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Abstract: Homologous recombination is essential for DNA repair, replication and the exchange of
genetic material between parental chromosomes during meiosis. The stages of recombination involve
complex reorganization of DNA structures, and the successful completion of these steps is dependent
on the activities of multiple helicase enzymes. Helicases of many different families coordinate the
processing of broken DNA ends, and the subsequent formation and disassembly of the recombination
intermediates that are necessary for template-based DNA repair. Loss of recombination-associated
helicase activities can therefore lead to genomic instability, cell death and increased risk of tumor
formation. The efficiency of recombination is also influenced by the ‘anti-recombinase” effect of
certain helicases, which can direct DNA breaks toward repair by other pathways. Other helicases
regulate the crossover versus non-crossover outcomes of repair. The use of recombination is increased
when replication forks and the transcription machinery collide, or encounter lesions in the DNA
template. Successful completion of recombination in these situations is also regulated by helicases,
allowing normal cell growth, and the maintenance of genomic integrity.
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1. Introduction

Homologous recombination (HR) is an essential cellular process, which is required to repair DNA
double strand breaks (DSBs), restart collapsed replication forks, and for the rearrangement of genetic
information from parental chromosomes during meiosis [1]. Helicases are the enzymes that bind to
nucleic acids, and translocate along the molecule, separating base-paired regions using energy from
ATP. Helicases have been shown to be necessary to carry out various steps of recombination, and also
for regulation of the rate and outcomes of recombination (Table 1). Several of these proteins are classical
helicases, which act to unwind single-stranded DNA, whereas others can be classed as translocases,
which use their motor activity to move along double-stranded DNA regions [2]. In eukaryotes,
recombination proceeds by resection of DNA ends to form a single-stranded region, which is initially
bound by Replication Protein A (RPA), and subsequently by RAD51 [1,3]. The nucleoprotein filament
loaded with RAD51 invades the homologous DNA regions, creating a displacement loop (D-loop),
where sequences from the broken DNA molecule and homologous template pair as ‘heteroduplex’
DNA. A DNA polymerase can subsequently add nucleotides at the free 3’ end, to restore the
sequence around the break site. Several competing pathways then complete the HR process by
disassembly of recombination intermediates. RAD51-mediated recombination is also essential for
DNA replication during S phase, by restoring stalled replication forks, and by restarting replication
after fork collapse [4-6].
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Table 1. Helicases involved in Homologous Recombination.

20f18

Family Gene Key Function Species
RecQ RecQ Promotes End Rese]zj[tii(;)rna,tz;lL;?g DD;:;;IE:;ZE{ Holliday Junction E. coli
Sgsl Promotes End Resection, I'{AD51' Dis.placement', D—Lopp Disruption, S. cerevisiae
Holliday Junction Migration and Dissolution
puag Tt Ed oo, KADSL Diglacmny DL DItpien. iyt
WRN Regulates End Resection, Migrates Holliday Junctions Mammalian
RECQL1 Promotes End Res;lc;iﬁg,a ];—]T:;(C)E(iissruption, Migrates Mammalian
RECQL4 Promotes End Resection in S/G2, Suppresses End Resection in G1 Mammalian
RECQL5 RADS51 Displacement Mammalian
UvrD UvrD RecA Displacement, E. coli
SLEN11 Replication Fork Signaling Mammalian
Srs2 RADS51 Displacement, D-loop Disruption, Holliday Junction Migration S. cerevisiae
FBH1 RAD51 Displacement and Degradation, Replication Fork Signaling Mammalian
PARI RADS51 Displacement, D-loop Disruption Mammalian
HELB Suppresses End Resection Mammalian
Fe-S FANC] Promotes End Resection, RAD51 Disruption, Replication Fork Reversal Mammalian
RTEL1 D-Loop Disruption Mammalian
DNA2 Promotes End Resection. Mammalian
DEAH Box FANCM Replication Fork Reversal, D-Loop Disruption Mammalian
FANC] Promotes End Resection, RAD51 Disruption, Replication Fork Reversal Mammalian
RTEL1 D-Loop Disruption Mammalian
Mphl Replication Fork Reversal, D-Loop Disruption S. cerevisiae
POLQ Mediates alt-NHE], Displaces RPA Mammalian
hg  emeleHRdurg Repladon Sy o Symapic Mammatin
HFM1 Meiotic D-Loop Stabilization Mammalian
SNF2/SWI2-like RAD54 RADb51 Displacemexll;,o I;In(:)ltlécslgf_{l.;récptiggrxﬁfoa:on and Dissolution, Mammalian
Fun30 Promotes End Resection
SMARCAD1 Promotes End Resection S. cerevisiae
Regulates End Resection, Replication Fork Reversal, Holliday Junction Mammal?an
SMARCALI & Mig,rati(}:))n, Strand Annealing ' Y Mammalian
ATRX Histone H3.3 Replacement, Post-Synaptic Regulation
MCM MCMS8-9 Promotes End Resection, D-Loop Disruption Mammalian
AAA ATPase FIGNL1 RADS51 Displacement Mammalian
Other PIF1 Complex Substrate Unwinding Mammalian/S. cerevisiae

The importance of helicase activities for recombinational repair is demonstrated by the pathology
that arises in individuals inheriting mutant copies of helicase genes. Homozygous mutations affecting
the RECQ helicases, BLM and WRN, as seen in Bloom Syndrome and Werner Syndrome, respectively,
cause defective DNA repair, tumor susceptibility and abnormal development [7-10]. Understanding
the contribution of helicases to recombination is therefore essential to identify how these proteins

enable normal growth of the cell.

2. Regulation of DNA Double-Strand Break Resection by Helicases

Repair of a DNA double-strand break by HR requires ‘resection” of the broken DNA end, which
involves the production of a single-stranded region at the 3’ end [1]. Resection is considered a key step
that commits repair of a DSB to the HR pathway for repair. Both the regulation and mechanism of DSB
resection involve the activity of specific helicases (Figure 1). The first steps of end resection involve the



Genes 2020, 11, 498 30f18

MRN complex (MRX in yeast), a heterotrimeric complex of Mrell, Rad50 and Nbs1, which has affinity
for broken DNA ends. Association of the CtIP protein with MRN stimulates the nuclease activity of
Mrell to begin short-range resection, and create a small region of single-stranded DNA (ssDNA) at
the break site. Certain DNA structures, such as G-quadruplexes, can inhibit the process of resection.
Recruitment of the Pifl helicase aids in unwinding these complex DNA structures, and improves the
efficiency of HR [11]. The helicase RECQL4 impacts the process of resection in a cell cycle-dependent
manner, by helping the MRN complex recruit CtIP during S and G2 phases of the cell cycle [12].
RECQL4 also suppresses use of HR during the G1 phase of the cell cycle, by favoring the competing
NHE] pathway [13]. In this case, RECQL4 binds to Ku70/Ku80, stabilizing them at the break site, and
directing repair toward NHE]. The RECQ helicase, WRN (Werner syndrome helicase), is also able
to promote NHE] through an interaction with Ku70. In addition to its helicase function, WRN also
has exonuclease activity, which can remove modified nucleotides at DSBs to promote NHE] [14-18].

The helicase SMARCAL1/HARP also promotes NHE] at this step, by re-annealing DSB ends that have

unwound, thereby facilitating the binding of Ku70 [19].
o DNA End Resection
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Figure 1. Helicase Proteins involved in the generation of resected DNA ends during recombination.
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Multiple helicases, such as Bloom Syndrome helicase (BLM) and Sgs1, promote the formation of 3’
single-stranded DNA overhangs necessary for recombination. Other helicases, such as HelB, limit
resection, or promote other pathways for repair. For full details, see text.

Once short-range end resection is achieved, the single-stranded overhang is lengthened through
‘long-range resection’, to create a more substantial ssDNA substrate for nucleoprotein filament
formation and strand invasion [20]. Long-range resection is achieved by two parallel pathways.
One of these pathways is dependent on the exonuclease, Exol, which removes one strand of the DNA
duplex in a processive manner in the 5’-3’ direction. The other pathway involves a RECQ helicase
working in combination with DNA2. In budding yeast, Sgs1 is the key RECQ helicase for long-range
resection, and, in vertebrates, Bloom Syndrome helicase (BLM) provides the equivalent activity [21-25].
This evolutionarily conserved approach to DSB resection involves the unwinding of the DNA duplex
by the RECQ helicase, followed by nicking of the resected strand by an endonuclease activity in
DNAZ2. Studies in vitro and in budding yeast have demonstrated that RPA (Replication Protein A)
plays an important function in ensuring productive long-range resection [24,26]. The RECQ helicases,
BLM and RECQL1, also appear to contribute to resection by stimulating the exonuclease activity of
Exol at DSBs [24,27,28]. The ability of WRN to substitute for BLM for DNA2-dependent resection has
been a matter of some debate. Initial studies indicated that WRN is not able to provide the necessary
unwinding activity for resection [23]. Other reports have supported the idea that WRN is also able
to mediate DN A2-dependent resection, potentially after activation by phosphorylation by the cell
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cycle-dependent kinase, CDK1 [29-32]. In addition to acting as a nuclease, DNA2 also has helicase
activity. This helicase activity contributes to resection by removing single-stranded DNA products that
are produced by the unwinding and cutting of DSBs by DNA2 with its RECQ helicase partner [33,34]

Several other helicases contribute to regulation of DSB resection. DNA Helicase B (HELB)
counteracts unwinding of DSBs by RECQ helicases, using its 5'-3’ ssDNA translocase activity [35].
This repressive effect on resection is exerted during G1 phase of the cell cycle. During the transition
to the S/G2 phase of the cell cycle, HELB is exported from the nucleus, allowing increased resection
and use of the HR pathway. The yeast SNF2-type ATP-ase, Fun30, and its mammalian ortholog,
SMARCADI, contribute to extensive resection of DSBs [36]. These proteins use ATP-dependent
translocase activity to move along chromatin in the vicinity of DSBs, remodeling chromatin to allow
extensive resection and normal HR [37,38]. Loss of either Fun30 or SMARCADI therefore makes
cells hypersensitive to DSBs induced by treatment with the topoisomerase inhibitor, camptothecin.
FANC(] is found alongside BLM during long-range resection, and appears to contribute to the efficiency
of resection by stabilizing BLM, or by removing obstacles such as complex DNA structures [39,40].
FANC] also helps recruit CtIP, thereby enabling the initial steps of resection [41]. The MCM8-9 helicase
complex is also reported to promote resection [42], although other reports suggest it acts at a later stage
of HR [43-45].

3. Single-Stranded DNA Binding Protein Displacement

3’ DNA overhangs produced through DSB resection become rapidly coated with single-stranded
DNA binding proteins. In prokaryotes, SSB (single-strand binding protein) fulfills this role [1].
In eukaryotes, RPA, which is a heterotrimer of RPA70, RPA32 and RPA14, binds to single-stranded
DNA overhangs. For recombination to take place, RPA must be replaced by RAD51, which is equivalent
to RecA in prokaryotes. The nucleoprotein filament of single-stranded DNA coated with RAD51 forms
a ‘presynaptic filament’, which pairs with homologous DNA regions through strand invasion, allowing
formation of a displacement loop (D-loop) and template-based repair. In vertebrate cells, RAD51
paralogs (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3 and DMC1) are also present in recombinogenic
nucleoprotein filaments, and ensure efficient and productive recombination [46]. Assembly of the
RAD51-containing nucleoprotein filament is therefore an essential step in recombination, and a step
at which the rate of recombination can be regulated. Several helicase enzymes regulate the loading
and removal of single-strand binding proteins (Figure 2). Prokaryotic UvrD displaces RecA, thereby
limiting the rate of HR, and attenuating DNA damage signaling [47]. In budding yeast, the Srs2
helicase likewise acts as an ‘anti-recombinase’, by removing RAD51 from the nucleoprotein filament at
resected DSBs [48,49]. Srs2 is also essential for regulating recombination during replication, and is
recruited to SUMO-modified PCNA under conditions of replication stress [50,51]. By modulating the
rate of HR, Srs2 may help prevent the appearance of defective HR intermediates [52].

Several helicases in vertebrates have been reported to act similarly to UvrD and Srs2, by reducing
the rate of HR through displacement of single-stranded DNA binding proteins. A bioinformatic
approach identified PCNA-Associated Recombination Inhibitor (PARI), a protein containing a
UvrD-type helicase domain, which has a similar domain organization to Srs2, as a potential mammalian
anti-recombinase [53]. Loss of PARI is reported to increase RAD51 loading at break sites, causing an
elevated level of HR that is associated with genomic instability. PARI appears to stimulate the ATPase
activity of RAD51, promoting RAD51 to dissociate from the DNA. The ability of PARI to displace RAD51
is quite weak, however, and only achieved with stoichiometric amounts of protein. The importance
of the PARI helicase domain is likewise unclear, because it does not appear to have a functional
ATPase activity. The exact mechanism for PARI-mediated regulation of HR is therefore still not fully
characterized, and it may play a more important role in regulating other aspects of HR (See Section 4,
below). In contrast, the Superfamily 2 helicase, FANC] (Fanconi Anemia Complementation group J),
is able to dissociate DNA complexes in a manner that is clearly dependent on ATP hydrolysis [54].
FANC] displaces RAD51 from DNA in vitro, thereby reducing the efficiency of RAD51-dependent
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DNA strand-exchange. F-box DNA helicase 1 (FBH1) was originally shown to repress recombination in
S. pombe [55,56]. Anti-recombinase activity of FBH1 was subsequently reported in vertebrates as well,
including in human cells [57-59]. As with FANC]J, the ability of FBH1 to displace RAD51 is dependent
on its helicase activity, which allows the FBH1 protein to move along the nucleoprotein filament,
facilitating removal of RAD51. FBH1 also participates in an SCF complex, which ubiquitinates RAD51,
leading to RAD51 removal [60].

Figure 2. Displacement of RAD51 from resected DNA breaks by helicase proteins. The stability of the
RADS51 nucleoprotein filament is regulated by several helicases, which can remove RAD51, thereby
reducing the efficiency of recombination.

RECQ helicases, such as Sgs1 and BLM, promote HR by mediating the ‘long-range’ resection of
DSBs (see previous section). Several RECQ helicases also have anti-recombinogenic activity, however,
which is mediated in part by removal of RAD51 from the presynaptic filament. Single-molecule
imaging studies show that Sgs1 from budding yeast can displace RAD51 from DNA [61]. This function
is conserved in mammalian species, as in vitro studies have demonstrated that the BLM helicase can
also remove RAD51 from DNA [62]. Work in our lab showed that this anti-recombinase activity of BLM
plays an important role in regulating the efficiency of HR in cells [63]. Cells that lack the HR factors,
BRCAL1 or BRCA2, normally show a substantial defect in RAD51 loading at DNA break sites, which
results in defective HR and genomic instability. Co-deletion of BLM rescues this HR defect, by allowing
increased accumulation of RAD51 at resected DSBs. In addition to BLM, RECQL5, another RECQ
helicase, disrupts RAD51 filaments [64,65]. The loss of RECQLS leads to hyper-recombination, which
correlates with genomic instability and cancer susceptibility in Recq/57~ mice.

The FIGNL1 (Fidgetin-like 1) helicase is required for normal HR, and this regulatory function
appears to depend on the ability of FIGNL1 to displace RAD51 [66,67]. FIGNL1 is an AAA+ ATPase
helicase, but the ATPase activity does not seem to be required for RAD51 displacement. In recent years,
Pol6 (DNA Polymerase theta) has also emerged as an important regulator of DNA repair [68]. Pol6 has
multiple enzymatic activities, including helicase activity. The helicase activity of Pol0 is important for
directing repair of DSBs toward ‘alternative end-joining’ instead of toward HR. This effect is achieved
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by removal of RPA from single-stranded regions of DNA by Pol6 [69,70]. When Pol8 is absent, rates of
HR increase, and RAD51 accumulates at increased levels at break sites.

4. Dissolution of D-Loops

After the formation of a RAD51-loaded presynaptic filament, the broken DNA end pairs with
a homologous DNA region, and begins a process called strand invasion [1]. The structure formed
when an ssDNA filament invades a homologous DNA duplex is referred to as a displacement loop,
or D-Loop (Figure 3). The formation of heteroduplex DNA, with the broken DNA molecule paired to
the homologous template DNA, allows sequence at the break to be restored by a DNA polymerase
enzyme. D-loops can be dissolved and displaced at various points by a number of different helicases
which help to prevent erroneous strand invasion or limit the extent of polymerase activity. Yeast Srs2,
in addition to displacing RAD51 from resected DNA ends [48,49], can dismantle D-loops, which helps
to eliminate nonproductive recombination intermediates [71,72]. The disassembly of D-loops also
prevents long-range DNA extension, reducing the frequency of formation of double-Holliday junctions
intermediates, which can be resolved as crossovers. The Superfamily 2 (SF2) helicase Mph1 (Mutator
Phenotype 1) acts in parallel with Srs2 to promote non-crossover outcomes to recombination [73].
The ability of Mph1 to dissociate D loops is strictly dependent on its helicase activity.

The homologs of Srs2 and Mph1 in mammals have similar D-loop dissociation activity. RTEL1
(Regulator of Telomere Length) is a putative Srs2 homolog that limits recombination by dissociating
the D-loop recombination intermediates [74]. This effect of RTEL1 may be particularly important for
suppressing recombination at telomeres, because RTEL1-knockout mouse cells show chromosome
instability and telomere loss that is associated with embryonic lethality [75]. PARI, like Srs2, can promote
non-crossover recombination by unwinding D-loops, which inhibits extension of the synaptic filament
by Polymerase 6 [76]. This activity of PARI appears to be independent of its UvrD helicase domain,
therefore it is not known whether PARI works alone, or potentially in complex with some other
factor. Fanconi anemia, a genetic disease that is associated with the loss of leukocytes and cancer
predisposition, is caused by mutations in the FANC gene family. One of these genes, FANCM,
is homologous to yeast Mph1, although FANCM has nuclease activity in addition to acting as a DNA
helicase [77,78]. The nuclease activity of FANCM contributes to its role in repairing DNA damage
caused by inter-strand crosslinking agents, but point mutants affecting the helicase domain do not
seem to affect this repair pathway [79]. The helicase activity of FANCM instead appears to suppress
crossover recombination, thereby preventing the exchange of genetic material between homologous
DNA sequences during HR.

Of the RecQ helicases, yeast Sgs1 and mammalian BLM have been shown to have the ability to
dissolve D-loops. Sgsl acts as part of the Sgs1-Top3-Rmil complex to negatively regulate D-loops [80],
and BLM forms an equivalent complex with TOPOIIla-RMI1-RMI2 [81]. BLM therefore appears to
counteract recombination at two potential steps, by displacing RAD51 from resected DNA ends as
discussed in the previous section, and by dissociating D-loops. It is not clear which of these activities
is most important for the contribution of BLM to maintenance of genomic integrity, and preventing
the tumor susceptibility that is characteristic of Bloom Syndrome. WRN, the helicase that is mutated
in Werner’s Syndrome, is required for genomic integrity and normal HR [82]. Genomic instability in
WRN-deficient cells can be partially suppressed by the overexpression of a dominant-negative form of
RADS1, suggesting that WRN normally resolves toxic recombination intermediates [83]. Biochemical
evidence indicates that WRN degrades D-loops through branch migration dependent on its helicase
domain, and by targeting 3’ strand-invaded DNA ends with its exonuclease activity [84-86]. RECQL1
can likewise dissociate D-loops using its branch migration activity [87]. At least three mammalian
RECQ helicases therefore counteract formation of D-loops, although the relative importance of these
activities for recombination in cells is not fully established.
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Figure 3. Helicase-mediated unwinding of displacement loop (D-loop) intermediates. Strand invasion
of a broken DNA molecule into a homologous duplex creates a D-loop. Template-based repair of
sequence at the break site can proceed at the paired 3’ end, using the homologous DNA as a template.
This process is inhibited by the action of a number of helicases, such as Srs2 and RTEL1, which
exhibit ‘anti-recombinase” activity by unwinding the D-loop. Other helicases, such as HFM1 and
MCM8-9, stabilize the D-loop by supporting DNA polymerase activity, increasing the amount of paired
heteroduplex DNA.

5. Activities of Helicases in the Postsynaptic Stages of HR

After the formation of a stable D-loop, the synaptic filament is paired as heteroduplex DNA with
a homologous region from another chromosome or chromatid. The next stages determine the outcome
of recombination, which can proceed through either a ‘synthesis dependent strand annealing’ (SDSA)
pathway or through the ‘double-strand break repair’ pathway (DSBR) [1]. SDSA involves unwinding
the D-loop intermediate formed after strand invasion, and always produces non-crossover products.
Helicases that can disrupt D-loops therefore tend to promote SDSA as a mechanism for completing
HR. The DSBR pathway involves extended synthesis of DNA within the D-loop, second-end capture,
and formation of ‘double-Holliday junction” structures (Figure 4). The resolution of double-Holliday
junctions produces a mixture of crossover products, in which regions from the broken DNA molecule
and template duplex become spliced together, in addition to non-crossover products. The frequency
with which these pathways are used varies in different cell types. A mixture of crossover and
non-crossover recombination products are produced during the repair of Spoll-mediated DNA breaks
in meiosis, but non-crossover outcomes are favored in somatic cells [88,89].
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Figure 4. Regulation of Holliday Junction disassembly by helicases. Double-Holliday junctions can be
moved into close proximity by the branch migration activity of several helicase molecules. Protein
complexes formed by helicases such as BLM and Sgs1 promote dissolution of the hemicatenane
intermediate produced by branch migration, leading to non-crossover products of recombination.

The MCMS8-9 complex is proposed to act at the D-loop to unwind the template DNA, and allow
the paired heteroduplex DNA to be extended by a polymerase [90]. MCMS8 and MCM9 form a
helicase complex that is paralagous to the MCM2-7 complex, which forms the primary eukaryotic
replicative helicase [91]. MCMS8-9 can mediate normal S phase DNA replication when MCM2-7 is
absent [92], but is principally involved in HR-associated DNA replication [43—45]. Mouse knockouts of
MCMS8 or MCMD are sterile, demonstrating the essential role of these factors in meiotic recombination
during gametogenesis. The loss of MCM8 and MCM9 also disrupts HR in somatic cells, leading to
hypersensitivity to DNA damage, genomic instability, and tumor predisposition [93,94]. MCM8-9
may act in a parallel pathway with the HELQ helicase to mediate HR after strand invasion, because
cells lacking both HELQ and the MCMS8-9 loading factor, HROB, show a very severe defect in HR and
persistent RAD51 loading [90]. HELQ is a 3’-5” helicase, which is required for normal DNA repair and
for the survival of germ cell progenitors [95-97]. Work in C. elegans and mice has supported a model in
which HELQ acts after RAD51 loading to enable HR [98,99]. In the absence of HELQ, RAD51 loads at
recombination sites, but remains bound there, indicating that HELQ may be required for disassembly
of RAD51 from the postsynaptic filament to complete recombination. The importance of HELQ for
normal DNA repair is demonstrated by the high tumor incidence seen in HELQ ™~ mice.

RAD54 and ATRX are two members of the SWI/SNEF?2 class of SF2 helicases, which have important
functions in regulation of events at several stages of recombination including those taking place
after strand invasion [100,101]. RAD54 stimulates strand invasion of RAD51-loaded DNA into a
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homologous dsDNA duplex [102], and stabilizes RAD51 nucleoprotein filaments, but it can also
displace RAD51 from DNA, dependent on its ATPase activity [103,104]. RAD54 mediates branch
migration of Holliday junctions, and promotes resolution of Holliday junctions through stimulation
of the Mus81 nuclease [105,106]. ATRX (alpha thalassemia/mental retardation syndrome X-linked)
has an N-terminal chromatin-binding domain, and a C-terminal helicase domain [100]. Mutations
in either of these domains cause a developmental disorder characterized by growth defects and
intellectual disabilities, although mutations in the helicase domain tend to have a milder effect [107].
The chromatin-binding domain of ATRX helps load the variant histone H3.3 at repair sites, and the
loss of this activity appears to contribute to DNA repair defects in ATRX-deficient cells. Loss of ATRX
causes persistence of DNA breaks, and abnormal HR, as measured by cellular reporter assays [108].
RAD51 loads normally in ATRX-deficient cells, but a greater amount of DNA synthesis takes place after
strand invasion, and crossover products from HR are suppressed. ATRX therefore appears to increase
the use of the DSBR pathway for HR, instead of the SDSA pathway [3]. RAD54 and ATRX do not
act as typical dsDNA-unwinding helicases. Instead, their helicase domains provide ATP-dependent
translocase activity, allowing the proteins to move along DNA to regulate HR. The S. cerevisine Mer3
helicase also promotes crossover formation in meiosis through the DSBR pathway, by stabilizing
D-loops to promote extension of heteroduplex DNA in the 3’-5" direction [109]. The mouse homolog
of Mer3, HFM1, is required for crossover recombination during meiosis [110]. HFM1-knockout mice
therefore show a failure to complete spermatogenesis and are infertile.

In yeast and mammals, RECQ helicases play vital roles at the late stages of HR by mediating
branch migration and subsequent “dissolution” of Holliday junctions. Holliday junctions can be
‘resolved’ by structure-specific nucleases, which make nicks around the Holliday junction, leading
to formation of a mixture of crossover and non-crossover products [111]. In contrast, dissolution
of Holliday junctions produces only non-crossover products, therefore RECQ helicases and their
associated factors are very important regulators of the outcome of recombination. Branch migration
refers to directed unwinding and re-annealing of DNA regions around the Holliday junction, to move
the Holliday junction or alter the extent of heteroduplex DNA. This activity is carried out by Sgsl
in yeast, and BLM in mammalian cells [112,113]. Branch migration of double-Holliday junction
intermediates can bring the two Holliday junctions together, to form a ‘hemicatenane’ structure that
can be dismantled by Sgs1 or BLM in complex with several other proteins [80,114-117]. The protein
complex for the dissolution of Holliday junctions has been called the ‘dissolvasome’, and is made up of
Sgs1-Top3-Rmil in yeast, and BLM-TOPIIla-RMI1-RMI2 in mammals. In particular, the topoisomerase
activity provided by Top3/TOPIII allows nicking and re-ligation of the heteroduplex DNA in the
hemicatenane to restore intact, separate DNA molecules. Through this process, Sgs1 and BLM greatly
reduce the frequency of crossover recombination. Cells lacking BLM, such as those from Bloom
Syndrome patients, show a much higher rate of crossovers, which can be demonstrated experimentally
by the sister chromatid exchange assay, which allows exchanges of chromosome regions to be quantified
by differential staining [118]. In yeast, proteins of the SIC/ZMM family promote crossovers during
meiosis, by counteracting the ability of Sgsl to dissolve Holliday junctions [119]. This indicates that
regulation of helicases and helicase-containing complexes is essential to ensure appropriate outcomes
of recombination.

In addition to BLM and Sgsl, other helicases are active in the final stages of HR. Deletion of
either RECQL1 or RECQLS5 is reported to increase the frequency of sister chromatid exchanges in
BLM-knockout cells, suggesting that these alternative RECQ helicases act as a backup for BLM in
suppressing crossover recombination [120]. As discussed previously, RAD54, RECQL1 and WRN have
branch migration activity [84,87,105]. Branch migration activity has also been reported for SMARCALL,
ZRANB3 and FANCM [121-124], although these helicases may have specialized roles at replication
forks instead of in general HR-mediated repair of DNA double-strand breaks.
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6. Helicase-Mediated Regulation of Recombination at Sites of Replication

A recombination-based process called ‘break-induced recombination” can restart replication
forks that collapse at obstacles such as a single-strand breaks or DNA cross-links [125]. Replication
forks do not immediately collapse on encountering obstacles, however, and can instead pause for
a period of several hours, allowing a chance for any obstacles to be removed and for replication to
continue [6]. Helicase activity contributes to stability of stalled replication forks, thereby reducing
replication fork collapse and break-induced recombination (Figure 5). Electron microscopy has
shown that stalled replication forks frequently become reversed to assume a ‘chicken foot structure’,
which becomes loaded with RAD51 to promote stabilization. SMARCAL1 acts as an annealing helicase
to bring single-stranded DNA molecules at the replication fork together, to promote reversal of stalled
replication forks, and help protect them from endonucleolytic degradation [121,122,126]. The ZRANB3
helicase can also reverse stalled replication forks, and acts alongside SMARCALL to protect forks in
the presence of oncogene-induced replication stress [127]. Another annealing helicase, TWINKLE, is
required for replication of mitochondrial DNA [128]. TWINKLE activity is proposed to contribute to
a form of recombination-mediated replication initiation, similar to replication by bacteriophage T4,
which has been observed in mitochondria [129]. The exact mechanism of helicase-assisted replication
that is carried out by TWINKLE is not fully understood, but it is clearly of substantial importance,
because mutations in TWINKLE are associated with the severe genetic diseases, progressive external
ophthalmoplegia, and infantile-onset spinocerebellar ataxia [130].
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Figure 5. Activity of helicases during DNA replication and transcription. Replication stress caused by
a block in replisome progress at a DNA break or lesion can trigger replication fork reversal, which is
regulated by a number of helicases. Newly synthesized DNA at the reversed fork is bound by RAD51,
protecting it from nucleolytic degradation. Protection of nascent DNA is supported by the presence of
several helicases.
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Two helicases of the Fanconi Anemia gene family, FANC] and FANCM, are important for fork
stability. FANC]J associates with TOPBP1 at sites of replication stress to properly signal the stress
response and to limit fork reversal at these sites [131,132]. FANCM is able to migrate replication
forks, and is required for fork stability during replication stress [124,133]. Mphl, the yeast homolog
of FANCM, can also reverse replication forks, and this activity is regulated in part by the SMC5-6
complex [134-136]. The HELQ helicase is required for normal DNA replication, and interacts with the
recombination mediators, RAD51, and RAD51 paralogs of the BCDX complex [98]. In HELQ-deficient
cells, RAD51 accumulates normally at replication forks after induction of replication stress, but remains
bound there, indicating a defect in replication-associated recombination. This inability to resolve stalled
replication forks is linked to attrition of germ cells and tumor susceptibility of HELQ-deficient mice.

7. Conclusions

Although it is clear that helicases play essential roles in HR, understanding the importance of
specific helicases in different recombination processes will require substantial further research. For
example, as discussed above, BLM helicase has been reported to function in DNA end resection,
displacement of RAD51 from nucleoprotein filaments, disassembly of D-loops, and dissolution of
Holliday junctions. These activities represent both pro- and anti-recombinogenic functions, and it is not
clear which are most important for maintenance of genomic integrity by BLM. Likewise, many different
helicases have been reported to have branch migration activity in eukaryotic cells, and it is not clear to
what extent they act redundantly, or whether they are regulated for specific purposes. Solving these
questions can be challenging, because it is not always easy to test whether the biochemical activities
of helicase enzymes in vitro are also relevant in cells. Future work to clarify the roles of helicases
in recombination will give us a better understanding of how HR operates, and potentially open the
way to pharmacological intervention to manipulate helicase activities and achieve useful therapeutic
outcomes [137].
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