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A rapid and accurate detection of carbapenemase-producing Gram-negative bacteria
(CPGNB) has an immediate demand in the clinic. Here, we developed and validated a
method for rapid detection of CPGNB using Blue-Carba combined with deep learning
(designated as AI-Blue-Carba). The optimum bacterial suspension concentration and
detection wavelength were determined using a Multimode Plate Reader and integrated
with deep learning modeling. We examined 160 carbapenemase-producing and non-
carbapenemase-producing bacteria using the Blue-Carba test and a series of time
and optical density values were obtained to build and validate the machine models.
Subsequently, a simplified model was re-evaluated by descending the dataset from 13
time points to 2 time points. The best suitable bacterial concentration was determined
to be 1.5 optical density (OD) and the optimum detection wavelength for AI-Blue-Carba
was set as 615 nm. Among the 2 models (LRM and LSTM), the LSTM model generated
the higher ROC-AUC value. Moreover, the simplified LSTM model trained by short
time points (0–15 min) did not impair the accuracy of LSTM model. Compared with
the traditional Blue-Carba, the AI-Blue-Carba method has a sensitivity of 95.3% and a
specificity of 95.7% at 15 min, which is a rapid and accurate method to detect CPGNB.

Keywords: carbapenemase-producing gram-negative bacteria, rapid detection, Blue-Carba, deep learning, OD
value

INTRODUCTION

Antimicrobial resistance (AMR) poses a serious global threat to human, animal, and
environment health, as multidrug resistant bacteria continue to emerge and spread worldwide.
Carbapenems are one of the last-resort antibiotics to treat infections caused by multidrug-
resistant Gram-negative pathogens. Carbapenem resistance in Gram-negative bacteria is
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primarily due to the production of various carbapenemases,
which leaves the clinicians with limited therapeutic
options. Carbapenemase-producers showed broad spectrum
enzyme activity for various β-lactam substrates, and were
associated with resistance to other antibiotic classes, and
demonstrated rapid transmission in healthcare facilities,
animals and the environments (Codjoe and Donkor,
2017). Notably, carbapenemase genes are frequently
located on mobile genetic elements and plasmids,
therefore facilitating the horizontal of resistance to other
bacteria (Dortet et al., 2014; Nordmann and Poirel,
2014). It is of paramount importance to develop reliable
methods for rapid detection and characterization of
carbapenemase-producers.

Different phenotypic and molecular-based methods have
been used to identify these carbapenemase producers. For
known mechanisms, molecular methods of gene detection
are usually fast and accurate. However, molecular detection
of carbapenemase genes can be costly and may require
substantial expertise, and more importantly they fail to detect
unknown or novel carbapenemase genes (Stuart et al., 2012).
A solution to this problem is the detection of carbapenem
enzymatic degradation, using Matrix Assisted Laser Desorption
Ionization-Time of Flight Mass Spectrometry (MALDI-TOF
MS) (Yu et al., 2018); or by chromogenic agar or UV
spectrophotometry (e.g., Carba NP and Blue Carba) (Bernabeu
et al., 2012); or the rapid Carbapenem Inactivation Method
(Muntean et al., 2018).

In 2012, Nordmann et al. developed the Carba NP test
which is based on visual monitoring of medium acidification
of a mixture containing bacterial cells, a carbapenem and the
pH indicator phenol red (Dortet et al., 2012). However, some
subtle color variations could be hard to differentiate by visual
interpretation. This method was then adapted to microtiter
plates and spectrophotometric measurement of optical density
and interpreted using a pre-programmed Excel spreadsheet
(Surre et al., 2018). However, the assay was not comprehensive
enough and the data analysis of this assay is still not
straightforward.

In this study, a deep learning approach was used to
predict carbapenemase production, taking into consideration the
similarity in the OD value distributions at different time points,
instead of only the best hit. Deep learning has been proven to be
the most powerful machine learning approach to date for many
applications, including image processing (LeCun et al., 2015),
biomedical signaling (Tabar and Halici, 2017), speech recognition
(Hinton et al., 2012), and genomic related analysis, such as the
predicting antibiotic resistance genes from metagenomic data
(Pan and Shen, 2017; Li et al., 2018). Particularly in the case
of predicting new genetic markers, the deep learning model
surpasses all known binding site for prediction approaches
(Drouin et al., 2016).

To the best our knowledge, this is the first time that contact
the carbapenemase detection method with Deep learning. Here
we describe the AI-Blue-Carba test, an improved variant of
Blue-Carba to determine carbapenemase producers using a
uniform standard.

MATERIALS AND METHODS

Sample Collection and Bacterial Strains
In this study, we mainly collected fecal samples from animals
(anal swabs and feces). These fecal samples were randomly
collected from pigs, chickens, ducks, and goose, if possible, the
soil, dust, sewage and vegetable samples were also collected.
These samples were screened from 14 animal farms (pig farms,
n = 5; chicken houses, n = 5; duck farms, n = 3; goose farms, n = 1)
in 6 provinces (Guangxi, Guangdong, Heilongjiang, Jiangsu,
Jiangxi, and Zhejiang provinces) in China. In total, 498 strains
were collected from June 2016 to Nov 2017 and subjected to
selection onto MacConkey (MAC) agars containing meropenem
(1 mg l-1). In order to enrich the diversity of carbapenem-
resistant strains and genes, we also collected some strains from
human and flower sources. Sixty clinical isolates were collected
from the hospitals of Guangdong and Shandong provinces.
In addition, 273 strains were isolated from flowers including
carnations, roses and lilies which were collected from Mar 2018
to Apr 2018 in Guangzhou Flower Market and selected on MAC
plates without any antibiotics.

We utilized 130 among the 831 collected strains from different
sources above, including 49 isolates from animal anal swabs
and feces samples which were characterized, 60 clinical isolates
collected from two hospitals in Guangdong and Shandong
provinces, and then 21 isolates from flowers. Carbapenemase
genes were characterized by PCR and Sanger sequencing
(Rahman et al., 2013). Strains from different Enterobacteriaceae
species (E. coli, Klebsiella pneumoniae, Citrobacter freundii,
Enterobacter cloacae, etc.) as well as Pseudomonas spp. were
included. We identified 107 carbapenem-resistant strains able
to produce at least one carbapenem-hydrolyzing β-lactamase,
whereas the remaining 23 carbapenem-susceptible strains were
carbapenemase negative (Table 1). The MICs for ertapenem,
meropenem, and imipenem were determined by agar dilution
and interpreted according to the Clinical and Laboratory
Standards Institute guidelines (CLSI, 2018).

Blue-Carba Test
The Blue-Carba test was performed and interpreted as previously
described (Pires et al., 2013). Briefly, 5 µL loopfuls of bacteria
cultured on Mueller-Hinton agar (HuanKai, Guangzhou, China)
were suspended in 0.04% bromothymol blue (Macklin, Shanghai,
China) solution containing (test) or lacking (control) 3 mg/mL
imipenem (MedChemExpress, New Jersey, United States) and
0.1 mM ZnSO4 (Damao, Tianjin, China). Color changes were
registered after incubation at 37◦C for 2 h. The result was
considered positive when the solution containing imipenem
became green or yellow and differed from the negative control.
The result was negative if the solution lacking antibiotic
presented the same or a stronger color change as the solution
containing imipenem. A previously characterized NDM-5
producer (CQ02-121) was used as positive control (Sun et al.,
2016) and a test tube containing only bacterial inoculum (E. coli
ATCC 25922) and Blue-Carba solution was used as negative
control for each isolate tested.
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TABLE 1 | Results of carbapenemase and non-carbapenemase producers’ PCR and MIC.

Species MIC(µg/ml) No. of isolates with a positive test/no. of isolates
tested for 2 h

Carbapenemase
content

MEM IPM ERT AI-Blue-Carba Blue-Carba

Carbapenemase producers E. coli (47) NDM-5(43) 1–64 1- >64 >64 41/43 41/43

NDM-1(4) 4–8 8–16 16–64 4/4 4/4

Pseudomonas putida(7) VIM-2(6) ≥64 8-≥64 >64 6/6 6/6

IMP-4(1) >64 8 >64 1/1 1/1

Klebsiella pneumoniae (44) NDM-1(15) 2–32 2–32 8- >64 13/15 13/15

NDM-5(4) 2–64 4- >64 16–64 4/4 4/4

NDM-1 + IMP-4(2) 32 8- ≥64 >64 1/1 1/1

KPC-2(23) 32 >64 >64 23/23 23/23

Citrobacter freundii (1) NDM-1(1) 16 8 64 1/1 1/1

Enterobacter cloacae (5) IMP-4(1) 8 16 64 1/1 1/1

NDM-1(3) 16 16–32 32- >64 3/3 3/3

VIM-1(1) 1 2 2 1/1 1/1

Providencia rettgeri (4) NDM-1(4) 2- ≥64 4 8 4/4 4/4

Enterobacter mucus (2) NDM-1(2) 32 32 >64 2/2 2/2

Pseudomonas aeruginosa (1) NDM-5(1) 64 >64 >64 1/1 1/1

Non-carbapenemase producers

E. coli (10) CTX-M <0.0625 <0.0625–4 <0.0625–2 0/10 0/10

Citrobacter freundii (8) CTX-M <0.0625 <0.0625–4 <0.0625–2 0/8 0/8

Enterobacter cloacae (4) CTX-M <0.0625 <0.0625–4 <0.0625–2 0/4 0/4

Providencia rettgeri (1) CTX-M <0.0625 <0.0625–4 <0.0625–2 0/1 0/1

MEM, meropenem; IPM, imipenem; ERT, ertapenem.

Experiment Condition of AI-Blue-Carba
In order to overcome the limitation of lower the sensitivity with
visual interpretation, we used the OD values to indicate the color’s
change of the Blue-Carba result. To obtain a stable OD value, the
optimum wavelength for detection of CPGNB was determined
using a wavelength scan of test solutions generated using known
carbapenemase producers up to 2 h in a Multimode Plate Reader
(PerkinElmer, Hamburg, Germany) to obtain the absorbance
maxima corresponding to yellow and blue (negative control).

Bacteria were diluted in 500 µL phosphate buffered saline
(PBS, pH 7.4) and distilled water, respectively, the OD600 nm
was adjusted to 1.0, 1.5, and 2.0 and the 100 µL of the bacteria
suspension was used for testing. The wells were scanned and the
OD was recorded every 5 min for 2 h at 37◦C in the plate reader.

Deep Learning
The problem of distinguishing carbapenemase and non-
carbapenemase producers based on the OD values and the results
of the Blue-Carba test can be formalized as a machine learning
or supervised learning question. It is assumed that a data sample
S that contains m machine learning examples were given at the
beginning. These examples are pairs

(
x, y

)
, where x represents

OD values detected over time and y is a label that corresponds to
one of the two possible results (positive or negative). In addition,
we assume that x ∈ {a1, a2 . . . a13} which corresponds to the set
of all 13 OD values and that y ∈ {0, 1} . Label y = 1 is assigned
to the carbapenemase producers group and y = 0 is assigned
to the non-carbapenemase producers group. We assumed the

examples in S are drawn independently from an unknown and
fixed data generating distribution D, resulting in the equation of
S def
=

{(
x1, y1

)
, . . .

(
xm, ym

)}
∼ Dm .

Usually, learning algorithms are designed to learn from a
vector representation of the data. In order to learn from detected
OD values, a function ∅ : {x1, x2, . . . xm}∗ → Rd is defined,
which takes time as input and maps it to some d dimensional
vector space. Then a learning algorithm can be applied to
the set S′ def

=
{
∅ (x1) , y1, . . .∅

(
xm, ym

)}
to obtain a model h :

Rd → {0, 1}. The model is a function which maps the feature
representation of OD values over time to the associated results
of the carbapenemase producers. Our objective is to achieve a
model h that has a good generalization performance, i.e., that
minimizes the probability, R

(
h
)
, of making a prediction error for

any example drawn according to the distribution D, where

R
(
h
)

def
= PrR(x,y)∼D

[
h (∅ (x)) 6= y

]
(1)

Construct Models
The LSTM (Long Short-Time Memory) cells store and access
information over long periods of time using multiplicative
gates (Hochreiter and Schmidhuber, 1997). It retains useful
long-term information through the threshold mechanism and
removes useless short-term information to realize the mining
of timing information. In this work, the rules were individual
units that detect the carbapenemase-producer using OD values
over time. These rules are Boolean-valued, i.e., the output is
either positive or negative. The models learned by the LSTM are
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logical combinations of such rules, which can be conjunctions
(logical-AND) or disjunctions (logical-OR). To predict the results
of detection of carbapenemase producers using OD values over
time, each rule in the model was evaluated and the results were
aggregated to obtain the prediction.

Real-time prediction of data traffic requires continuous data
input and learning. The dataset was therefore split into a training
set (80% of the OD values) to construct the LSTM model that can
output a y value randomly (0 or 1 which represent the positive
or negative results of carbapenemase producer) if input a group
of OD values. In addition, a separate testing set (20% of the
data) were used with the results of Blue-Carba to validate and
evaluate LSTM’s prediction accuracy. In this study, we used a 10-
fold cross validation to test the prediction model and select the
best hyperparameter (Webb et al., 2019).

In order to display data characteristics to more accurately
predict the carbapenemase-producing strains, we compared the
LSTM with LRM (Linear Regression model). The LRM is a linear
approach to find the relationship between a scalar response and
one or more explanatory variables (Kumaresan and Riyazuddin,
2007). In this paper, LRM modeled the relation between OD
values and Blue-Carba test.

Evaluation Metrics
We evaluated the performance of the two models using the
confusion matrix assessment method. The prediction quality was
evaluated by the following evaluation metrics: The ROC curve
describes the classifier’s True Positive Rate (TPR, the ratio of the
number of positive samples correctly classified by the classifier
to the total number of positive samples) and False Positive

Rate (FPR, the number of negative samples that the classifier
misclassified accounts for the total negative samples) Ratio of
the number). Recall [Equation 2] shows the number of correct
positive results divided by the number of all relevant samples
that were identified as positive. Precision [Equation 3] expresses
the number of correct positive results divided by the number of
positive results predicted by the classifier. F1 Score [Equation 4]
indicates the Harmonic Mean between Precision and Recall that
tells you how precise your models is. The possible outcomes of a
classification model include: true positive, TP; false positive, FP;
true negative, TN; false negative, FN.

Recall =
TP

TP+ FN
(2)

Precision =
TP

TP+ FP
(3)

F1− score =
2TP

2TP+ FP+ FN
(4)

Model Simplification
To achieve the purpose for rapid detection of a carbapenemase
producer, we choose the OD values at 12 time points groups: 2
time points,3 time points, and so on 13 time points (Figure 1B)
to optimize the best model from the above LSTM. We then
evaluated the performance of the 12 models on the basis of the 12
sets of time points (OD value data set) using the above evaluation
metrics to get the optimal detection time.

FIGURE 1 | Rapid detection of carbapenemase producers by AI-Blue-Carba. (A). Process to construct and validate the AI model; (B) Process to optimize the
AI-Blue-Carba.
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RESULTS

Optimum Conditions for AI-Blue-Carba
Test
The scanning results of positive and negative carbapenemase
producers indicated a maximum absorption peak at 615 nm
and this was chosen as the detection wavelength in following
experiments (Supplementary Figure S1A). At the same time,
we chose 720 nm as the detection wavelength of negative
carbapenemase producers due to its stable absorption after
700 nm (Supplementary Figure S1B) to stabilize the OD values.
Finally, the experimental data was the difference in OD (1OD)
values between 615 and 720 nm.

We next examined differing bacterial concentrations and
diluents at these wavelengths and found that the 1OD values
varied. The general trend in 1OD values over time showed a
more rapid decrease using the PBS diluent vs. ultrapure water
at different bacterial concentrations (Supplementary Figures
S2A–F). The weak carbapenemase producers showed a more
rapid decrease in OD values as the bacterial concentration
increased. However, when the bacterial concentration was set
at 2.0 OD (at 600 nm), the strong carbapenemase producers
generated with an ascending pattern over time (Supplementary
Figures S2C,F). As such, we choose 1.5 OD (at 600 nm) for
the bacterial concentration in PBS as the most appropriate
testing condition for the AI-Blue-Carba test, due to more reliable
stable OD values were acquired for both strong and weak
carbapenemase producers.

We measured the OD values every 5 min up to 1 h (13
time points) using our 160 isolates (Table 1) to obtain the data
characteristics. In brief, the trend in the 1OD values of non-
carbapenemase producers over time demonstrated a smooth
linear pattern and ranged from 1.5 OD to 2.0 OD. The strong
carbapenemase-producers generated a trend of 1OD values over

TABLE 2 | Prediction results for the majority prediction rule of four models.

Model ACC F1 REC PRE

LRM 0. 93 0.93 0.62 0.94

LSTM 0.98 0.98 0.98 0.98

ACC, Accuracy; PRE, Precision; REC, Recall; F1, F1-score.

time that were also smooth lines, but the range was 0.2 OD – 0.4
OD while for weak carbapenemase producers, the trend of 1OD
values decreased gradually over time (Figure 1A).

Construction and Evaluation of Deep
Learning Model
In the following, we discuss the results of a 10-fold cross-
validation study on the entire data set of 2 models. Across all
cross-validation folds, predictor performance generalizes well to
independent data. The degree of certainty of a read prediction
can be measured by the prediction probability (see Methods). As
Table 2 shows, the REC of LSTM is bigger (0.98) than LRM (0.62),
other parameter values (ACC, REC, F1) of LSTM still higher
than LRM. The model receiver operating characteristic (ROC)
curves with the performances of LRM and LSTM (Figure 2A).
The ROC-AUC of LSTM (0.99) was also better than LRM (0.94).
Considering these factors, the LSTM model is the optimal model
to detect the carbarpenemase producers.

The Simplified Model
In order to determine the earliest time required to accurately
detect carbapenemase producers, we used OD values with lesser
time points and constructed and evaluated the models in a
manner similar to that described above. To find a suitable model
for specific application, we get the corresponding ACC, PRE,
REC, and F1 values, sensitivity, specificity to adjust the threshold

FIGURE 2 | The ROC curves of different models. (A) The ROC curves are shown for the models trained with the multispecies data sets of Linear Regression model
and LSTM model; (B) The ROC curves of different time points of LSTM.
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of the model, the ACC, PRE, REC, and F1 values of 12 optimized
LSTM models were all >96% after 20 min in Table 3. In addition,
the ROC-AUC values of the 12 time points group was >96% after
15 min (Figure 2B). Additionally, the 95.3% specificity and 95.7%
sensitivity of AI-Blue-Carba were higher than Blue-Carba at 0–
15 min. Consequently, we used the 0–15 min internal for rapid
detecting the carbapenemase producers.

We examined some weak (Klebsiella pneumonia E-3F3 and
Citrobacter freundii 2N3001), strong (E. coli FS89) and non-
carbapenemase producers (E. coli ATCC 25922) using the Blue-
Carba test. Isolates FS89 and ATCC 25922 could be detected
in 0 min, while E-3F3 and 2N3001 could be accurately judged
after 30 min but the confirmation of the final results took 2 h
by Blue-Carba. The 1OD values for FS89 and 25922 from 0–
15 min, 0–30 min and 0–60 min were consistent with the trend
of the 13-time points taken over 1 h. This indicated that the
strong carbapenemase and the non-carbapenemase producers
can be rapidly detected within 15 min. For E-3F3 and 2N3001,
the 1OD values for the 13-time points was relatively slow for
the 0–15 min, 0–30 min, and 0–60 min intervals (Figure 3A).
The colors change of Blue-Carba (Figure 3B) and the results of
AI-Blue-Carba (Figure 3C) were consistent with the PCR results.

DISCUSSION

The rapid increase of carbapenem resistance in Gram-negative
bacilli is of great concern worldwide (Zhang et al., 2018). Public
health surveillance for a disease is traditionally viewed as the first
step in disease prevention and data obtained from surveillance
help to enforce public health action. Therefore, rapid and user-
friendly assays are crucial.

To rapidly and efficiently detect carbapenemase producers,
the Carba NP test was modified according to CLSI guidelines

TABLE 3 | Prediction results for the different time groups by LSTM model.

Time Group ACC F1 REC PRE

0–5 min 0.87 0.87 0.88 0.89

0–10 min 0.90 0.92 0.92 0.92

0–15 min 0.93 0.93 0.94 0.94

0–20 min 0.96 0.96 0.96 0.96

0–25 min 0.97 0.97 0.97 0.97

0–30 min 0.98 0.98 0.98 0.98

0–35 min 0.97 0.97 0.97 0.97

0–40 min 0.97 0.97 0.97 0.97

0–45 min 0.97 0.97 0.97 0.97

0–50 min 0.97 0.97 0.96 0.97

0–55 min 0.97 0.97 0.97 0.97

0–60 min 0.98 0.98 0.98 0.98

by measuring the in vitro hydrolysis of imipenem to produce
a color change within 2 h (Dortet et al., 2012). The RAPID
ECCARBA NP test could be useful for screening carbapenemase
producers from colonized patients (Poirel and Nordmann, 2015).
The commercially available β CARBA test is based on the change
of color of an undisclosed chromogenic substrate in the presence
of carbapenem-hydrolyzing activity. The test is simple to perform
and interpret by non-specialized staff members (Mancini et al.,
2017). In addition, the CarbAcineto NP test, which is rapid
and reproducible, detects all types of carbapenemases including
Acinetobacter spp. with a sensitivity of 94.7% and a specificity of
100%. Its use will facilitate its recognition and prevent its spread.

All these modified Carba NP tests have an obvious
shortcoming that the color intensity is somewhat low, so
we choose the LSTM model to correct this deficiency.
Carbapenemase detection by spectrophotometric assays is a more
accurate approach for the detection of carbapenemases and has

FIGURE 3 | Comparison of the result of AI-Blue-Carba and Blue-Carba. (A) shows the 1OD values’ change of different time points (within in 0 min, 0–15 min,
0–30 min, 0–60 min); (B) shows the results of carbapenamase producer by Blue-Carba; (C) shows the results of carbapenamase producer by AI -Blue-Carba within.
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excellent sensitivity and specificity for the Enterobacteriaceae.
The results are usually comparable between different labs
and were suggested to be implemented in national reference
laboratories (Nordmann et al., 2012). Moreover, all the above
methods can use these tools (OD values and the LSTM model)
to improve their sensitivity and specificity.

A pioneering study illustrated the huge potential of using Big
Data for epidemiology in which the epidemics can be detected
early by tracking online queries on disease symptoms using social
media such as Google Search and Twitter (Deiner et al., 2016). We
introduce a “deep learning” approach to improve the objectivity
and efficiency of detecting carbapenemase producers. The deep
learning model can be applied to new data to make decisions
after training, and decision making can involve detection,
discrimination, and classification. Therefore, we trained the LRM
and LSTM models using OD values generated by the Blue Carba
test and compared the evaluation metrics of the four models.
The results presented below could not be notably improved by
further parameter tuning or feature selection efforts. An auxiliary
assessment further shows that our classifiers are very robust. We
chose LSTM to construct the website because it was optimized
by the evaluation metrics independent of the values of the F1-
scores. As we expected, its advantages are most pronounced
for problems requiring the use of long-range contextual
information. Consequently, LSTM has also been applied to
various real-world problems, such as protein secondary structure
prediction, music generation, reinforcement learning, speech
recognition, and handwriting recognition. Furthermore, similar
to any software systems, updating this classification system or
model can be conducted at regular intervals whenever new
dataset/information/evidence is available.

To achieve the aim of the rapid detection of the
carbapenemase producers, we simplified the LSTM model by
reducing detection times and chose 15 min as test interval. The
deep learning analysis platform illustrates that 1OD values
change over time intuitively and then judges the strength of
carbapenemase production by the test strains. In addition,
you only need to input the OD values to the model and the
result is the number of carbapenemase producers. The data can
be output directly to reduce the time for manual entry and
analysis of data. Lastly, the model gives a standard procedure
for reading experimental results of carbapenemase producers
and climates reading errors. In the next step, we will create a
website platform that co-networking with hospitals and research
laboratories, the results of carbapenemase producers in different
areas can be compared to effectively monitor the prevalence

of carbapenemases in the region. By providing actionable data
directly to governments, a website that could analyze those areas
containing CPGNB could forewarn healthcare facilities to take
the appropriate infection control measures.

We evaluated a deep learning method (AI-Blue-Carba) which
allows detection of CPGNB in less than 15 min. This test can
be used as the first step in detecting the carbapenemase activity
of candidate isolates. In addition, it is also useful for checking
carbapenemase activity as part of the infection control process for
outbreaks caused by carbapenemase producers. AI-Blue-Carba is
a robust assay which user-friendly (no need for trained staff), high
in performance (sensitive and specific), and low in cost.
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