ments lead to declines in the E. coli protein synthesis rate and
proportional losses in growth rate in the rich laboratory Luria–
Bertani (LB) medium (61). In our subsequent evolution experi-
ment, natural selection will favor genotypes with higher competi-
tive fitness, which may have other components in addition to
growth rate (65–69). We confirmed that EF-Tu replacements
caused changes in competitive fitness relative to the control E
strain (Table 1) and that competitive fitness and growth rate were
highly correlated (SI Appendix, Fig. S1). We conclude that the
competitive fitness of our founders in our environment reflects
their TM performance. Further, we found that the fitnesses of the
S and Y founders were similar to that of the control E strain (≤3%
fitness change) indicating that their TMs were not substantially
perturbed. In contrast, the fitness of the V, A, and P founders were
dramatically lower (≥19% fitness decline; Table 1) indicating that
their TMs were severely perturbed. Note that the E strain itself
carries a 4% fitness cost compared to the wild-type E. coli strain
(Materials and Methods and Dataset S2).

Clonal Interference Slows Down TM Adaptation. We instantiated 10
replicate populations from each of our six founders (60 pop-
ulations total) and evolved them in LB for 1,000 generations with
daily 1:104 dilutions and the bottleneck population size N = 5 ×
105 cells (Materials and Methods). The competitive fitness of all
but one of the populations against their respective founders signifi-
cantly increased during evolution (P < 0.05, t test after Benjamini–
Hochberg correction; Fig. 1A and Dataset S3), with significantly
larger increases observed in the V, A, and P populations com-
pared to E, S, and Y populations (ANOVA, P < 10−16). Fur-
thermore, 24 out of 30 E, S, and Y populations and 3 of the 30
V, A, and P populations became more fit than the control E
strain with 95% confidence (Fig. 1B and Dataset S4).
Adaptation in these populations can be driven not only by

mutations in the TM but also by mutations in other modules.
However, evolutionary stalling in the TM can occur only if mu-
tations improving the TM compete against other types of muta-
tions within the same population. To determine whether both
types of mutations occur in our populations, we conducted whole-
population whole-genome sequencing at multiple time points
throughout the evolution experiment. This sequencing strategy
allows us to directly observe competition dynamics between mu-
tations in different modules (18, 41, 70, 71).
We selected replicate populations 1 through 6 descended from

each founder (a total of 36 populations), sampled each of them
at 100-generation intervals (a total of 11 time points per pop-
ulation), and sequenced the total genomic DNA extracted from
these samples. We developed a bioinformatics pipeline to iden-
tify de novo SNPs and small insertion/deletion events in this
dataset (Materials and Methods). Then, we called a mutation
adaptive if it satisfied two criteria: 1) its frequency changed by
more than 20% in a population and 2) it occurred in a multihit
gene, i.e., a gene in which two independent mutations passed the
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first criterion. We augmented our pipeline with the manual
identification of large-scale copy-number variants which could
only be reliably detected after they reached high frequency in a
population (Materials and Methods and SI Appendix, Fig. S2). We
successfully validated 43/45 tested variants via Sanger sequencing
(Materials and Methods and Dataset S5).
We first identified and broadly classified the targets of adap-

tation and documented their competition dynamics across all
populations, irrespectively of their founder. Our filtering proce-
dure yielded a total of 167 new putatively adaptive mutations in 28
multihit genes, with the expected false discovery rate of 13.6%,
along with an additional 11 manually identified chromosomal

amplifications, all of which span the tufA locus (Materials and
Methods, SI Appendix, Figs. S2 and S3, and Dataset S6). We
classified putatively adaptive mutations as TM-specific if the
genes where they occurred are annotated as translation-related
(Materials and Methods). We classified all other mutations as
generic. We found that 38 out of 178 (21%) putatively adaptive
mutations in 6 out of 28 multihit genes were TM-specific (Dataset
S6). This is significantly more than expected by chance (P < 10−4,
randomization test) since the 215 genes annotated as translation-
related compose only 4.3% of the E. coli genome. All of the TM-
specific mutations occurred in genes whose only known function is
translation-related, such as rpsF and rpsG, suggesting these mu-
tations arose in response to the initial defects in the TM. The set
of TM-specific mutations is robust with respect to our filtering
criteria (SI Appendix, Fig. S4).
TM-specific mutations occurred in 17 out of 36 sequenced

populations. Generic mutations were also observed in all of these
populations (SI Appendix, Fig. S3). Thus, whenever TM-specific
mutations occurred, generic mutations also occurred, such that
the fate of TM-specific mutations likely depended on the out-
come of competition between mutations within and between
modules (Fig. 2). As a result of this competition, only 14 out of
27 (52%) TM-specific mutations that arose (excluding 11 tufA
amplifications) went to fixation, while the remaining 13 (48%)
succumbed to clonal interference (Fig. 2 and SI Appendix, Fig.
S3). In at least 2 of these 13 cases, a TM-specific mutation was
outcompeted by expanding clones driven by generic mutations:
in population V6, a TM-specific mutation in fusA was outcompeted
by a clone carrying generic mutations in fimD, ftsI, and hslO
(Fig. 2), and in population P3, a TM-specific mutation in tufA was
outcompeted by a clone carrying generic mutations in amiC and
trkH (Fig. 2). We conclude that while TM-specific beneficial
mutations are sufficiently common and their fitness effects are at
least sometimes large enough to successfully compete against ge-
neric mutations, clonal interference reduces the power of natural
selection to recover TM performance.

Evolutionary Stalling in the Translational Machinery. Phenotypic
evolution of an organism is often interpreted through Fisher’s
geometric model (72). In this model, the fitness of a genotype is a
decreasing concave function of its distance to a phenotypic opti-
mum. A key property of this model is that genotypes that are
farther from the optimum have access to more beneficial muta-
tions with large effects (72). Motivated by Fisher’s model, we
hypothesized that TM adaptation is more likely to stall in founders
with initially less severe TM defects because they are presumably
closer to their performance optimum. To test this hypothesis, we
examined how the TM-specific mutations are distributed among
populations derived from different founders.
We found a total of 5, 10, and 12 TM-specific mutations in V,

A, and P populations, respectively (0.8, 1.7, and 2.0 mutations
per population on average; Fig. 3A). We also observed three, six,
and two chromosomal amplifications spanning the tufA locus in
these populations. In contrast, we did not observe any TM-specific

Table 1. Founders used for the evolution experiment

Strain EF-Tu origin species
Number of amino acid differences from E. coli EF-Tu

(percent identity)
Fitness relative to E strain ± SEM,

% per generation

E E. coli (control) 0 (100) 0 ± 0.4
S S. typhimurium 1 (99.75) +0.49 ± 0.05
Y Y. enterocolitica 24 (93.91) −3.02 ± 0.02
V V. cholerae 51 (87.06) −19.0 ± 0.7
A Reconstructed ancestor 21 (94.67) −34.4 ± 0.4
P P. aeruginosa 62 (84.38) −35.0 ± 0.1
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Fig. 1. Competitive fitness of evolved populations. (A) The competitive
fitness of evolved populations relative to their respective founders. (B) The
competitive fitness of evolved populations relative to the E strain. For both
panels, fitness is measured in percent per generation, and error bars
show ±1 SEM (Datasets S3 and S4).
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mutations in the E, S, and Y populations (Fig. 3A). The differences
in the observed rates of TM-specific mutations between founders
are statistically significant (P = 4 × 10−11, χ2 test). Consistent with
Fisher’s model, the number of TM-specific mutations observed in a
founder was negatively correlated with its initial fitness (r = –0.993,
P = 7.8 × 10−5). We also found consistent patterns in the distri-
bution of fixed TM-specific mutations: at least one of them fixed in
each of the sequenced A and P populations (Fig. 3A and SI Ap-
pendix, Fig. S3), but only three out of six sequenced V populations
fixed one or more TM-specific mutations, assuming that all tufA
amplifications present in the population at generation 1,000 are
fixed (Fig. 3A and SI Appendix, Fig. S3). Thus, in the A and P ge-
netic backgrounds, which have the most severe TM defects, TM-
specific beneficial mutations are abundant enough and have large-
enough fitness effects that they drive adaptation. In the V founder,
which has an intermediate TM defect, TM-specific mutations also
contribute to adaptation but to a lesser degree, suggesting that they
are less common and/or provide weaker benefits in this background.
In the E, S, and Y founders whose TMs have only weak defects,
TM-specific mutations either are not available or, if they are
available, are so rare and/or so weak that they fail to cross our
detection threshold.
If the supply and/or the fitness benefits of TM-specific muta-

tions indeed increase with the magnitude of the TM defect, the
contribution of such mutations to adaptation should shrink as
populations accumulate TM-specific mutations. To test this hy-
pothesis, we examined the temporal distribution of fixed adap-
tive mutations in V, A, and P populations.
Out of the 14 TM-specific mutations that eventually fixed, 12

(86%) did so in the first selective sweep. As a result, an average
TM-specific beneficial mutation reached fixation by generation
300 ± 52, and only one (7%) reached fixation after generation
600 (Fig. 3B and SI Appendix, Fig. S5). In contrast, the average
fixation time of generic mutations in the V, A, and P populations
was 600 ± 72 generations, and nine of them (56%) fixed after the

first selective sweep (Fig. 3B and SI Appendix, Fig. S5). As a con-
sequence, TM-specific mutations were overrepresented among
mutations that were fixed within the first 300 generations in the
V, A, and P populations (P = 0.014, Fisher’s exact test). These
numbers exclude 11 tufA amplifications, for which we do not
have temporal resolution. We observe similar trends if we con-
sider the average allele frequencies of mutations (Fig. 3C). We
conclude that the accumulation of TM-specific mutations in the
A, P, and V populations has essentially ceased by the end of the
evolution experiment, while the accumulation of adaptive mu-
tations in other modules continued (Fig. 3 B and C). In other
words, natural selection initially improved both the TM and
other cellular modules, but after approximately one TM-specific
mutation was fixed, the focus of selection shifted away from
the TM.
Why did TM-specific mutations fix early in evolution? As

mentioned above, TM genes occupy only about 4.3% of the
E. coli genome. It is therefore unlikely that TM-specific muta-
tions arise at higher rates than generic mutations. Instead, their
early fixation suggests that their fitness benefits must have been
typically much larger than those of generic mutations. To test
this hypothesis, we estimated selection coefficients of mutations
from the mutation frequency trajectories. We found that muta-
tions in the A and P populations that are detected by generation
300 provide an average selective advantage of 3.7% (n = 22),
while mutations that are detected after generation 300 provide
an average selective advantage of 1.6% (n = 28, P = 0.0017,
t test). This approach likely underestimates the effects of the
strongest mutations because we cannot accurately resolve se-
lective sweeps that take K100 generations. To complement this
approach, we genetically reconstructed two TM-specific muta-
tions in their respective founder backgrounds and directly mea-
sured their fitness benefits (Materials and Methods, SI Appendix,
Fig. S7, and Dataset S7). We found that mutation A74G in the
rpsF gene, which was observed in the population A5, confers an
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8.2 ± 0.4% fitness benefit to the A founder. Mutation G331A in
rpsG gene, which was found in populations P2, P3, and P5,
confers a fitness benefit of 6.5 ± 0.5% to the P founder (Dataset
S8). Consistent with our hypothesis, these fitness benefits are
much larger than the average estimated 1.6% fitness effect of
late-arriving mutations (which are mostly generic). Even more
strikingly, either of the two reconstructed mutations provides a
larger fitness gain to its founder than the total fitness gains
achieved by the E, S, and Y populations during the entire evolution
experiment (Fig. 1A).
Our observations so far can be broadly interpreted in two ways.

One explanation is that the TMs in E, S, and Y founders are
unimprovable by natural selection because they are at their local
performance peaks and that TMs in the V, A, and P founders
become unimprovable after acquiring approximately one TM-
specific mutation. The second interpretation is that natural se-
lection fails to improve the TMs in E, S, and Y founders because
TM-specific mutations in these backgrounds are too rare and/or
too weak to drive adaptation, i.e., TM adaptation is stalled. At the
same time, TM adaptation stalls after the fixation of approxi-
mately one TM-specific mutation in the V, A, and P populations.
We present three lines of evidence that TM adaptation stalls

while the module is still improvable. First, recall that TM-specific
mutations fixed in at most three out of six sequenced V populations,
which strongly suggests that TMs in at least three remaining V
populations (V2, V4, and V6) are still improvable by TM-specific
mutations (SI Appendix, Fig. S3). Second, we observed that in at
least three populations (V5, A6, and P3), fixation of one TM-
specific mutation was followed by the rise of a second TM-
specific mutation, which was eventually outcompeted by a clone

carrying generic mutations (see population P3 in Fig. 2 and the
other populations in SI Appendix, Fig. S3). This observation
suggests that the TMs remained improvable in these populations
as well. Third, adaptive mutations have been observed in the
translation-related rpsD and rpsE genes in the long-term evolu-
tion experiment in E. coli whose founder has a wild-type TM
(41). If the wild-type TM is improvable, it is likely that the TMs
in our E, S, and Y strains—which carry mild defects—are also
improvable. It is possible to imagine a structure of epistasis be-
tween mutations, such that each of these observations is consistent
with the hypothesis that all TMs are at their local performance
peaks. However, when considered together, these observations are
more parsimoniously explained by the alternative hypothesis: at
least some of the TMs in our experiment are not at their local
performance peaks; instead, TM-specific mutations fail to keep
accumulating in these populations because they are outcompeted
by stronger beneficial mutations that improve other cellular
modules, i.e., the TM exhibits evolutionary stalling.
Evolutionary stalling prevents a module from reaching its local

performance peak and thereby imposes a genetic load, i.e., the
organism carrying a stalled module suffers a fitness cost relative
to an organism whose module performance is optimal. It is dif-
ficult to measure these loads in our populations directly because
we do not know how far below their local optima they are.
However, we can estimate these loads if we assume that strains
with the locally optimal TMs are at least as fit as the E strain.
Note that the E strain itself carries a 4% fitness cost relative to
the wild-type E. coli due to a defect in the TM. Thirteen out of 20
A and P populations remained significantly less fit than the control
E strain, with the average fitness cost of about 0.5% (Fig. 1B).
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However, TM adaptation in all of these populations stalled
before the end of the evolution experiment. Thus, these pop-
ulations suffer an average genetic load of at least ∼0.5% due to
residual TM defects. In fact, the genetic loads could be much
higher if the initial TM defects present in the founders have not
been alleviated by mutations outside of the canonically annotated
TM. Under this assumption, the fact that we did not observe any
TM-specific mutations in population V4 would imply that it still
carries an ∼19% genetic load imposed by the original TM defect
in the V founder. By the same logic, all Y populations still carry an
∼3% genetic load. These estimates suggest that the power of
natural selection to improve an individual module can be severely
limited by evolutionary stalling.

Genetic Mechanisms Underlying Evolutionary Stalling in the TM.
Next, we asked what genetic mechanisms contributed to evolu-
tionary stalling in the TM. We begin with the observation that
TM adaptation is stalled or stopped in some founders (E, S, and Y)
and initially not stalled in others (V, A, and P). This observation
indicates that founders have access to different pools of beneficial
mutations, i.e., evolutionary stalling is caused by historical contin-
gency epistasis (73). To further characterize the extent of historical
contingency on evolution in our experiment, we examined the dis-
tribution of beneficial TM-specific and generic mutations across
populations descended from different founders.
We found that TM-specific mutations were not uniformly dis-

tributed among V, A, and P populations. Specifically, four out of
seven classes of TM-specific mutations arose in a single founder
(Fig. 4A). For example, we detected six independent mutations in
the rpsG gene, which encodes the ribosomal protein S7, and all of
these mutations occurred in the P founder (P < 10−4, randomiza-
tion test; Materials and Methods). Similarly, all four mutations in
the rpsF gene, which encodes the ribosomal protein S6, occurred in
the A founder (P < 10−4). We have shown above that adaptive
alleles at these loci confer strong fitness benefits in their respective
founder backgrounds. However, our multiple reconstruction at-
tempts in all other founders were unsuccessful (Materials and
Methods), which suggests that these mutations are strongly dele-
terious in other genetic backgrounds and would explain why we did
not observe these mutations in other founders. This result indicates
that the severity of the defect in the TM is not the only determinant
of the availability of TM-specific beneficial mutations. Instead,

defects caused by different foreign tufA alleles open up dif-
ferent adaptive pathways within the TM.
The distribution of some generic mutations among founders

was also nonuniform. We found that 7 out of 22 classes of generic
mutations occurred in fewer founders than expected by chance
(Fig. 4B and Materials and Methods). For example, we detected five
independent mutations in the ybeD gene, which encodes a protein
with an unknown function, and all these mutations occurred in the
V founder (P < 10−4). Similarly, all three mutations in the alaA
gene, which encodes a glutamate-pyruvate aminotransferase, oc-
curred in the A founder (P < 10−4). To corroborate these statistical
observations, we reconstructed the T93G mutation in the ybeD gene
in all six founder strains and directly measured its fitness effects
(Dataset S8). As expected, this mutation confers a 5.9 ± 0.4% fit-
ness benefit in the V founder. In contrast, it is strongly deleterious
in the P founder and indistinguishable from neutral in the
remaining founders (SI Appendix, Fig. S6). Thus, historical contin-
gency epistasis not only opens up or closes down certain adaptive
pathways within the TM but also changes the availability of at least
some beneficial mutations outside of it.
We next turn our attention to the genetic mechanisms for the

onset of evolutionary stalling in the V, A, and P founders. His-
torical contingency could play a role here too if mutations that
accumulate early in evolution alter the identities and fitness effects
of subsequent beneficial mutations (39, 41). Additionally, another
mechanism, known as “modular epistasis” (39) or “coupon col-
lecting” (41), could also operate if fixation of a mutation depletes
the pool of further beneficial mutations in the same module,
without changing the effects of mutations in other modules (for
example, one beneficial loss-of-function substitution eliminates
the benefits of other loss-of-function mutations in the same gene).
Modular epistasis could lead to evolutionary stalling in the TM
because the most frequent TM-specific mutations with the largest
fitness benefits tend to fix earlier thereby enriching the pool of
available TM-specific mutations for rare and weak mutations
which are more likely to fall below the emergent neutrality
threshold (41). If repeated mutations in a given gene occur un-
usually often in the same population (underdispersion), this sig-
nals historical contingency epistasis with unknown mutations
present in that population (41). On the other hand, unexpectedly
even distribution of mutations in a given gene across different
populations signals the presence of modular epistasis (41).
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To detect historical contingency and modular epistasis, we ex-
amined distribution of mutations across populations (tufA ampli-
fications were excluded from this analysis;Materials and Methods).
We find that TM-specific mutations collectively are overdispersed
(P = 0.0018). That is, TM-specific mutations at any given locus
usually arise only once per population. The distribution of generic
mutations collectively is consistent with the random expectation.
However, mutations in some individual genes show opposing
tendencies. Specifically, mutations in genes trkH and fimD are
overdispersed (corrected P < 10−4), while mutations in icd and
ydcI are underdispersed (corrected P = 0.004 and <10−4). Taken
together, these results show that both historical contingency and
modular epistasis have both likely contributed to evolutionary
stalling in our populations.

Discussion
The fitness of an organism depends on the performance of many
molecular modules inside cells. While natural selection favors
genotypes with better-performing modules, it may be difficult for
it to improve multiple modules simultaneously, particularly when
recombination rates are low and many adaptive mutations in
different modules are available. In this regime, natural selection
is expected to focus on those modules where large effect muta-
tions occur frequently, while improvements in other modules are
expected to stall. Here we have documented such evolutionary
stalling in the TM module during laboratory adaptation of E. coli.
We found that populations whose TMs were initially mildly

perturbed (incurring K3% fitness cost) adapted by acquiring
mutations that did not directly affect the TM. Populations whose
TM had a moderately severe defect (incurring ∼19% fitness cost)
discovered TM-specific mutations, but clonal interference often
prevented their fixation. Populations whose TMs were initially
severely perturbed (incurring ∼35% fitness cost) rapidly discov-
ered and fixed TM-specific beneficial mutations. However, after
approximately one TM-specific mutation fixed, further accumu-
lation of mutations in the TM essentially stalled, while mutations
in other modules continued to accumulate despite the fact that the
TMs remained improvable in at least some of our populations.
We estimated that the genetic load imposed by evolutionary

stalling in the TM ranges from 0.5 to 19% in our populations.
These estimates are inherently uncertain because we do not
know the functional and fitness effects of all fixed mutations.
The true genetic loads may be higher than 0.5% because some of
the fitness gains in the A and P populations are probably caused
by improvements in other cellular modules and because the
optimal TM probably provides fitness higher than that of the E
strain (since the E strain itself has a TM defect). On the other
hand, true genetic loads may be lower than 19% because TM
performance may be improved by some mutations in genes not
annotated as translation-related.
In our analyses, we defined the TM module operationally as a

set of 215 genes in the E. coli genome that are annotated as
translation-related. However, there may be other genes that
contribute to translation that are not annotated as such. A more
fundamental problem is that while the core of the translation
machinery is well defined, its periphery may in reality be quite
amorphous. In other words, a model of a cell where modules are
discrete and clearly delineated is an abstraction. For example, a
recent study found that a genetic defect in the DNA replication
module can be alleviated by mutations outside of it (53). Simi-
larly, we found that populations with different initial tufA defects
acquire mutations in statistically distinct sets of genes that are not
annotated as translation-related, suggesting that some of these
genes may nevertheless be important for translation. Notwith-
standing, our results show that the focus of natural selection can
transition sharply from one set of genes—those encoding the core
of the translation machinery where the initial defect occurred—to
functionally more distant parts of the cell such as genes trkH and

fimD that are involved with potassium transport and fimbriae
production, respectively.
As long as the environment remains constant, the supply of

beneficial mutations in an adapting population is gradually
being depleted, and their fitness effects typically decrease (39,
55–57, 74, 75), thereby lowering the effective neutrality
threshold. These changes should in turn allow for less frequent
mutations with smaller effects to contribute to adaptation, and
adaptation in previously stalled modules may resume. While we
did not observe resumption of adaptive evolution in the TM
during the duration of this experiment, we find evidence for a
transition from stalling to adaptation in trkH and fimD genes.
Mutations in these two genes appear to be beneficial in all our
genetic backgrounds (Fig. 4). These mutations are among the
earliest to arise and fix in E, S, and Y populations where the TM
does not adapt (SI Appendix, Figs. S3 and S5). In contrast, mu-
tations in trkH and fimD arise in A and P populations much later,
typically following fixations of TM-specific mutations (SI Ap-
pendix, Figs. S3 and S5). In other words, natural selection in
these populations is initially largely focused on improving the
TM, while adaptation in trkH and fimD is stalled. After a TM-
specific mutation is fixed, the focus of natural selection shifts
away from the TM to other modules, including trkH and fimD.
As the external environment changes, new large-effect adap-

tive mutations may become available in some modules, which
would increase the effective neutrality threshold. This may in
turn lead to the onset of evolutionary stalling or prolong the
period of stalling in other modules. If environmental fluctuations
are sufficiently frequent, e.g., due to seasonality or ecological
interactions, and if these fluctuations preferentially open up new
adaptive mutations in a subset of cellular modules (e.g., in stress
response but not in housekeeping modules), some modules may
remain stalled for long periods of time despite being improvable,
at least in the absence of recombination.
In addition to evolutionary stalling, adaptive evolution in the

concurrent mutations regime can have other important conse-
quences for the biology of the organism. For example, Held et al.
recently showed that fixation of deleterious hitchhiker mutations
imposes a limit on the complexity of the organism (36). They also
showed that recombination would alleviate this limit. Similarly,
recombination is expected to reduce the genetic loads imposed
by evolutionary stalling, provided that modules are encoded by
tightly linked genes.
Our results give us a glimpse of the fitness landscape of the

TM. This landscape appears to be broadly consistent with Fish-
er’s geometric model (72, 76, 77) in that more defective TMs
have access to beneficial mutations with larger fitness benefits
than less defective TMs. However, Fisher’s model does not in-
form us how many distinct genotypes encode highly performing
TMs and how they are connected in the genotype space. We
observed that the different founders gained distinct TM-specific
adaptive mutations. This suggests that the high-performance
TMs can be encoded by multiple genotypes that form either a
single contiguous neutral network (78) or multiple isolated
neutral networks (79). Moreover, we observed that most of our
populations with initially severely perturbed TMs were able to
discover TM-specific mutations. This suggests that genotypes
that encode high-performing TMs may be present in the muta-
tional neighborhoods of many genotypes (78, 80).
In this work, we identified several TM-specific adaptive mu-

tations, but their biochemical and physiological effects are at this
point unknown. However, the fact that 11 chromosomal amplifi-
cations and 12 noncoding or synonymous events occurred in the
tufA operon (which consists of tufA, fusA, rpsG, and rpsL) suggests
that some of the TM-specific mutations are beneficial because they
adjust EF-Tu abundance in the cell. This would be consistent with
previous evolution experiments (46, 81, 82). Directly measuring the
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phenotypic effects of the TM-specific mutations described here is
an important avenue for future work.
Overall, our results highlight the fact that it is impossible to

fully understand the evolution of a cellular module in isolation
from the genome where it is encoded and the population-level
processes that govern evolution. The ability of natural selection
to improve any one module depends on the population size, the
rate of recombination, the supply, and the fitness effects of all
beneficial mutations in the genome and on how these quantities
change as populations adapt. Further theoretical work and em-
pirical measurements integrated across multiple levels of bio-
logical organization are required for us to understand adaptive
evolution of modular biological systems.

Materials and Methods
Isogenic strains were reconstructed using previously described methods (61).
Laboratory evolution experiments were conducted with a standard batch culture
protocol with daily 1:10,000 dilution, in LB medium, at 37 °C and shaken at
200 rpm on a platform incubator–shaker. Competitive fitness assays were con-
ducted using evolved and ancestral strains engineered with Kanamycin and
Ampicillin resistance cassettes and followed established methods (27). Growth
rates were estimated by growing strains in a microplate reader with temperature
control andmeasuring optical density at 600 nm.Whole-genome sequencing was
conducted using the Illumina HiSeq 4000 platform and was analyzed using
established bioinformatic pipelines (41). Complete details of the experimental
model, media and growth conditions, fitness and growth measurements, ge-
nome sequencing, and all statistical analyses are provided in SI Appendix.

Data Availability. Raw sequencing data were analyzed with the Python-based
workflow implemented in ref. 56 and run on the University of California San
Diego Triton Shared Computing Cluster via a custom Python wrapper script.
All analyses and plots reported in this manuscript have been performed
using the R computing environment. The script, modified reference ge-
nomes, and raw data (except for raw sequencing data) used for analysis can
be found on GitHub at https://github.com/sandeepvenkataram/EvoStalling
(83). Raw sequencing data for this project have been deposited into the
National Center for Biotechnology Information (NCBI) Sequence Read Ar-
chive (SRA) under project PRJNA560969 (84).
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