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Potential Pathogenic Bacteria in 
Seminal Microbiota of Patients with 
Different Types of Dysspermatism
Huijun Yang1,2,10, Jiaming Zhang3,4,10, Zhiwei Xue1,2, Changying Zhao4,5, Lijun Lei1,2, 
Yan Wen1,2, Yunling Dong1,2, Junjie Yang3,6,7,8,11 ✉ & Lei Zhang   5,9,11 ✉

Human microbiota play an important role in the health of their human hosts. Recent studies have 
demonstrated that microbiota exist in seminal plasma. The current study aims to elucidate whether 
seminal microbiota exist in patients with different types of dysspermatism and whether bacterial 
biomarkers can be identified for them. A total of 159 study participants were recruited, including 22 
patients with oligoasthenospermia, 58 patients with asthenospermia, 8 patients with azoospermia, 
13 patients with oligospermia, and 58 matched healthy controls. Seminal microbiota composition was 
analyzed using 16S rRNA gene-based sequencing. The results showed that the composition of seminal 
microbiota of patients with dysspermatism differed from those of healthy controls. Comparison of the 
microbiota composition in semen samples from patients with different types of dysspermatism showed 
that microbiota in patients with asthenospermia and oligoasthenospermia were distinct from healthy 
controls in beta diversity (P < 0.05). Characteristic biomarkers, including Ureaplasma, Bacteroides, 
Anaerococcus, Finegoldia, Lactobacillus and Acinetobacter lwoffii, were identified based on LEfSe 
analysis. Inferred functional analysis based on seminal microbiome data further indicated the presence 
of potential pathogenic biomarkers in patients with asthenospermia and oligoasthenospermia. These 
results provided profiles of seminal microbiota exhibited in different types of dysspermatism, thus 
providing new insights into their pathogenesis.

Human microbiota, with its diverse relationships—commensal, parasitic, mutualistic, and pathogenic—play 
an important role in human health. Recent studies have reported that microbiota exist in almost every part of 
human body—even in the endocrine niche, such as in tumors, blood, and synovial fluid1–4. Advances in technol-
ogy and new research have demonstrated that microbiota are found in seminal plasma, and play an important 
role in host homeostasis5. It has been demonstrated that the presence of bacteria in sperm is associated with 
male infertility6. Some bacteria in the urogenital tract may affect spermatogenesis and decrease sperm quality 
through various means, including decrease in sperm motility, deficiency in DNA integrity, and destruction of 
mitochondrial function7. Escherichia coli, Mycoplasma genitalium, Ureaplasma urealyticum, Mycoplasma hominis, 
Staphylococcus aureus, and Chlamydia trachomatis are pathogens associated with male infertility8–12. Several stud-
ies using high-throughput sequencing have demonstrated that seminal plasma has a bacterial community, which 
includes Lactobacillus, Pseudomonas, Prevotella, and Gardnerella, among others13–19.
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Approximately 15% of couples worldwide are unable to conceive due to infertility and males contribute to 50% 
of the infertility cases20,21. There are several causative factors for male infertility, including genetic and environ-
mental factors21–24. Abnormal semen (dysspermatism) is a reason for infertility, which occurs in about 50% of the 
cases of male infertity25,26. The changes in semen microenvironment could affect the spermatogenesis and motil-
ity. Many substances have recently been found in the seminal plasma that affect fertility, such as proteins, metab-
olites, environmental metals, etc. Compared to healthy controls, caspase-3 and cytochrome C levels were higher, 
and the total antioxidant capacity (TAC) was lower in seminal plasma of infertile patients27,28. Testosterone and 
androstenedione vectors correlate with steroids, which may function as biomarkers in patients with endocrine 
disorders, thus indicating that they may play an important role in sexual maturity29. A study also found that 
follicle-stimulating hormone deficiency could affect male fertility30. Several studies focused on environmental 
chemical substances, including perfluoroalkyl compounds, Pb, Cd, Ba, and U, have demonstrated that these sub-
stances may adversely affect seminal quality31–33. To summarize, seminal plasma functions not only as a medium 
to carry, protect, and nourish sperm after ejaculation up to fertilization, but also modulates sperm functions34.

It is critical to identify the bacterial species composition of the microbiota in seminal plasma to better under-
stand the etiology and pathogenesis of urogenital tract infections and their association with infertility. A study 
that recruited 58 patients with infertility and 19 healthy controls observed bacteria in seminal plasma by gram 
staining and explored the composition of microbiota. However, the authors did not discover any differences in 
the microbiota in seminal plasma of patients with infertility and healthy controls13. Another study showed that 
human testes have microbiota associated with idiopathic non-obstructive azoospermia15. Javurek et al. demon-
strated that there is a difference in the composition of seminal microbiota in estrogen receptor-alpha knockout 
male mice and mice with high-fat diet, which indicates that seminal microbiota could be affected by genetic and 
environmental factors, thus increasing the risk of disease to the offspring16,17. These studies focused on the micro-
biota in seminal plasma, but did not find differences between patients with dysspermatism and healthy controls, 
hence, they remain inconclusive13–15,19,35.

Although previous studies have found microbiota in the seminal plasma of males with infertility, it remains 
unknown whether characteristic seminal microbiota exist in patients with different types of dysspermatism. This 
study aspires to improve the understanding of seminal microbiota and explore the potential role of microorgan-
isms, by analyzing the seminal plasma from 159 study participants and characterizing the microbiota profile. 
KEGG analysis was adopted to predict potential pathways associated with dysspermatism.

Results
To characterize the features of seminal microbiota, 16S rRNA gene sequencing was done to measure 159 seminal 
samples, from 22 patients with oligoasthenospermia, 58 patients with asthenospermia, 8 patients with azoo-
spermia, 13 patients with oligospermia, and 58 healthy controls. The clinical characteristics of the study partic-
ipants are summarized in Table 1. After pre-processing of sequencing data, we obtained 3,871,353 high-quality 
sequences (Phred ≥ Q30) with an average of 24,348 per sample, yielding 1,065 taxa at a 97% identity cut-off. 
Five dominant phyla were Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Fusobacteria, as shown 
in Fig. 1.

Altered seminal microbiota in patients with dysspermatism.  The aim of the analysis of seminal 
microbiota was to better understand the differences in seminal microbiota between patients with dysspermatism 
and healthy controls. Although α diversity including ACE index (P > 0.05) and Shannon index (P > 0.05) showed 
no significant difference in patients with dysspermatism and the healthy control group (Fig. 2A,B), β diversity 
(based on the unweighted and weighted UniFrac distance) was significantly different between the two groups 
(r = 0.598, P = 0.001 weighted UniFrac; r = 0.972, P = 0.001, unweighted UniFrac, Fig. 3A,B). A total of 110 signif-
icantly different taxa were detected in the two groups. Seminal microbiota in the dysspermatism group was char-
acterized by dominance of genera of Lactobacillus, Bacteroides, Delftia, Sneathia, Enhydrobacter, Anaerococcus, 
Mycoplana, Finegoldia, Stenotrophomonas, Methylobacterium, Coprobacillus, Aerococcus, Atopobium, 
Chryseobacterium, Kocuria, Megasphaera, Ralstonia, Achromobacter, Erwinia, Ureaplasma, and Filifactor, and 
species of Prevotella copri, Saccharopolyspora hirsuta, Kocuria palustris, Prevotella nigrescens, Porphyromonas 
endodontalis, Lactobacillus coleohominis, Bacteroides barnesiae, and Lactobacillus iners. On the other hand, 
the microbiota in the healthy control group was dominated by genera of Pelomonas, Propionibacterium, Bosea 

Oligoastheno-
spermia

Astheno-
spermia

Azoo-
spermia

Oligo-
spermia Healthy control

Age (year) 33.91 ± 6.05 31.66 ± 5.97 31.25 ± 5.17 31.15 ± 5.10 30.96 ± 5.11

Sperm density (/ml) 8.66 ± 7.65 52.07 ± 39.99 N/A 13.60 ± 10.46 68.18 ± 40.50

Sperm count 59.83 ± 112.45 190.47 ± 126.27 N/A 66.84 ± 42.68 228.46 ± 118.63

pH 7.28 ± 0.14 7.27 ± 0.18 N/A 7.31 ± 0.19 7.31 ± 0.15

PRa 12.50 ± 7.77 20.63 ± 9.76 N/A 22.60 ± 13.29 45.88 ± 13.05

NPb 10.79 ± 8.79 15.75 ± 6.99 N/A 12.64 ± 6.51 19.70 ± 6.42

IMc 72.31 ± 20.76 63.74 ± 14.29 N/A 65.81 ± 18.84 N/A

Table 1.  Characteristics of individuals investigated in this study. aForward motile sperm. bNon-forward motile 
sperm. cImmobile sperm.
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genosp, Bosea, Afipia, Sphingomonas, Vogesella, Brevibacillus, Xylanimicrobium, Flexispira, Pedomicrobium, 
Phyllobacterium, Aquimonas, Dietzia, Sediminibacterium, Mycobacterium, and Eikenella, and species of 
Brevibacterium aureum, Propionibacterium acnes, Corynebacterium simulans, Eubacterium dolichum, and Bacillus 
thermoamylovorans (P < 0.05, Figs. 4 and S1A). In summary, we found that the composition of seminal microbi-
ota was different between the two groups.

Patients with asthenospermia or oligoasthenospermia harbor an altered seminal microbiota 
compared to healthy controls.  There are differences in the specific pathogenesis of different types of 
dysspermatism. To determine the role of seminal microbiota in the different types of dysspermatism, we analyzed 
the seminal microbiota in patients with four different types of dysspermatism—asthenospermia, oligospermia, 
oligoasthenospermia, and azoospermia, and compared to healthy controls. There was no significant difference 

Figure 1.  Relative abundance of taxa among five groups. Comparison of OTUs and relative taxa abundance 
among asthenospermia, oligospermia, oligoasthenospermia, azoospermia, and healthy controls. (A) At phylum 
level; (B) at genus level.

Figure 2.  Comparison of alpha diversity and relative abundance at phylum level based on the OTUs profile. 
Box plots depict differences in microbiome diversity based on (A) Shannon index and (B) ACE index between 
patients with dysspermatism and healthy controls. (C,D) show Shannon index and ACE index among patients 
with asthenospermia, oligospermia, oligoasthenospermia, and azoospermia, and healthy controls. The p value 
was calculated using the Wilcoxon rank-sum test.
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in α diversity (Shannon index and ACE index) among the five groups (P > 0.05, Fig. 2C,D). Analysis of β diver-
sity showed seminal microbiota of patients with oligospermia (r = 0.180, P = 0.044, weighted UniFrac; r = 0.105, 
P = 0.110, unweighted UniFrac) or azoospermia (r = 0.207, P = 0.073, weighted UniFrac; r = 0.169, P = 0.096, 
unweighted UniFrac) showed no significant difference when compared to that of healthy controls; whereas sem-
inal microbiota in patients with asthenospermia (r = 0.294, P = 0.0001, weighted UniFrac; r = 0.362, P = 0.0001, 
unweighted UniFrac) or oligoasthenospermia (r = 0.270, P = 0.001, weighted UniFrac; r = 0.316, P = 0.001, 
unweighted UniFrac) had significant composition variations compared to that of healthy controls (Fig. 3C,D).

Patients with asthenospermia harbored unique bacterial biomarkers, which may have poten-
tial pathogenicity.  LEfSe analysis (Linear discriminant analysis Effect Size) was used to explore the bac-
terial biomarkers in the semen of patients with asthenospermia. Eighty different taxa in the two groups were 
chosen based on LDA > 2. Significant increase in the relative abundance of Sneathia, Ralstonia, Ureaplasma, 
Bacteroides, Chryseobacterium, Aerococcus, Enhydrobacter, Methylobacterium, Anaerococcus, Stenotrophomonas, 
Mycoplana, Delftia, Finegoldia, Corynebacterium, and Lactobacillus (at the genus level) and Saccharopolyspora 
hirsute, Acinetobacter lwoffii, and Lactobacillus iners (at the species level) was observed, and a significant reduc-
tion in Pelomonas, Propionibacterium, Bosea, Sphingomonas, Phyllobacterium, Pedomicrobium, Xylanimicrobium, 
Mycobacterium, and Zoogloea (at the genus level) and Propionibacterium acnes and Bosea genosp (at the species 
level) was observed in the asthenospermia group, compared to the healthy control group (Figs. 5A,B and S1B).

To evaluate the potential value of the identified bacterial biomarkers for asthenospermia, ROC curves and 
AUC values were computed. The criteria used for biomarkers are—the genus and species of LDA > 3. Four 
biomarkers including Propionibacterium (ROC-plot AUC value was 0.650, 95% confidence interval [CI]: 

Figure 3.  PCoA analysis of microbiota between patients with dysspermatism and healthy controls. (A) 
Unweighted unifrac PCoA; (B) Weighted unifrac PCoA. PCoA analysis of the microbiota among patients with 
asthenospermia, oligospermia, oligoasthenospermia, and azoospermia, and healthy controls; (C) Unweighted 
unifrac PCoA; (D) Weighted unifrac PCoA.
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54.6–75.3%), Pelomonas (ROC-plot AUC value was 0.683, 95% CI: 58.4–78.2%), Lactobacillus (ROC-plot AUC 
value was 0.841, 95% CI: 76.2–92.0%), and Propionibacterium acnes (ROC-plot AUC value was 0.647, 95% CI: 
54.4–75.1%) were filtered. Additionally, we evaluated the effects of age and pH of seminal plasma on the four 
candidate biomarkers, in patients with asthenospermia and those in healthy controls (Fig. 5C–F). None of these 
factors had significant effect on the selected candidate biomarkers (Table S1).

Unique pathogenic bacteria in patients with oligoasthenospermia.  In order to select the biomark-
ers in oligoasthenospermia and healthy controls, we used LEfSe to analyze the composition of seminal microbiota 

Figure 4.  The most differentially abundant taxa between patients with dysspermatism and healthy controls 
(LDA score above 3) generated using LEfSe analysis.
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in both groups. Seminal microbiota in the oligoasthenospermia group were characterized by a dominance of 
Ralstonia, Oscillospira, Parabacteroides, Lachnospira, Phascolarctobacterium, Chryseobacterium, Zoogloea, 
Ruminococcus, Stenotrophomonas, Actinoplanes, Mycoplana, Delftia, Sneathia, Megasphaera, Atopobium, 
Faecalibacterium, Bacteroides, Lactobacillus, Bacteroides uniformis, Stenotrophomonas panacihumi, Bacteroides 
plebeius, Prevotella copri, and Faecalibacterium prausnitzii, whereas microbiota in healthy controls were dom-
inated by Acinetobacter, Propionibacterium, Pelomonas, Bosea, Deinococcus, Sphingomonas, Sediminibacterium, 
Pseudomonas, Pedomicrobium, Acinetobacter johnsonii, Streptococcus anginosus, Propionibacterium acnes, and 
Bosea genosp (Figs. 6A,B and S1C).

As previously described, 6 biomarkers were selected in patients with oligoasthenospermia and healthy 
controls, which contained Lactobacillus (ROC-plot AUC value was 0.773, 95% CI: 66.2–88.4%), Acinetobacter 
(ROC-plot AUC value was 0.679, 95% CI: 54.5–81.3%), Propionibacterium (ROC-plot AUC value was 0.727, 95% 
CI: 61.3–84.1%), Pelomonas (ROC-plot AUC value was 0.662, 95% CI: 52.9–79.6%), Prevotella copri (ROC-plot 
AUC value was 0.763, 95% CI: 63.2–89.3%), and Propionibacterium acnes (ROC-plot AUC value was 0.724, 95% 
CI: 61.0–83.9%) (Fig. 6C–H). We also evaluated these candidate biomarkers by using confounding factors and 
found that there were no confounding factors that could affect these biomarkers (Table S2).

Predicted metagenome functions in patients with asthenospermia and healthy controls, 
and patients with oligoasthenospermia and healthy controls.  Phylogenetic Investigation of 
Communities by Reconstruction of Unobserved States (PICRUSt) was used to predict the different KEGG path-
ways in the two groups, and to discuss potential mechanisms of seminal microbiota in asthenospermia and oli-
goasthenospermia groups. Forty different KEGG pathways were displayed in patients with asthenospermia; these 
exhibited increased activities in some disease pathways such as cell growth and death, lipid metabolism, enzyme 
families, infectious diseases, cell division, cell motility, etc. There are 32 different KEGG pathways in patients 
with oligoasthenospermia and healthy controls, which showed increased pathways in cell growth and death, lipid 
metabolism, and metabolic diseases in patients with oligoasthenospermia (Fig. 7).

Figure 5.  LEfSe analysis between patients asthenospermia and healthy controls. (A,B) Comparison of the 
most differentially abundant taxa between patients with asthenospermia and healthy controls (LDA score 
above 3) generated using LEfSe analysis. We selected 4 biomarkers to predict the probability of patients 
with asthenospermia. (C–F) These biomarkers are Propionibacterium, Pelomonas, Lactobacillus, and 
Propionibacterium acnes. The ROC curves as well as the AUC (Area Under the Curve) values were calculated 
using SPSS.
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Discussion
In this study, high-throughput sequencing technology was used to analyze and measure the microbiota found in 
seminal plasma. Our study demonstrated that patients with different types of dysspermatism (oligoasthenosper-
mia or asthenospermia) had significantly different composition of microbiota when compared to healthy con-
trols. This pilot study also explored the opportunistic pathogens in the seminal plasma, which could be potential 
pathogens that increase the risk of dysspermatism.

Technological advances in recent years have led to several studies on the relationship between microbiota and 
human health. A large number of studies have shown that disorders of human microbial groups can lead to dis-
eases, such as type II diabetes36. Recent studies have shown that bacteria also exist in the synovial fluid of patients 
with arthritis and play an important role in the occurrence of arthritis3. More interestingly, there are microorgan-
isms in the blood4. This evidence indicates that different niches of the human body environment harbor distinct 
and potentially functional microbiota. In recent years, high throughput sequencing has been used to measure 
bacteria in seminal plasma, by which Lactobacillus, Pseudomonas, Prevotella Streptococcus, and Gardnerella were 
revealed to exist in seminal samples of patients and healthy controls13–15,19,35. These studies also found potentially 
pathogenic bacteria, such as Finegoldia and Anaerococcus13,14. We analyzed the composition of microbiota in the 
seminal plasma at the phylum level and found five dominant phyla: Proteobacteria, Firmicutes, Actinobacteria, 

Figure 6.  LEfSe analysis between patients with oligoasthenospermia and healthy controls. (A,B) Comparison 
of the most differentially abundant taxa between patients with oligoasthenospermia and healthy controls (LDA 
score above 3), were generated using LEfSe analysis. (C–H) These biomarkers are Lactobacillus, Acinetobacter, 
Propionibacterium, Pelomonas, Prevotella copri, and Propionibacterium acnes. The ROC curves as well as the 
AUC (Area Under the Curve) value was calculated using SPSS.

https://doi.org/10.1038/s41598-020-63787-x
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Bacteroidetes, and Fusobacteria, which is consistent with the findings of a previous study15. We also analyzed 
major genera in the seminal plasma. The top 10 relatively abundant genera found commonly in the male seminal 
plasma were: Lactobacillus, Corynebacterium, Acinetobacter, Prevotella, Enterococcus, Veillonella, Streptococcus, 
Porphyromonas, Sneathia, and Pelomonas37. Based on all current studies, microbiota exist in the seminal plasma 
and share similar microbial community composition13–18,35.

Variation in the composition of microbiota could affect patients with asthenospermia or oligoasthenospermia. 
We found most of the taxa that were found in increased concentration in the seminal fluid of patients with asthe-
nospermia and oligoasthenospermia were gram-negative bacteria containing lipopolysaccharide (LPS) in their 
cell walls. LPS can upregulate cytokines causing inflammation38. A previous study indicated that inflammatory 
mediators can directly cause DNA fragmentation in ejaculated spermatozoa, which ultimately limits the fertili-
zation abilities of the germ cells39.

The relative abundance of Ureaplasma, Bacteroides, Anaerococcus, Finegoldia, Lactobacillus, and Acinetobacter 
lwoffii was significantly higher in asthenospermia, and Lactobacillus was notably abundant in oligoasthenosper-
mia. Ureaplasma is the smallest prokaryote between bacteria and viruses, mainly found in the genitourinary 
tract of the human body. Bacteroides ureolyticus is a species of Bacteroides that could impair sperm structure and 
function by diminishing motility and causing sperm membrane injury, especially to the lipid bilayers as shown 
in in vitro tests29,40,41. Another study using 16S rRNA sequencing demonstrated that genus Anaerococcus could 
be a biomarker for predicting male infertility13. We also found this bacterium in patients with asthenospermia. 
Lactobacillus is a gram-positive bacterium, which produces SCFA (short-chain fatty acids). Recent studies have 
shown that SCFA are beneficial to human health. However, seminal pH is generally 7.242. Significant increase 
of Lactobacillus in asthenospermia may change the pH of semen and result in male infertility. Although our 
results found Lactobacillus in human semen, the mechanism remains to be determined, however, it provides new 
insights into male infertility.

Bacteria that were filtered out by factors such as age may be potentially pathogenic. The characteristic of asthe-
nospermia is that the activity of spermatozoa is weakened. We found an increase in Lactobacillus and decrease 
in Propionibacterium, Pelomonas, and Propionibacterium acnes in the seminal plasma of patients with astheno-
spermia, which indicated that these bacteria may affect sperm activity. Oligoasthenospermia features both lesser 
and weaker sperm activity. Our results indicated an increase in Lactobacillus and Prevotella copri and decrease 
in Propionibacterium, Pelomonas, Acinetobacter, and Propionibacterium acnes, which may correlate with sperm 
formation and activity.

Figure 7.  Predicted metagenome function based on KEGG pathway analysis. Extended error bar plot showed 
significantly different KEGG pathways between (A) patients with asthenospermia and healthy controls; (B) 
between patients with oligoasthenospermia and healthy controls.
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PICRUSt was used to predict potential metabolic pathways. We found that the lipid metabolism was signifi-
cantly different in the three experimental groups. The essence of sex hormones is steroids. Previous studies have 
demonstrated that disorders of sex hormones result in male infertility. For instance, changes in FSH, LH, and 
T levels are associated with damage to the testes, impeding of spermatogenesis and maturation, and result in 
decreased sperm motility and activity, leading to infertility43–45. This finding also exhibits strong correlation with 
the change in microbiota.

To summarize, our results suggest that dysspermatism is associated with seminal microbiota, and also show 
that seminal microbiota in patients with asthenospermia and oligoasthenospermia are different from those in 
healthy controls. Biomarkers were screened and the KEGG metabolic pathways predicted. These results are ben-
eficial for clinical diagnosis and could be further used to develop new treatment for patients with dyssperma-
tism. Although we performed a bacterial culture experiment on semen samples, the pathogens were not cultured 
because of their low content. To better understand the mechanism of dysspermatism, future studies are needed in 
combination with metabolomics and culturomics.

Methods
Study participants.  A total of 159 study participants from Shandong Health Center for Women & Children 
were recruited, including 22 patients with oligoasthenospermia (having both characteristics of asthenospermia 
and oligospermia), 58 patients with asthenospermia (the total number of sperm less than 39 × 106/ml), 8 patients 
with azoospermia (the absence of sperm or very low sperm content in semen), 13 patients with oligospermia 
(the proportion of progressive motility is less than 32%), and 58 healthy controls42. The study participants were 
about 31.65 ± 6.01 years old, and there was no significant difference among these groups. The diagnostic criteria 
of dysspermatism followed the 5th WHO laboratory manual for examination and processing of human semen42. 
Signed informed consent was taken and clinical indexes were also collected. All study participants met the follow-
ing criteria: (1) study participants hadn’t taken antibiotics for three months prior to study enrollment, (2) study 
participants and their family members have no known genetic disease, (3) no history of sexually transmitted 
diseases, and (4) no history of corticosteroid use. All study procedures were approved by the Medical Ethical 
Committee of Maternal and Child Health Care Hospital of Shandong Province (#IRB: 2017-03). All methods 
and experimental protocols in this study were performed in accordance with relevant guidelines and standard 
operating procedures.

Collection of seminal plasma samples.  In order to prevent contamination, stringent criteria and proce-
dures were adopted to collect seminal plasma samples by masturbation. All participants abstained from sexual 
activity for 3 to 7 days before sample collection. Before sampling, hands were washed thoroughly with soap 2 to 
3 times. The penis, especially the glans and coronal sulcus, was washed with warm soapy water and then wiped 2 
to 3 times with 75% alcohol. The seminal plasma was injected directly into sterile glass containers, avoiding skin 
contact with the interior wall of the container. Fresh semen was used for routine seminal plasma clinical testing, 
and the remaining seminal samples were transferred to sterile microcentrifuge tubes and stored at −80 °C, within 
2 hours of collection.

Isolation of seminal fluid microbial DNA and 16S rRNA sequencing.  About 400 μl of seminal spec-
imens were used for genomic DNA extraction, which was extracted using the CTAB (Cetyl trimethylammonium 
bromide) method46. Nanodrop 2000 (Thermo Scientific) spectrophotometer was used to determine the concen-
tration of extracted DNA. The V1–V2 regions of 16S rRNA gene were amplified and sequenced on an Illumina 
HiSeq. 2500 system. PCR was conducted using bacterial universal primers 27F (5′ -(6FAM) AGA GTT TGA TCC 
TGG CTC AG 3′) and 355R (5′ GCT GCC TCC CGT AGG AGT 3′). Each PCR reaction contained 12.5 ul Q5 Hot 
Start High-Fidelity 2X Master Mix (BioLabs), 1.25 μl 10 μM Forward Primer, 1.25 ul 10 μM Reverse Primer, and 
10 μl DNA template in a total volume of 25 μl. The following experiments were carried out as per the sequencing 
manual.

rRNA sequencing analysis.  The 16S sequence paired-end data set was joined and qualitatively filtered 
using the Laser FLASH method described by Magoč and Salzberg47. All sequences were analyzed using the 
Quantitative Insights into Microbial Ecology (QIIME, version 1.9.1) software suite48, according to the QIIME 
tutorial (http://qiime.org/) with a few modified methods. Chimeric sequences, where a single organism has dis-
tinct genotypes, were removed using Metagenomics tool—usearch61 with denovo models49. Sequences were clus-
tered against the 2013 Greengenes (13_5 release) ribosomal database’s 97% reference data set (http://greengenes.
secondgenome.com/downloads). Sequences that remained unmatched with any of the entries in this reference 
were subsequently clustered into de novo OTUs at 97% similarity, using UCLUST algorithm. Taxonomy was 
assigned to all OTUs using the RDP classifier50 within QIIME and the Greengenes reference data set. Rarefaction 
and rank abundance curves were calculated from OTU tables using alpha diversity and rank abundance scripts 
within the QIIME pipeline. The hierarchical clustering based on population profiles of most common and abun-
dant taxa was performed using UPGMA clustering (Unweighted Pair Group Method with Arithmetic mean, also 
known as average linkage) on the distance matrix of OTU abundance. This resulted in a Newick-formatted tree, 
obtained utilizing the QIIME package. Furthermore, QIIME was used to analyze alpha diversity (Shannon, ACE), 
beta diversity (weighted UniFrac, Principal Coordinate Analysis (PCoA)), Linear discriminant analysis (LDA) 
and Effect Size (LEfSe). SPSS (version 23) was used to calculate the receiver operating characteristic (ROC) curve 
and the area under the curve (AUC) values.

Data.  All sequencing data were submitted to the NCBI SRA database (accession number: PRJNA534354).
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Statistical analysis.  The clinical characteristics of the study participants are represented as the mean ± SD, 
which were determined using Mann-Whitney U test. The diversity categorization of alpha and beta diversity is 
defined in the OTU table to a sequencing depth of 1,000 per sample. Moreover, alpha diversity was determined 
using Mann-Whitney U test and beta diversity was acquired using ANOSIM (Analysis of Similarities). LEfSe 
combines Kruskal-Wallis test or pair wise Wilcoxon rank sum test with linear discriminant analysis (LDA), whose 
threshold value on the logarithmic LDA score equals to 2.0. Analyses were performed using the SPSS statistical 
package (version 23). P values <0.05 were considered statistically significant.

Ethical approval and informed consent.  All study procedures were approved by the Medical Ethical 
Committee of Maternal and Child Health Care Hospital of Shandong Province (#IRB: 2017-03). All study par-
ticipants signed informed consent forms and were from the same geographical area. Data was collected using a 
standardized questionnaire that included basic information, medical history, and examination results.
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