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ABSTRACT: Multiphase flows are commonly found in chemical
engineering processes such as distillation columns, bubble
columns, fluidized beds and heat exchangers. The physical
boundaries of domains in numerical simulations of multiphase
flows are generally defined by a conformal unstructured mesh
which, depending on the complexity of the physical system, results
in time-consuming mesh generation which frequently requires
user-intervention. Furthermore, the resulting conformal unstruc-
tured mesh could potentially contain a large number of skewed
elements, which is undesirable for numerical stability and accuracy.
The diffuse-interface approach allows for the use of a simple
structured meshes to be used while still capturing the desired
physical (e.g., solid−fluid) boundaries. In this work, a novel
diffuse-interface method for the imposition of physical boundaries is developed for the incompressible two-fluid multiphase flow
model. This model is appropriate for dispersed multiphase flows which are pervasive in chemical engineering processes, in that this
flow regime results in high levels of mass and energy transfer between phases. A diffuse interface is used to define the physical
boundaries and boundary conditions are imposed by blending the conservation equations from the two-fluid model with that of the
nondeformable solid. The results from the diffuse-interface method are compared with results from a conformal unstructured mesh
for different interface functions and widths. For small interface widths, the accuracy of the flow profile is unaffected by the choice of
interface function and the phase fraction distribution and flow behavior are within 3% compared to those from a conformal mesh. As
the interface width increases, the diffuse-interface solution deviates from the conformal mesh solution in both the localized gas
fraction and the overall gas hold-up, resulting in a difference up to 30%. In the case of flow past a cylinder, where the solid interacts
with the flow, the presence of the diffuse interface extends the thickness of the solid boundary and results in a deviation from the
conformal mesh solution as time increases.

1. INTRODUCTION
Industrial chemical engineering processes such as bubble
columns,1−4 reactors,5,6 pipe flow,7−9 and separators10 involve
multiphase flows which pose significant challenges for
simulation-based design and optimization. However, to
improve existing designs and develop next-generation multi-
phase flow-based processes, an understanding of the complex
hydrodynamics of the system is essential. Increasingly, the use
of computational fluid dynamics (CFD) simulations are being
used to study multiphase flow systems, enabling design and
optimization activities that are infeasible using solely
experimentation and physical prototyping. CFD simulations
of multiphase flow systems enable researchers to explore
different combinations of operating conditions and prototype
designs without the cost and safety issues incurred by
experimental methods.
A vital aspect of the use of CFD simulations for the design

and optimization of process equipment is the specification of
internal physical features, which may have highly complex
shape and topology. These features need to be specified as

physical boundaries in the simulation, which can be achieved
by either using a conformal unstructured mesh or an
embedded domain method. With a conformal unstructured
mesh, the geometry is defined such that once generated, the
mesh surfaces correspond to the physical boundaries. This
process can be tedious and time-consuming and have
detrimental numerical effects on the computational complexity
and numerical stability of simulations, especially for complex
geometries present in chemical engineering processes. Addi-
tionally, if the internal features are changed, which is likely the
case during design and optimization activities, the mesh will
also have to change, thus requiring the mesh to be regenerated.
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In the case of moving mesh problems, methods like the
arbitrary Lagrangian−Eulerian (ALE) method11 is used, but
ALE requires the mesh to be deformed as the boundary moves.
Instead of using a conformal mesh, the physical boundaries

may be “embedded” in the problem, which has been a topic of
research in the area of single-phase fluid mechanics for several
decades, especially for fluid-structure interaction problems.
Examples of past relevant work includes the use of the fictitious
domain,12 immersed boundary,13−15 and diffuse domain/
interface16−21 methods. Physical boundaries are defined in
the embedded domain method through the use of a level-set
function, a phase-field, or similar continuous indicator field.
Since physical boundaries are not explicitly defined by the
domain mesh, the mesh is not required to conform to them
and a simple nonconforming structured mesh may be used.
This has many benefits, including the reduction of the need for
remeshing when the geometry changes, along with improved
numerical stability. The ease with which the internal features
can be evolved during simulation is highly beneficial for design
and optimizing activities where the indicator field can directly
be modified by a higher-level optimization scheme.
Focusing on the immersed boundary (IB) method, it has

been extensively used to impose solid boundaries in single-
phase flow. Single-phase immersed boundary studies are
reviewed in Mittal and Iaccarino,13 Sotiropoulos and Yang,14

and Griffith and Patankar.15 The IB method has recently also
been used to impose solid boundary conditions in segregated
multiphase flows simulations, where fluid/fluid interfaces are
explicitly captured. The majority of this past research has
involved the combination of the volume-of-fluid multiphase
model with the IB method in order to capture multiphase
fluid/structure interaction. The use of interface-capturing
methods allows for the solid boundary to be accounted for
using the same methods as single-phase IB methods, with the
interface-capturing multiphase model account for fluid/fluid
interfaces. Applications of the IB method for interface-
capturing include wave propagation,22−28 injectors,29 porous
media,30 hydroplaning31 and capillary flow.32 Shen and
Chan,22−24 Zhang and co-workers,25,26 Gsell et al.,27 and
Yang and Stern28 independently coupled the IB method with
an interface-capturing scheme to study the fluid−structure
interaction of waves, validating with past experimental results.
Suh and Son29 developed a numerical method to model the
piezoelectric inkjet process using IB with the level-set method
with the droplet shape predicted by this method validated with
analytical sharp-interface solutions for a range of contact
angles. Patel et al.30 used the IB method with the volume-of-
fluid model to simulate water flooding processes encountered
in enhanced oil recovery applications. Capillary flow was
captured using a similar approach by Horgue et al.,32 which
was validated using analytical solutions of pressure inside a
droplet.
In addition to the IB method, multiphase fluid−solid

interactions have been modeled using the fictitious domain
and interface-capturing methods. Vincent et al.31 modeled
three-dimensional hydroplaning where the tire boundaries
were captured using the fictitious domain method. Arienti and
Sussman33 combined the level-set and volume-of-fluid
methods to model diesel injectors that showed good
agreement with experimental results for predicting the mean
axial velocity. Similar to the IB studies, the models showed
good agreement when validated against experimental results.
However, the use of interface-capturing methods with methods

such as IB or fictitious domain severely limits the flow regimes
that can be modeled since every fluid/fluid interface in the
domain is resolved.
Interface-capturing multiphase models are infeasible for

most chemical engineering processes, where dispersed multi-
phase flows are observed. This multiphase flow regime involves
a large surface area of fluid/fluid interfaces which are
deformable, yielding the use of interface-capturing multiphase
models infeasible. Instead, the use of volume/time-averaged
multiphase models, generally referred to as two-fluid
models,34,35 is required for simulations at experimentally and
industrially relevant scales. For example, bubble columns
involve a liquid phase with large numbers of dispersed bubbles,
where the presence of many evolving interfaces results in an
infeasible computational cost for interface-capturing methods
and relevant justification for the use of coarse-grained two-fluid
models.
In this work, a novel diffuse solid−fluid interface method is

presented for imposing solid boundaries in systems with
dispersed multiphase flow conditions. The diffuse-interface
method has been extensively used to model gas−liquid and
liquid−liquid multiphase flows using the Cahn−Hilliard36,37
and Allen−Cahn38 models. The diffuse-interface method is
applied in this work to capture physical boundaries, but now
with a model for dispersed multiphase flows, specifically the
two-fluid model.34 This approach allows for dispersed
multiphase flow to be modeled without the need for remeshing
when the solid boundaries are evolved. The method is
presented and applied to model two-dimensional bubbly flow
in a rectangular channel and bubbly flow with an immersed
stationary cylinder and validated through comparison to
simulation of the domains using the standard conformal
mesh approach.

2. RESULTS AND DISCUSSION
To validate the use of the diffuse-interface method for
imposing nondeformable solid boundaries, simulations of
dispersed two-phase flow using the diffuse interface are
compared to simulation results from a boundary-conformal
mesh for both channel flow and flow past a cylinder. The effect
of the diffuse interface length-scale and function type on the
solution and the performance of the method are discussed.
In this work, velocity fields are visualized using the line

integral convolution (LIC) method,39,40 which enables
significantly higher resolution of local flow alignment
compared to streamlines along with the ability to superimpose
coloring to indicate an additional scalar field (velocity
magnitude, volume fraction, etc.).
2.1. Channel Flow. The phase-field that defines the

channel is described using the following hyperbolic tangent
function:

x
x x

( ) tanh
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where x 0.5c = is the scaled distance from the center line to the
channel wall and ϵ is a parameter associated with the width of
the diffuse interface. The function asymptotically approaches ϕ
= −1 and 1, resulting in a smooth transition between the
phases, its value indicating each of the phases. The scaled
width of the interface, η, is approximated by the distance
between ϕ = −0.999 and 0.999 which is given by η = ϵ
tanh−1(0.999).
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The presence of the diffuse interface alters imposition of the
no-slip boundary condition at the channel walls. In the case of
a boundary-conformal mesh, the velocities at the walls may be
directly constrained to zero (stationary no-slip). However, in
the diffuse-interface method, the no-slip condition is blended
with the governing equations for the two-fluid model. The
sharpness of the velocity gradient from the channel walls to the
bulk is a function of the diffuse-interface function, interface
width and discretization scheme.
In this study, all simulations use the same spatial

discretization scheme and an embedded time-integration
scheme in order to estimate the local error.41 Velocity
gradients in the blended regions near the wall, resulting from
the no-slip condition, are found to be the largest contributor to
the local error which results in small time-steps required to
impose the local error tolerance ϵl = 10−4. This issue is
particularly significant in cases where the diffuse interface is
large such as in channel flow. To mitigate this constraint on the
time-step size, only the local error inside the fluid domain,
where ϕ ≤ −0.999, is considered when computing the new
step size and the local error tolerance is relaxed to ϵl = 10−3.
The gas phase fraction profile at t = 1.72 s obtained from

simulation with a diffuse interface given by eq 1, and ϵ = 0.02 is
shown in Figure 1. Qualitatively, the phase fraction profile and

transient behavior are in agreement with that observed in past
work,42 where traditional conformal mesh simulations are
carried out using the multiphase finite element-based solver
also used in this work. A bubble plume is formed as the
dispersed gas phase flows through the liquid phase, where the
unidirectional flow of the gas phase imparts recirculatory flow
of the liquid phase. Over time, the plume increases in width,
driven by the dispersive action of vortices formed in the wake
of the plume. This is in qualitative agreement with
experimental observations of the startup period in rectangular
bubble columns.43 Figure 2 shows the gas and liquid velocity
LICs inside the box given by x ∈ [−0.025, 0.025] and y ∈ [0,
0.1] at the same simulation time step. From Figures 2 and 3,

the velocity profiles of both gas and liquid phases are similar to
liquid recirculating in the wake of the bubble plume.
In addition to qualitative comparisons of the phase fraction

profile and velocity LICs, the time evolution of the gas hold-up
from the diffuse-interface simulation is also be compared to
that of the reference solution from Treeratanaphitak and
Abukhdeir.42 The gas hold-up in the diffuse-interface
simulation is determined as follows:

d

d
g

g
1

2
1

2

=
(2)

where the denominator is the volume of the physical domain.
This comparison is reported in the following sections.

2.1.1. Effect of Interface Length Scale. The blending of the
conservation equations and boundary conditions of the solid
and multiphase fluid resulting from the introduction of the
diffuse interface may affect the accuracy of simulation results,
compared to reference boundary-conformal mesh solutions. In
this section, a study is performed to determine the effect of the
diffuse interface length-scale on the accuracy. Simulations of
the channel flow with the same geometry as before are
repeated for a range of diffuse interface widths, ϵ = 0.01, 0.02,
0.04, 0.08, and 0.1. Figure 4 shows how the ϕ = tanh(x/0.5ϵ)
profile changes with different values of ϵ. A sharper (less)
diffuse interface corresponds to ϵ = 0.01 with a wider (more)
diffuse interface corresponding to ϵ = 0.1, for example.
As the diffuse interface width increases and the interface

becomes more diffuse, the contribution of local error from
blending increases. However, given that this contribution to
the local error at every time-step is spatially localized to the
blending region, the time-step size is comparable between all
values of ϵ through the use of the local error approach
presented in section 2.1. Figures 5 and 6 show the gas phase
fraction at t = 1.72 s for simulations with ϵ = 0.01 and 0.1,
respectively. Qualitatively, the gas fraction profile from ϵ =
0.01 is nearly identical to the case with ϵ = 0.02, but the profile
from ϵ = 0.1 is notably different from ϵ = 0.02. In Figure 6,
there is a noticeable modulation of the gas column below the
plume and the plume is much narrower. This is due to the
interface being very diffuse and the effect of the solid boundary
conditions is blended further into the fluid domain.
The gas and liquid velocity LICs from ϵ = 0.01 and 0.1 are

shown in Figures 7 and 8, respectively. The LICs from ϵ = 0.01
are qualitatively similar to those observed in Figures 2 and 3.
However, the LICs from ϵ = 0.1 are different from the other
simulations. The gas velocity LICs appear to exhibit less
curvature in the wake of the bubble plume and the liquid
velocity vortices in the wake of the plume are narrower due to
the highly diffuse nature of the interface.
Figure 9 shows the time evolution of the overall gas hold-up,

⟨αg⟩, inside the channel up to 2.5 s from the diffuse interface
(hyperbolic tangent variation) simulations and the reference
(conformal mesh) solution. At narrow interface widths, the
evolution of the gas hold-up follows the same evolution as the
reference solution and the magnitude of the overall hold-up is
equivalent. However, for ϵ = 0.1, the evolution of the hold-up
is similar to the reference solution only up to the point where
the bubble plume leaves the channel. After this point, the gas
hold-up deviates from the reference solution, indicating that
the flow behavior is different. In the reference solution, after
the transient convection of the bubble plume, a straight vertical

Figure 1. Surface plot of αg at t = 1.72 s with hyperbolic tangent
diffuse interface and ϵ = 0.02. The ϕ profile is superimposed and
thresholded show only ϕ ≥ −0.999. The gray scale color bar denotes
the phase-field that describes the diffuse interface, thresholded to
show ϕ ≥ −0.999.
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column of bubbly flow is observed. In the case of ϵ = 0.1, the
column of bubbly flow undulates (Figure 2) and the onset of
vertical column flow occurs much earlier than in the other
simulations.
The gas fraction is sampled along the line y = 0.08 m, which

corresponds to the widest part of the bubble plume, and the
profile along the x-axis is plotted in Figure 10. For the cases
where ϵ = 0.01 and 0.02, the αg profiles obtained using a
diffuse-interface method show good qualitative agreement with

the reference solution from Treeratanaphitak and Abukhdeir.42

This qualitative agreement improves as the diffuse interface is
reduced, with simulation results being almost equivalent for
the smallest diffuse interface. However, as the interface
becomes wider the αg profile deviates from the reference
solution, which is intuitive. The effect of the wide diffuse
interface is clear as αg, shown in Figure 10c, starts to transition
from αg = 0 to a nonzero value further into the domain.

Figure 2. Surface plot of (left) αg, (center) gas velocity, and (right) liquid velocity at t = 1.72 s with hyperbolic tangent diffuse interface and ϵ =
0.02.

Figure 3. Surface plot of (left) phase fraction, (center) gas velocity, and (right) liquid velocity at t = 1.72 s from bounded IPCS with interfacial
pressure. Reprinted with permission from Treeratanaphitak and Abukhdeir.42 Copyright 2019 Elsevier.
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To obtain a quantitative measure of the difference between
simulation results using the diffuse interface versus the
reference solution, the width of the bubble plume at y =
0.08 m is computed and shown in Table 1. The plume width
from simulations with ϵ = 0.01 and 0.02 are within 3% of the
reference solution, supporting the accuracy observations
mentioned earlier. The plume width from the simulation
with ϵ = 0.1 differs by 30% from that of reference solution,
highlighting the importance of appropriate choice of the
diffuse-interface width.
2.1.2. Effect of Interface Function. The usage of the

hyperbolic tangent function as the kernel for the diffuse
interface is generally the most common approach,20 but other
functions have been used that result in a continuous transition
from the indicator values for the solid to the fluid regions.36 An
example of an alternate kernel function is piecewise cosine
where the interface region is described by a cosine function
that is between [−1, 1] and outside the interface region, ϕ =
±1. Unlike the hyperbolic tangent function, which asymptoti-
cally approaches the lower and upper bounds of ϕ, the
piecewise cosine function reaches these values ϕ = ±1 exactly
at the specified η. In this section, the effects of using the

following piecewise cosine function in the presented diffuse
interface method is studied:

x
x x

( ) cos min 1, max 0,
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w h e r e ϕ w i l l b e ± 1 o u t s i d e t h e r e g i o n
x x x( 0.5 , 0.5 )c c + , depending on which side of the
channel wall x̃ is close to.
Figure 11 shows the phase field ϕ profile variation with

respect to x when defined using a hyperbolic tangent function,
ϕ = tanh(x/0.5ϵ) and using a piecewise cosine function
centered at xc = 0, ϕ = −cos(−π min[1, max (0,(x + 0.5η)/
η)]), for a comparable interface width. The width of the cosine
interface is approximated by η = ϵ tanh−1(0.999), which
corresponds to the distance between ϕ = ±0.999 in the
hyperbolic tangent case. From Figure 11, the transition of ϕ
from −1 to 1 in the piecewise cosine function is more gradual
than the hyperbolic tangent function, which results in lower
values of ∇ϕ.
Figure 12 shows the gas fraction profile and velocity LICs

for simulations with a piecewise cosine diffuse interface with a
comparable interface width as the hyperbolic tangent case. At
small diffuse interface width ϵ, the resulting simulation results
are qualitatively similar to those results using the hyperbolic
tangent. The bubble plume in the ϵ = 0.1 simulation case is
significantly narrower than the reference conformal mesh
solution, but it is wider than the corresponding hyperbolic
tangent simulation result. The column-like flow of gas plume
also appears to be more stable than the results in Figure 8.
The significant difference between the results from different

interface functions at ϵ = 0.1 is attributed to the lack of
asymptotic behavior of the piecewise cosine, shown in eq 3,
compared to that of the hyperbolic tangent function. For the
piecewise cosine function, the approximation η = ϵ
tanh−1(0.999) results in a diffuse interface that approaches ϕ
= ±1 over a similar length-scale as the hyperbolic tangent
function for much smaller interface widths. However, at ϵ =

Figure 4. Comparison of diffuse-interface width generated using the
hyperbolic tangent function with varying ϵ.

Figure 5. Surface plot of αg at t = 1.72 s with hyperbolic tangent
diffuse interface and ϵ = 0.01. The gray scale color bar denotes the
phase-field that describes the diffuse interface, thresholded to show ϕ
≥ −0.999.

Figure 6. Surface plot of αg at t = 1.72 s with hyperbolic tangent
diffuse interface and ϵ = 0.1. The gray scale color bar denotes the
phase-field that describes the diffuse interface, thresholded to show ϕ
≥ −0.999.
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0.1, the difference between ϵ tanh−1(0.999) and ϵ
tanh−1(0.9999), which are interface widths approximated by
ϕ = ±0.999 and ϕ = ±0.9999, respectively, is an order of
magnitude larger than at ϵ = 0.01 and non-negligible. The
hyperbolic tangent function diffuses the interface over a larger
distance which, for larger values of ϵ, is detrimental to the
performance of the method.
Figure 13 shows the time evolution of the overall gas holdup

for simulations with a piecewise cosine diffuse interface.
Similar to the hyperbolic tangent case, the gas hold-up at small

interface widths (ϵ = 0.01 and 0.02) are in agreement with the
reference solution. For the ϵ = 0.1 case, the gas hold-up differs
from the reference solution as the bubble plume exits the
simulation domain, but the difference is not as significant as
the hyperbolic tangent case in Figure 9.
The αg profile at y = 0.08 m from the three cases are plotted

with the reference solution in Figure 14. The results are similar
to those observed in the previous section where simulations
with ϵ = 0.01 and 0.02 yield profiles that are comparable to the
reference solution, but the profile from the simulation with ϵ =

Figure 7. Surface plot of (left) αg, (center) gas velocity, and (right) liquid velocity at t = 1.72 s with hyperbolic tangent diffuse interface and ϵ =
0.01.

Figure 8. Surface plot of (left) αg, (center) gas velocity, and (right) liquid velocity at t = 1.72 s with hyperbolic tangent diffuse interface and ϵ = 0.1.
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0.1 yields a significantly different solution. Figure 15 describes
the error in the phase fraction along the line y = 0.08 m where
the interface width is varied for both interface functions. The
error is defined as

Error g ref g y, 0.08m
=

= (4)

and can be described using the following power-law
expression:

Ag ref g y

m
, 0.08

=
= (5)

where A is a constant and m is the exponent. For both interface
functions, the error follows an approximate first-order decay
with the interface width where mtanh = 0.953 and mcos = 0.896.
The bubble plume width is computed and tabulated in Table

2. For the simulation with ϵ = 0.01, the bubble plume width is
comparable to corresponding the hyperbolic tangent simu-
lation case (Table 1). The simulation with ϵ = 0.02 yields a
result with a smaller difference between the two interface
functions, but is still below 3%. Overall, it is found that the use
of the piecewise cosine function as the interface kernel
improves the bubble plume width in the most diffuse case,
decreasing the difference from the reference solution by almost
10%. This is due to the lack of asymptotic approach of the
phase field ϕ to the solid/fluid interface values ±1 when using

the piecewise cosine, unlike that observed with the hyperbolic
tangent kernel function.
2.2. Flow Past a Cylinder. The diffuse-interface method is

used to simulate two-phase flow past a stationary cylinder, a
classical benchmark for single-phase flow, but not well studied
for dispersed multiphase flows. Multiphase simulations are
performed using both the hyperbolic tangent and piecewise
cosine kernel functions for the diffuse-interface functions. For
the hyperbolic tangent case, the cylinder is defined using the
following function:

x x
x

R
( ) tanh

0.5
c=

i
k
jjjj

y
{
zzzz

(6)

Figure 9. Time evolution of overall gas hold-up inside a channel with
solid boundaries defined by a hyperbolic tangent diffuse interface.

Figure 10. αg profile along y = 0.08 m with different hyperbolic tangent diffuse-interface widths.

Table 1. Bubble Plume Width at y = 0.08 m from
Simulations Using Hyperbolic Tangent Diffuse Interface

study xplume (× 10−2 m) difference (%)

reference 3.21
ϵ = 0.01 3.17 1.25
ϵ = 0.02 3.12 2.80
ϵ = 0.04 2.92 9.03
ϵ = 0.08 2.51 21.8
ϵ = 0.1 2.25 30.0

Figure 11. Comparison of diffuse interface generated using hyperbolic
tangent and piecewise cosine functions with ϵ = 0.02 and η = ϵ
tanh−1(0.999).
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where x (0, 0.8)c = is the scaled diffuse-interface position

vector that corresponds to the center of the cylinder, R̃ = 0.1 is

the scaled radius of the cylinder, and ϵ = 0.01. The piecewise

cosine interface is defined by

x
x x R

( ) cos min 1, max 0,
0.5c= +i

k
jjjjjj
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(7)

Figure 12. Surface plot of (left) phase fraction, (center) gas velocity, and (right) liquid velocity at t = 1.72 s with piecewise cosine diffuse interface
and (top) ϵ = 0.01, (middle) ϵ = 0.02, and (bottom) ϵ = 0.1.
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where η = ϵ tanh−1(0.999). In this geometry, the presence of
the use of the diffuse interface is expected to have a larger
impact on the flow profile due to the fact that the immersed
cylinder is directly in the path of the gas flow. The diffuse
interface extends the thickness of the solid boundary, especially
for simulations with larger diffuse-interface widths, resulting in
the effective diameter of the cylinder increasing slightly
compared to the reference conformal mesh case. This is
expected to contribute to a deviation of the hydrodynamic
behavior of the multiphase flow above some critical diffuse-
interface width.
Figure 16 shows the gas and liquid velocity LICs colored

with the gas fraction from the reference conformal mesh
solution. In the early stages of the simulation, dispersed gas
moves around the cylinder, with a small recirculation region on
the upstream side of the cylinder. Unlike flow through a
rectangular channel, gas recirculation is also present in the
region near the cylinder. As the gas travels further up the
channel (t = 3.13 s), it converges into a single large plume and
is convected downstream. There are two zones of liquid
recirculation near the inlet, one on each side of the dispersed
gas phase. The recirculation zone grows in size with time, and
the vortices begin to detach from their previously stationary
location (t = 3.13 s). The flow becomes increasingly unsteady
following the initial detachment of vortices, resulting in an

undulating column of dispersed gas phase and a distorted
bubble plume downstream. Indicative of unsteady flow, many
recirculation zones are simultaneously present on either side of
the undulating dispersed gas column. These convected vortices
also increase the dispersion of the gas phase through
redirecting undirectional flow.
Figures 17 and 18 show the simulation results at the same

simulation times using the diffuse-interface method with both
the (i) hyperbolic tangent and (ii) piecewise cosine kernels
with ϵ = 0.01. The results are not qualitatively different for this
diffuse-interface width for either kernel functions. At t = 3.13 s,
the gas phase fraction profile and the velocity LICs appear to
be the same as the results from the reference simulation for
both interface functions. However, both diffuse-interface
simulations deviate starting at t = 4.69 s onward. The
recirculation zones in the wake of the cylinder predicted by

Figure 13. Time evolution of overall gas hold-up inside a channel
with solid boundaries defined by a piecewise cosine diffuse interface.

Figure 14. αg profile along y = 0.08 m with different piecewise cosine diffuse-interface widths.

Figure 15. Error in αg profile along y = 0.08 m as a function of ϵ.

Table 2. Bubble Plume width at y = 0.08 m from
Simulations Using Piecewise Cosine Diffuse Interface

study xplume (× 10−2 m) difference (%)

reference 3.21
ϵ = 0.01 3.17 1.25
ϵ = 0.02 3.13 2.49
ϵ = 0.04 3.03 5.46
ϵ = 0.08 2.75 14.2
ϵ = 0.1 2.54 20.9
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the diffuse-interface simulations are wider and closer to the
cylinder. The recirculation zones around the cylinder also
appear to be less distorted when compared to the reference
case. This appears to have affected the evolution of the gas and
velocity profiles, resulting in similar features but different gas
fractions and velocity profiles, confirming the prediction made
earlier in this section.
The time evolution of the overall gas hold-up is shown in

Figure 19. In the early stages of the simulation, the hold-up

evolves in the same manner as the reference solution. The
interface function does not appear to significantly affect the
solution at ϵ = 0.01, supporting the results from the previous
subsection, but as the diffuse interface interacts with the flow,
the gas hold-up diverges from the reference solution. This
corresponds to the observations made in Figures 16−18. While
the magnitude and the slope of the gas hold-up profiles from
the diffuse-interface simulations vary from the reference
solution, the qualitative behavior is still the same.

3. CONCLUSIONS
In this work, a novel diffuse solid−fluid interface method is
presented for imposing solid boundaries in systems with
dispersed multiphase flow conditions. The dispersed multi-

Figure 16. Evolution of gas−liquid flow past a stationary cylinder for
the boundary-conformal mesh simulation. LICs are of (top) gas and
(bottom) liquid phase velocities colored by phase fraction.

Figure 17. Evolution of gas−liquid flow past a stationary cylinder with
a hyperbolic tangent diffuse interface and ϵ = 0.01. The diffuse
interface is in gray scale and LICs are of (top) gas and (bottom)
liquid velocities.
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phase flow regime is focused on due to its pervasiveness in
chemical engineering processes, with the multiphase two-fluid

model used for simulations. No-slip solid/multiphase fluid
boundary conditions are imposed through blending the
conservation equations of the multiphase two-fluid model
with that of a stationary nondeforming solid, resulting in a
smooth transition from the solid boundary to the multiphase
fluid domain. To validate the presented method, simulations of
channel flow and flow past a cylinder are performed and the
results are compared to results from simulations with
boundary-conformal meshes. The results from the diffuse-
interface method for simulations of channel flow are found to
be in agreement with the reference solution when the diffuse
interface is sufficiently small. For small diffuse-interface widths,
the choice of the interface function has negligible effect on the
accuracy of the solution. Two-phase gas−liquid flow past a
stationary cylinder simulations are observed to be in agreement
with the reference conformal mesh solution during early stages
of the simulation. However, as the dispersed gas phase is
convected toward and around the immersed cylinder, the
diffuse-interface representation of the cylinder is found to
affect the flow profile and the overall gas hold-up.
The diffuse-interface method and simulation observations

presented represent a significant step toward the use of
immersed boundary-type methods for simulations involving
dispersed multiphase flows within complex geometries. This
approach could enable simulation-based design and optimiza-
tion using multiphase CFD, where evolving the geometry does
not require remeshing, along with improved simulation
stability resulting from the use of structured meshes.

4. BACKGROUND
4.1. Diffuse-Interface Method. Physical boundaries that

are defined using fictitious domain and immersed boundary
methods are generally sharp boundaries whose effect may be
approximated through the distribution of the boundary over
several mesh elements. This requires the solution field to be
interpolated from the physical boundary to the nearest
neighboring node/cell.44 The interpolation must be done
intermittently throughout the simulation to maintain accuracy
and stability. Special consideration must also be paid when
handling mesh elements that are cut by the embedded
boundaries.20

On the opposite end of the spectrum, the diffuse domain/
interface method defines the physical boundaries using a
phase-field that approximates the domain boundary by a
diffuse region. Changes in the fluid−solid interface are
captured by evolving the phase-field, which does not require
interpolation. For example, the phase-field can vary between
zero and one:20

1, physical domain

0, otherwise
=

l
moo
noo (8)

where ϕ is the phase-field. The physical boundary will be
represented by the region in which ϕ ∈ (0, 1). The thickness
of this region and the transition between the two ϕ values are
controlled by the function used to define ϕ.
4.2. Two-Fluid Model. Dispersed gas−liquid flows are

modeled using the two-fluid model, where each phase is
considered to be a continuous fluid.34 The instantaneous
behavior of the fluid is averaged over time and phase fractions
are used to indicate the spatially varying composition of the
multiphase fluid. Each of the fluids has its own set of
conservation equations and the interactions between the fluids

Figure 18. Evolution of gas−liquid flow past a stationary cylinder with
a piecewise cosine diffuse interface and ϵ = 0.01. The diffuse interface
is in gray scale and LICs are of (top) gas and (bottom) liquid
velocities.

Figure 19. Time evolution of overall gas hold-up in flow past a
stationary cylinder.
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are accounted for through constitutive interphase momentum
transfer relationships. The governing equations of the two-fluid
model are given as34

t

( )
( ) 0

q q
q q q+ · =

(9a)

g M
t

P

P

( )
( ) ( ) ( )

q q q
q q q q q q q q

q q q q q i q q q i, ,

+ · = · + ·

+ + + · (9b)

where υq is the phasic velocity, ρq is the phasic density, αq is
the phase fraction of phase q, Pq is the phasic pressure, τq is the
phasic viscous stress tensor, gq is the phasic gravitational force,
Mq is the momentum exchange term, and the subscript i
denote interfacial quantities.
The interphase momentum transfer term may include

contributions from various modes of transfer including drag,
lift, virtual mass and wall lubrication.34,45,46 Drag is the largest
contributor to the momentum exchange between phases is
dispersed flow regimes.47 This is due to the pressure imbalance
and shear forces at the gas−liquid interface. The drag force for
the continuous phase, c, due to the movement of the dispersed
phase, d, is given as34

M
C
r

1
2c drag c d

D

d
r r, =

(10)

where rd is the ratio of the volume to the projected area of the
bubble/particle, CD is the drag coefficient, and υr is the relative
velocity between the dispersed and continuous phases, υr = υd
− υc. In spherical bubbles, this becomes

M
C
d

3
4c drag c d

D

d
r r, =

(11)

where dd is the bubble/particle diameter. The drag force for
the dispersed phase is computed using the following property
of the interphase momentum exchange:

M Mc d= (12)

In segregated flows, the interfacial shear stress term in eq 9b
has a significant effect on the momentum of the fluid.34 Given
that the focus of this work is on the dispersed flow regime, this
term is assumed to be negligible. Additionally, in the dispersed
regime, the interfacial pressure of the phases are assumed to be
equal34,48 (i.e., Pc,i = Pd,i = Pint) and the pressure of the
dispersed phase can be approximated by the interfacial
pressure (Pd ≈ Pd,i = Pint).

34 The interfacial pressure is
approximated by a volume average of the analytical solution of
potential flow around a single sphere:46,49

P P Cc i c P c r r, = · (13)

where CP is the interfacial pressure coefficient. Thus, the
momentum equations in a gas−liquid flow system is given as
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5. METHODOLOGY
The solid physical boundaries are imposed by blending the
governing equations of the fluid with the solid Dirichlet
boundary conditions. The diffuse interface is described by the
smooth function ϕ, whose value is ±1 inside the phases and is
between (−1, 1) in the interface region:50

1, fluid

1, solid
=

l
moo
noo (15)

From eq 15, the governing equations of the fluid are weighted
by (1 − ϕ)/2 to ensure that the equations are active inside the
fluid. Similarly, the solid velocity boundary conditions are
weighted by (1 + ϕ)/2 so that the conditions are inactive
inside the fluid but active in the solid. The gradient of the
phase-field is the normal vector from the interface and the
Neumann boundary condition can be imposed using n ≈ ∇ϕ/
∥∇ϕ∥.
An example of this diffuse-interface approach is described

using the following Poisson problem:

ny f y h y gon , on , onN D
2 = · = =

(16)

The physical domain is denoted by ϕ = −1 and the area
outside the physical domain by ϕ = 1. The equation is then
weighted by (1 − ϕ)/2 and the Dirichlet condition is weighted
by (1 + ϕ)/2:

y f y g
1

2
( )

1
2

( ) 02 + + + =
(17)

Taking the inner product of eq 17 with the test function, φ:

y f

y g

1
2

,
1

2
,

1
2

( ),

0

2 +

+ +

= (18)

where ⟨·, ·⟩ is the inner product operator. The Neumann
boundary condition is obtained by applying integration by
parts to the Laplacian term:

n
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y y
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2
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2

,

1
2

,

2

N

= · + ·

(19)

where ΓN′ is the part of the simulation domain boundary that
the Neumann boundary condition applies to and n is the unit
normal (outward) of the surface bounding the domain.
Substituting this back into eq 18 and applying the Neumann
boundary condition:

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c00838
ACS Omega 2023, 8, 15518−15534

15529

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c00838?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


h h

y f

y g

1
2

,
1
2

,

1
2

,
1

2
,

1
2

( ), 0

N

+

+

+ + =
(20)

where the second term of the left-hand side is obtained from
substituting the definition of the diffuse-interface unit normal
into the Neumann boundary condition in eq 16:

y h· =
(21)

Equation 20 is the weak formulation of eq 16 with a diffuse
interface. The Neumann boundary condition is imposed via
the first and/or second terms, depending on the location of the
Neumann boundary. If the Neumann boundary condition is on
the simulation domain, then the h1

2
term on ΓN′ is used to

impose the Neumann boundary condition. However, if the
boundary is defined by the diffuse interface, then the h1

2
term in Ω is used instead. In the case where the boundary
condition applies on both the simulation and diffuse-interface
boundaries, then both terms are used. Similarly, should the
Dirichlet boundary condition also apply to parts of the
simulation domain boundary, the boundary condition is
applied by setting y = g on ΓD′ .
5.1. Time Discretization. Time-integration of the

conservation equations is performed using an adaptive
second-/third-order semi-implicit Adams−Bashforth/Back-
ward-Differentiation (AB/BDI23) scheme.51 The third-order
AB/BDI3 scheme is used to estimate the local error of the
second-order scheme. The explicit terms in the equation are
discretized using the Adams−Bashforth scheme and the time
derivative is discretized using backward-differentiation.51 The
following notation will be used to denote the numerator of the
discretized time derivative:

a a
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n j
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(22)

an

j

k

j
n j( 1)
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1=+
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(23)

where aj is a coefficient associated with backward-differ-
entiation that will later be defined and k is the order of the
method. The discretized explicit terms will be denoted as
follows:

f b fn

j

k

j
n j

0

1

=
= (24)

where bj is a coefficient associated with the Adams−Bashforth
scheme. The procedure to calculate aj and bj are outlined in the
Supporting Information.
5.2. Diffuse Interface for Two-Fluid Model Equations.

In this study, a scaled nondimensional form of governing
equations solved using the phase-bounded incremental
pressure correction scheme (IPCS).42 The scaled equations
are scaled using the following dimensionless parameters:

/ s= , t t t/ s= , x x x/ s= , P P P P( )/ s0= , g g g/ s= ,

xs= , and d d x/b b s= . This results in the following scaled
equations:
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1l g= (25d)

where the dimensionless groups are defined in Table 3.

The diffuse solid−fluid interface is imposed by blending the
governing equations of the two-fluid model (eq 5) and the
solid Dirichlet boundary condition together. This is achieved
by weighting the governing equations and solid boundary
condition by (1 − ϕ)/2 and (1 + ϕ)/2, respectively. The
weighting allows for integrals over the physical domain to be
reformulated into volume integrals over the simulation
domain.20 The resulting system of equations is as follows:
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Table 3. Dimensionless Groups

parameter expression

time ts = υs/xs

pressure
Ps = ρlgsh
P0 = 0

Euler number Euq = Ps/ρqυs
2

Reynolds number Req = ρqυsxs/μq

Froude number Fr g x/b s x=
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with the following boundary conditions:
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The time discretization follows the notation defined in the
previous section. The weak formulation of eq 26 follows the
same procedure as the Poisson equation example outlined
earlier in the section but with the two-fluid model equations.
Taking the inner product of eq 26 and the test function yields
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The Neumann boundary condition for eq 26 is obtained from
using integration by parts on the

Re q
1

2
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q
· * term:
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The second term in the right-hand side of eq 30 allows for
the imposition of a Neumann boundary condition at the
solid−fluid interface. In this work, the boundary condition at
the solid−fluid interface is a Dirichlet boundary condition and
the term is therefore left unconstrained. The weak formulation
is thus:
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where the solid boundary condition is weighted by a0/Δt for
consistency. The pressure Poisson equation is derived from eq
26 by taking the difference between the weighted momentum
equation for q

n 1+ and q
* and neglecting the contributions of

convection, viscous stress, and interphase momentum transfer:
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The right-hand side term can be separated into two terms:
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The first term is only active at the solid−fluid interface and
given that the phase fraction and velocity of the solid are
always known, this term is assumed to be negligible. Using the
incompressibility condition for the two-fluid model, ∇·∑qαqυq
= 0, the pressure Poisson equation for two-phase flow using the
diffuse-interface method is thus:
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with the following weak formulation obtained using integration
by parts:
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The new velocity update equation is simply sum of the update
equation from IPCS weighted by (1 − ϕ)/2 and the solid
Dirichlet boundary condition weighted by (1 + ϕ)/2:
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The boundary condition for the gas fraction, αg, at the solid−
fluid interface is αg = 0 (liquid wets the wall). Using the same
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blending procedure to apply the boundary condition yields the
following:
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5.3. Simulation Conditions. The diffuse-interface method
is used to impose boundary conditions in dispersed gas−liquid
simulations of a two-dimensional channel (Figure 20) and flow

past a stationary cylinder (Figure 21). The physical properties
of the fluids are reported in Table 4. For the two-dimensional
channel case, results from previous work by the authors42 are
used as the reference case with a conformal mesh. The width of
the channel in Figure 20 is twice that of the simulation domain
in Treeratanaphitak and Abukhdeir.42 The channel walls will
be imposed using a phase-field and the remaining boundary
conditions are the same as in Treeratanaphitak and

Abukhdeir.42 The new inlet boundary conditions are given in
Table 5. For the case of flow past a cylinder, parabolic velocity

and gas fraction profiles are used at the inlet (Table 6), no-slip
and zero gas fraction conditions are imposed at the channel
and cylinder walls and outflow conditions are used at the
outlet. The simulations are performed with 16 cores (Intel
E5−2683 v4 Broadwell 2.1 GHz) for approximately 2 weeks of
wall-time using computer nodes provided by the Digital
Research Alliance of Canada.

Figure 20. Simulation domain for gas−liquid flow inside a channel
with the diffuse-interface method.

Figure 21. Simulation domain for gas−liquid flow past a stationary
cylinder with the diffuse-interface method.

Table 4. Physical Properties

property value

gas density (kg/m3) 10
liquid density (kg/m3) 1000
gas viscosity (Pa s) 2 × 10−5

liquid viscosity (Pa s) 5 × 10−3

bubble diameter (m) 10−3

drag constant
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Re Re
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Table 5. Initial and Inlet Conditions for Gas−Liquid
Channel Flow with Diffuse Interface

condition

initial
αg(x, 0) = 0
υg(x, 0) = υl(x, 0) = 0
P(x, 0) = ρlgs(0.1 − y)
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Table 6. Initial and Inlet Conditions for Gas−Liquid Flow
Past a Cylinder

condition

initial
αg(x, 0) = 0
υg(x, 0) = υl(x, 0) = 0
P(x, 0) = ρlgs(0.4 − y)

inlet

x t
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n·∇P(x, 0, t) = 0
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α Time-averaged local phase fraction
Δt Time step
ϵ Diffuse-interface width parameter
η Diffuse-interface width
Γ Simulation domain boundary
⟨·, ·⟩ Inner product
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ρ Density
xc Scaled diffuse-interface position vector
υ Velocity vector
x Position vector
aj Backward-differentiation coefficient
bj Adams−Bashforth coefficient
CD Drag coefficient
CP Interfacial pressure coefficient
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Eu Euler number
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rd Volume to projected area ratio
Re Reynolds number
t Time

■ REFERENCES
(1) Jakobsen, H. A.; Lindborg, H.; Dorao, C. A. Modeling of Bubble
Column Reactors: Progress and Limitations. Ind. Eng. Chem. Res.
2005, 44, 5107−5151.
(2) Joshi, J. Computational flow modelling and design of bubble
column reactors. Chem. Eng. Sci. 2001, 56, 5893−5933.

(3) Ekambara, K.; Dhotre, M. T.; Joshi, J. B. CFD simulations of
bubble column reactors: 1D, 2D and 3D approach. Chem. Eng. Sci.
2005, 60, 6733−6746.
(4) Krishna, R.; van Baten, J. Scaling up Bubble Column Reactors
with the Aid of CFD. Chem. Eng. Res. Des. 2001, 79, 283−309.
(5) Becker, S.; Sokolichin, A.; Eigenberger, G. Gas-liquid flow in
bubble columns and loop reactors: Part II. Comparison of detailed
experiments and flow simulations. Chem. Eng. Sci. 1994, 49, 5747−
5762.
(6) Sokolichin, A.; Eigenberger, G. Gas-liquid flow in bubble
columns and loop reactors: Part I. Detailed modelling and numerical
simulation. Chem. Eng. Sci. 1994, 49, 5735−5746.
(7) Ejaz, F.; Pao, W.; Ali, H. M. Numerical evaluation of separation
efficiency in the diverging T-junction for slug flow. Int. J. Numer.
Methods Heat Fluid Flow 2022, 32, 1567−1587.
(8) Ejaz, F.; Pao, W.; Ali, H. M. Numerical investigation and
prediction of phase separation in diverging T-junction. Int. J. Numer.
Methods Heat Fluid Flow 2022, 32, 3671−3696.
(9) Rasheed, A.; Allauddin, U.; Ali, H. M.; Uzair, M.; Verdin, P. G.;
Siddiqui, Y. H. Heat transfer and fluid flow characteristics
investigation using detached ribs in an axisymmetric impinging jet
flow. J. Therm. Anal. Calorim. 2022, 147, 14517−14537.
(10) Lane, C. D.; McKnight, C. A.; Wiens, J.; Reid, K.; Donaldson,
A. A. Parametric analysis of internal gas separation within an ebullated
bed reactor. Chem. Eng. Res. Des. 2016, 105, 44−54.
(11) Donea, J.; Huerta, A.; Ponthot, J.; Rodríguez-Ferran, A. In

Encyclopedia of Computational Mechanics; American Cancer Society,
2004; Chapter 14.
(12) Glowinski, R.; Pan, T.-W.; Hesla, T.; Joseph, D. A distributed
Lagrange multiplier/fictitious domain method for particulate flows.
Int. J. Multiphase Flow 1999, 25, 755−794.
(13) Mittal, R.; Iaccarino, G. Immersed Boundary Methods. Annu.

Rev. Fluid Mech. 2005, 37, 239−261.
(14) Sotiropoulos, F.; Yang, X. Immersed boundary methods for
simulating fluid−structure interaction. Prog. Aerosp. Sci. 2014, 65, 1−
21.
(15) Griffith, B. E.; Patankar, N. A. Immersed Methods for Fluid-
Structure Interaction. Annu. Rev. Fluid Mech. 2020, 52, 421−448.
(16) Ramier̀e, I.; Angot, P.; Belliard, M. A fictitious domain
approach with spread interface for elliptic problems with general
boundary conditions. Comput. Methods Appl. Mech. Engrg. 2007, 196,
766−781.
(17) Li, X.; Lowengrub, J.; Rätz, A.; Voigt, A. Solving PDEs in
complex geometries: A diffuse domain approach. Commun. Math. Sci.
2009, 7, 81−107.
(18) Aland, S.; Lowengrub, J.; Voigt, A. Two-phase flow in complex
geometries: A diffuse domain approach. Comput. Model Eng. Sci. 2010,
57, 77−106.
(19) Schlottbom, M. Error analysis of a diffuse interface method for
elliptic problems with Dirichlet boundary conditions. Appl. Numer.
Math. 2016, 109, 109−122.
(20) Nguyen, L. H.; Stoter, S. K.; Ruess, M.; Sanchez Uribe, M. A.;
Schillinger, D. The diffuse Nitsche method: Dirichlet constraints on
phase?field boundaries. Int. J. Numer. Meth. Eng. 2018, 113, 601−633.
(21) Monte, E. J.; Lowman, J.; Abukhdeir, N. M. A diffuse interface
method for simulation-based screening of heat transfer processes with
complex geometries. Can. J. Chem. Eng. 2022, 100, 3047−3062.
(22) Shen, L.; Chan, E.-S. Numerical simulation of fluid-structure
interaction using a combined volume of fluid and immersed boundary
method. Ocean Eng. 2008, 35, 939−952.
(23) Shen, L.; Chan, E.-S. Application of a combined IB-VOF model
to wave−structure interactions. Appl. Ocean Res. 2010, 32, 40−48.
(24) Shen, L.; Chan, E.-S. Numerical simulation of nonlinear
dispersive waves propagating over a submerged bar by IB-VOF model.
Ocean Eng. 2011, 38, 319−328.
(25) Zhang, C.; Zhang, W.; Lin, N.; Tang, Y.; Zhao, C.; Gu, J.; Lin,
W.; Chen, X.; Qiu, A. A two-phase flow model coupling with volume
of fluid and immersed boundary methods for free surface and moving
structure problems. Ocean Eng. 2013, 74, 107−127.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c00838
ACS Omega 2023, 8, 15518−15534

15533

https://pubs.acs.org/doi/10.1021/acsomega.3c00838?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c00838/suppl_file/ao3c00838_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tanyakarn+Treeratanaphitak"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-0943-0931
mailto:tanyakarn@siit.tu.ac.th
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nasser+Mohieddin+Abukhdeir"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-1772-0376
https://pubs.acs.org/doi/10.1021/acsomega.3c00838?ref=pdf
https://doi.org/10.1021/ie049447x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie049447x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/S0009-2509(01)00273-1
https://doi.org/10.1016/S0009-2509(01)00273-1
https://doi.org/10.1016/j.ces.2005.05.047
https://doi.org/10.1016/j.ces.2005.05.047
https://doi.org/10.1205/026387601750281815
https://doi.org/10.1205/026387601750281815
https://doi.org/10.1016/0009-2509(94)00290-8
https://doi.org/10.1016/0009-2509(94)00290-8
https://doi.org/10.1016/0009-2509(94)00290-8
https://doi.org/10.1016/0009-2509(94)00289-4
https://doi.org/10.1016/0009-2509(94)00289-4
https://doi.org/10.1016/0009-2509(94)00289-4
https://doi.org/10.1108/HFF-05-2021-0347
https://doi.org/10.1108/HFF-05-2021-0347
https://doi.org/10.1108/HFF-12-2021-0782
https://doi.org/10.1108/HFF-12-2021-0782
https://doi.org/10.1007/s10973-022-11640-w
https://doi.org/10.1007/s10973-022-11640-w
https://doi.org/10.1007/s10973-022-11640-w
https://doi.org/10.1016/j.cherd.2015.10.043
https://doi.org/10.1016/j.cherd.2015.10.043
https://doi.org/10.1016/S0301-9322(98)00048-2
https://doi.org/10.1016/S0301-9322(98)00048-2
https://doi.org/10.1146/annurev.fluid.37.061903.175743
https://doi.org/10.1016/j.paerosci.2013.09.003
https://doi.org/10.1016/j.paerosci.2013.09.003
https://doi.org/10.1146/annurev-fluid-010719-060228
https://doi.org/10.1146/annurev-fluid-010719-060228
https://doi.org/10.1016/j.cma.2006.05.012
https://doi.org/10.1016/j.cma.2006.05.012
https://doi.org/10.1016/j.cma.2006.05.012
https://doi.org/10.4310/CMS.2009.v7.n1.a4
https://doi.org/10.4310/CMS.2009.v7.n1.a4
https://doi.org/10.1016/j.apnum.2016.06.005
https://doi.org/10.1016/j.apnum.2016.06.005
https://doi.org/10.1002/nme.5628
https://doi.org/10.1002/nme.5628
https://doi.org/10.1002/cjce.24320
https://doi.org/10.1002/cjce.24320
https://doi.org/10.1002/cjce.24320
https://doi.org/10.1016/j.oceaneng.2008.01.013
https://doi.org/10.1016/j.oceaneng.2008.01.013
https://doi.org/10.1016/j.oceaneng.2008.01.013
https://doi.org/10.1016/j.apor.2010.05.002
https://doi.org/10.1016/j.apor.2010.05.002
https://doi.org/10.1016/j.oceaneng.2010.11.014
https://doi.org/10.1016/j.oceaneng.2010.11.014
https://doi.org/10.1016/j.oceaneng.2013.09.010
https://doi.org/10.1016/j.oceaneng.2013.09.010
https://doi.org/10.1016/j.oceaneng.2013.09.010
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c00838?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(26) Zhang, C.; Lin, N.; Tang, Y.; Zhao, C. A sharp interface
immersed boundary/VOF model coupled with wave generating and
absorbing options for wave-structure interaction. Comput. Fluids
2014, 89, 214−231.
(27) Gsell, S.; Bonometti, T.; Astruc, D. A coupled volume-of-fluid/
immersed-boundary method for the study of propagating waves over
complex-shaped bottom: Application to the solitary wave. Comput.
Fluids 2016, 131, 56−65.
(28) Yang, J.; Stern, F. Sharp interface immersed-boundary/level-set
method for wave-body interactions. J. Comput. Phys. 2009, 228,
6590−6616.
(29) Suh, Y.; Son, G. A Sharp-Interface Level-Set Method for
Simulation of a Piezoelectric Inkjet Process. Numer. Heat Tr. B-
Fundam. 2009, 55, 295−312.
(30) Patel, H. V.; Das, S.; Kuipers, J. A. M.; Padding, J. T.; Peters, E.
A. J. F. A coupled Volume of Fluid and Immersed Boundary Method
for simulating 3D multiphase flows with contact line dynamics in
complex geometries. Chem. Eng. Sci. 2017, 166, 28−41.
(31) Vincent, S.; Sarthou, A.; Caltagirone, J.-P.; Sonilhac, F.; Février,
P.; Mignot, C.; Pianet, G. Augmented Lagrangian and penalty
methods for the simulation of two-phase flows interacting with
moving solids. Application to hydroplaning flows interacting with real
tire tread patterns. J. Comput. Phys. 2011, 230, 956−983.
(32) Horgue, P.; Prat, M.; Quintard, M. A penalization technique
applied to the “Volume-Of-Fluid” method: Wettability condition on
immersed boundaries. Comput. Fluids 2014, 100, 255−266.
(33) Arienti, M.; Sussman, M. An embedded level set method for
sharp-interface multiphase simulations of Diesel injectors. Int. J.
Multiphase Flow 2014, 59, 1−14.
(34) Ishii, M.; Hibiki, T. Thermo-Fluid Dynamics of Two-Phase Flow,
2nd ed.; Springer, 2011.
(35) Jakobsen, H. A. Chemical Reactor Modeling: Multiphase Reactive

Flows, 2nd ed.; Springer International Publishing, 2014.
(36) Abels, H.; Garcke, H.; Grün, G. Thermodynamically
Consistent, Frame Indifferent Diffuse Interface Models for Incom-
pressible Two-Phase Flows with Different Densities. Mathematical
Models and Methods in Applied Sciences 2012, 22, 1150013.
(37) Abels, H.; Garcke, H.; Grün, G.; Metzger, S. In Transport

Processes at Fluidic Interfaces; Bothe, D., Reusken, A., Eds.; Springer
International Publishing, 2017; Chapter 8, pp 203−229.
(38) Sun, Y.; Beckermann, C. Sharp interface tracking using the
phase-field equation. J. Comput. Phys. 2007, 220, 626−653.
(39) Cabral, B.; Leedom, L. C. Imaging Vector Fields Using Line
Integral Convolution. SIGGRAPH ‘93: Proc. 20th Annual Conference
on Computer Graphics and Interactive Techniques; New York, NY,
1993; pp 263−270.
(40) Laramee, R. S.; Jobard, B.; Hauser, H. Image space based
visualization of unsteady flow on surfaces. Proc. 14th IEEE
Visualization Conf.; IEEE, 2003; pp 131−138.
(41) Ascher, U.; Petzold, L. Computer Methods for Ordinary

Differential Equations and Differential-Algebraic Equations; Society for
Industrial Mathematics, 1998.
(42) Treeratanaphitak, T.; Abukhdeir, N. M. Phase-bounded finite
element method for two-fluid incompressible flow systems. Int. J.
Multiphase Flow 2019, 117, 1−13.
(43) Mudde, R. F. Gravity-Driven Bubbly Flows. Annu. Rev. Fluid

Mech. 2005, 37, 393−423.
(44) Patel, J. K.; Natarajan, G. Diffuse interface immersed boundary
method for multi-fluid flows with arbitrarily moving rigid bodies. J.
Comput. Phys. 2018, 360, 202−228.
(45) Lahey, R. T., Jr.; Drew, D. A. The analysis of two-phase flow
and heat transfer using a multidimensional, four field, two-fluid
model. Nucl. Eng. Des. 2001, 204, 29−44.
(46) Antal, S. P.; Lahey, R. T., Jr.; Flaherty, J. E. Analysis of phase
distribution in fully developed laminar bubbly two-phase flow. Int. J.
Multiphase Flow 1991, 17, 635−652.
(47) Weller, H. Derivation, Modelling and Solution of the Conditionally

Averaged Two-Phase Flow Equations; Technical report; OpenCFD,
2005.

(48) Drew, D. A.; Passman, S. L. Theory of Multicomponent Fluids;
Applied Mathematical Sciences, Series Vol. 135; Springer: New York,
1998.
(49) Stuhmiller, J. H. The influence of interfacial pressure forces on
the character of two-phase flow model equations. Int. J. Multiphase
Flow 1977, 3, 551−560.
(50) Shen, J.; Yang, X. A Phase-Field Model and Its Numerical
Approximation for Two-Phase Incompressible Flows with Different
Densities and Viscosities. SIAM J. Sci. Comput. 2010, 32, 1159−1179.
(51) Peyret, R. Spectral Methods for Incompressible Viscous Flow;
Applied Mathematical Sciences, Series Vol. 148; Springer-Verlag:
New York, 2002.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c00838
ACS Omega 2023, 8, 15518−15534

15534

https://doi.org/10.1016/j.compfluid.2013.11.004
https://doi.org/10.1016/j.compfluid.2013.11.004
https://doi.org/10.1016/j.compfluid.2013.11.004
https://doi.org/10.1016/j.compfluid.2016.03.013
https://doi.org/10.1016/j.compfluid.2016.03.013
https://doi.org/10.1016/j.compfluid.2016.03.013
https://doi.org/10.1016/j.jcp.2009.05.047
https://doi.org/10.1016/j.jcp.2009.05.047
https://doi.org/10.1080/10407790902724552
https://doi.org/10.1080/10407790902724552
https://doi.org/10.1016/j.ces.2017.03.012
https://doi.org/10.1016/j.ces.2017.03.012
https://doi.org/10.1016/j.ces.2017.03.012
https://doi.org/10.1016/j.jcp.2010.10.006
https://doi.org/10.1016/j.jcp.2010.10.006
https://doi.org/10.1016/j.jcp.2010.10.006
https://doi.org/10.1016/j.jcp.2010.10.006
https://doi.org/10.1016/j.compfluid.2014.05.027
https://doi.org/10.1016/j.compfluid.2014.05.027
https://doi.org/10.1016/j.compfluid.2014.05.027
https://doi.org/10.1016/j.ijmultiphaseflow.2013.10.005
https://doi.org/10.1016/j.ijmultiphaseflow.2013.10.005
https://doi.org/10.1142/S0218202511500138
https://doi.org/10.1142/S0218202511500138
https://doi.org/10.1142/S0218202511500138
https://doi.org/10.1016/j.jcp.2006.05.025
https://doi.org/10.1016/j.jcp.2006.05.025
https://doi.org/10.1016/j.ijmultiphaseflow.2019.04.024
https://doi.org/10.1016/j.ijmultiphaseflow.2019.04.024
https://doi.org/10.1146/annurev.fluid.37.061903.175803
https://doi.org/10.1016/j.jcp.2018.01.024
https://doi.org/10.1016/j.jcp.2018.01.024
https://doi.org/10.1016/S0029-5493(00)00337-X
https://doi.org/10.1016/S0029-5493(00)00337-X
https://doi.org/10.1016/S0029-5493(00)00337-X
https://doi.org/10.1016/0301-9322(91)90029-3
https://doi.org/10.1016/0301-9322(91)90029-3
https://doi.org/10.1016/0301-9322(77)90029-5
https://doi.org/10.1016/0301-9322(77)90029-5
https://doi.org/10.1137/09075860X
https://doi.org/10.1137/09075860X
https://doi.org/10.1137/09075860X
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c00838?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

