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Abstract: If damage to a building caused by an earthquake is not detected immediately, the opportu-
nity to decide on quick action, such as evacuating the building, is lost. For this reason, it is necessary
to develop modern technologies that can quickly obtain the structural safety condition of buildings
after an earthquake in order to resume economic and social activities and mitigate future damage by
aftershocks. A methodology for the prediction of damage identification is proposed in this study.
Using the wavelet spectrum of the absolute acceleration record measured by a single accelerometer
located on the upper floor of a building as input data, a CNN model is trained to predict the damage
information of the building. The maximum ductility factor, inter-story drift ratio, and maximum
response acceleration of each floor are predicted as the damage information, and their accuracy is
verified by comparing with the results of seismic response analysis using actual earthquakes. Finally,
when an earthquake occurs, the proposed methodology enables immediate action by revealing the
damage status of the building from the accelerometer observation records.

Keywords: convolutional neural network; wavelet spectrum; damage identification; structural health
monitoring; sparse accelerometers

1. Introduction

Earthquakes in the proximity of structurally vulnerable buildings could cause damage
of varying intensities. Damage of different risk levels is often difficult to classify rapidly,
making it difficult to accurately determine the structural safety of a building. For example,
according to the National Institute of Civil Defense of Peru, during the Pisco earthquake on
15 August 2007, in the five main regions of Peru (Lima is included, which is the capital of
Peru), 136,149 dwellings, 1278 educational buildings, and 126 health buildings collapsed or
were damaged, and their use was classified as restricted or unsafe [1]. However, this report
was released almost two months after the earthquake, during which time, all activities in
the affected areas of the main regions had to be suspended, including the construction of
temporary dwellings.

Resilient cities are goals that countries are building towards to increase the capacity for
learning from past disasters for better future protection and to improve risk reduction mea-
sures [2]. In particular, as part of this concept, there is a need to develop modern structures
for which we can quickly obtain the structural safety information after an earthquake for
resuming economic and social activities in order to minimize social disruption and mitigate
the effects of future earthquakes [3]. In order to promote and disseminate knowledge to
increase social resilience and reduce earthquake risk, experts from academia and industry
gathered in 2019 for a workshop focused on state-of-the-art risk-reduction strategies. It
identified a need for research in the area of structural health monitoring (SHM) to assess the
integrity and performance of engineering structures in order to quickly detect damage after
an earthquake and enable decision making [4]. SHM is a field where it is possible to obtain
the real-time structural responses and successful fast post-earthquake damage detection of
monitored buildings, bridges, cultural heritage structures, dams, base-isolated buildings,
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etc. [5,6]. For instance, Goulet et al. proposed a methodology that updates the prediction
of the damage state of uninspected monitored buildings as the model learns from collected
data of the damage state of inspected buildings [7]. This proposal was validated in a city
with 1000 buildings. Furthermore, Sivasuriyan et al. reviewed a large number of studies
on the practical implementation and operations of SHM in multi-story buildings, as well
as damage evaluation of monitored buildings, and discussed the structural response by
considering static and dynamic analysis using numerical simulations such as finite element
analysis (FEA) [8].

In the field of SHM, there are several types of sensors to measure and diagnose the
static and dynamic properties of the monitored buildings. Antunez et al. demonstrated
that optical fiber sensors can be useful in the static and dynamic monitoring of large raw
earth masonry structures common in cultural, historical, and architecturally recognized
buildings around the world [9]. Piezoelectric sensors are another type of monitoring device,
and Roghaei et al. proposed a method to identify stress and deformation using an array
of sensors mounted in certain locations [10]. They verified the proposed method using a
three-story steel building and confirmed that continuous monitoring and analysis of sensor
signals can help the building manager to apply warning alarms and call for evacuation.
However, the most common monitoring control sensor is the accelerometer. For instance,
Wang et al. developed a method to evaluate the story damage index (SDI) based on the
modal frequency and mode shape obtained from the records of earthquake response of a
building [11]. Furthermore, an approximate story damage index (ASDI) was developed
without considering the information of the floor mass to identify the extent of damage to the
story. Although it was possible to verify the damage index by some numerical simulations
and the experimental data analysis established previously, it was necessary to calculate the
modal frequency and mode shapes from the post-earthquake structural responses of each
story and to compare with the values of the building before the earthquake. It is worth
pointing out that a large number of sensors will require a high investment. For this reason,
Xu et al. estimated the maximum drift and time histories of relative displacement in all
stories of multi-degree-of-freedom (MDOF) structures considering only one accelerometer,
verifying the effectiveness of the method by taking into account the robustness, installation
location, and truncation error [12].

The machine learning method, which predicts the structural responses using a learn-
ing model specific to the structure, may provide higher accuracy by updating the model
after each earthquake. According to study [13], there are two approaches for damage iden-
tification: model-driven methods and data-driven methods. In a model-driven approach,
usually, a high-fidelity physical model of the structure is used to establish a comparison
metric between the model and the measured data from the real structure to distinguish
the damage condition from the normal condition. In a data-driven approach, a structural
model is used as a statistical representation of the system, and the main algorithms devel-
oped for this purpose are those in the field of pattern recognition or, more broadly, machine
learning. A convolutional neural network (CNN) is a tool for solving the problem of
pattern recognition related to image and video recognition, classification, natural language
processing, and others. Oh et al. studied a method of predicting the time histories of
displacement of building structures from the measured acceleration responses on each
floor based on a CNN, considering that the time series of acceleration structural response
is similar to pixel-based image data (every acceleration value corresponds to one pixel),
which is the basic input data in CNN [14]. The validation of their proposed method was
from a numerical process using the ASCE benchmark model and an experimental test on
a reinforced concrete (RC) frame structure. However, the structural model and dynamic
responses used in the studies exhibited linear behavior. Tsuchimoto et al. proposed a rapid
safety evaluation of multi-story buildings using sparse acceleration measurements [15].
Their proposed method predicts the maximum story drift ratio, and ultimately classifies
the damage into three classes, namely “Safe”, “Restricted Use”, and “Unsafe” from a
damage-sensitive feature (comparison between linear and nonlinear acceleration mea-
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surement responses) and ground acceleration as input data. Subsequently, Tsuchimoto
et al. modified the previous method for high-rise buildings and validated considering an
experimental test of a large-scale structure (1/3-scale 18-story steel building tested on the
shaking table at E-Defense in Japan) [16].

There are two main characteristics observed on the ground motion records due to
earthquakes. The first is the non-stationary characteristics in which the intensity of the
ground motion varies with time; they are represented by the acceleration, velocity, and
displacement. The second is the non-stationary characteristics in which the frequency
content of the ground motion varies with time; they depend on several parameters such
as magnitude, source and path effects, local site conditions, etc. [17]. Time–frequency
distribution analysis is a method of obtaining a two-dimensional spectral function (there
are several types of functions according to resources and needs) from a one-dimensional
signal (ground motion or time–history structural response) that reflects the time and
frequency of the original signal and is suitable to analyze the changes in the linear and
nonlinear structural responses with only one function. For instance, Tao et al. used the
matching pursuit decomposition algorithm to analyze the time–frequency distribution of
the ground motion and verify the effect on the dynamic response of a nonlinear structure,
and finally, this method reveals the effect of the ground motion on the nonlinear structural
response [18]. Moreover, Cao et al. demonstrated the effect of energy concentration
on the structural nonlinear response by using the wavelet transform to obtain a local
spectrum and change the energy distribution over time for several earthquake records [19].
Spanos et al. analyzed the undamaged and damaged condition of a 20-story steel frame
building using the harmonic wavelet transform applied to structural responses to obtain
the variation of the effective natural frequencies due to the influence of the nonlinearity
developed during the seismic event [20]. Balafas and Kiremidjian used the continuous
wavelet transform of the input and output acceleration measurements to extract damage
sensitive features for seismic damage estimation in civil structures [21]. Noh et al. proposed
an extraction method of three damage-sensitive features using wavelet transform spectrum
for structural damage diagnosis and applied them to experimental data of a reinforced
concrete bridge column and a four-story steel moment-resisting frame structure [22]. In
general, time–frequency distributions are two-dimensional spectral functions that can be
used as input data for a CNN to predict dynamic issues related to structural engineering.
For example, Xu et al. proposed a methodology to recognize and classify different types
of vibrational events (digging, walking, vehicles passing, and damaging) [23]. First, they
denoise the unknown signal and use the short-time Fourier transform (STFT) to obtain
the time–frequency spectra and input them to the CNN for automatic feature extraction
and classification. The proposed method used the support vector machine method to
compare the obtained recognition rates of vibration events over 90% with the previous
soft-max classifier. Dokht et al. used a CNN and STFT to consider a dataset of over
4900 earthquakes recorded over 3 years in Canada to classify between earthquake and
noise signals. They also used another CNN and wavelet spectrum to classify and separate
P from S waves and estimate their approximate arrival times [24]. Their results achieved
an average accuracy of nearly 99% for both networks. Mousavi et al. proposed a detector
based on a deep neural network (CNN belong to this field) called CNN-RNN Earthquake
Detector (CRED), which is a network that combines a CNN and a recurrent neural network
(RNN), specifically the bidirectional long-short-term-memory (LSTM) method, to learn
the time-frequency characteristics of the dominant phases in an earthquake signal from
three-component data recorded at a single station, having an accuracy of 99.95% [25]. In
addition, Liao et al. proposed an identification method for a structural seismic response
using a wavelet spectrum as input data in a CNN to distinguish the responses during an
earthquake event under serviceability conditions [26]. Linear and nonlinear behaviors are
considered in the research. According to previous studies, the CNN method in the SHM
field has advantages over other methods in terms of higher accuracy by updating the model
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after each earthquake, flexibility to combine different methodologies, wide application
areas, etc., however, it requires a large database of known data to train the model.

Previous studies have not fully investigated how to define the damage level of each
floor of a structure from the time–frequency distribution of the observation data of a
single sensor. The Japan Structural Consultants Association (JSCA), an organization of
building structural engineers in Japan, uses three parameters of safety criteria used on the
assessment of a building: absolute acceleration, ductility ratio, and story drift ratio [27].
Acceleration is related to damage in nonstructural components, and ductility and story
drift ratio are related to damage in structural components. It is worth pointing out that the
use of only one sensor implies a low-cost investment. This study proposes a methodology
to predict the absolute acceleration, ductility ratio, and story drift ratio on each floor
under earthquake conditions using machine learning. In the beginning, the earthquake
responses of a model building are calculated under the scaled earthquake records with
several intensities (scale factors). The level of intensity is established to obtain a range of
linear and nonlinear behavior of the building. Then, wavelet spectra are developed from
the structural response accelerations on the upper floor of the building. The wavelet spectra
are the input data of a CNN model to predict the absolute acceleration, ductility ratio, and
story drift ratio on each floor, which correspond to the damage of the nonstructural and
structural components of the building.

This paper contains sections as follows: In Section 2, the basis and methods of the
structural response prediction for damage identification are described, including the struc-
tural model of the case study, wavelet spectrum, convolutional neural network, input
ground motion, and scale factor of records. Next, the application of the methodology is
carried out by two processes: training and validation. The results and the comparison of
the prediction and reference values of the case study are shown in Section 3. In Section 4, a
summary and discussion of the research results are presented.

2. Structural Response Prediction Method
2.1. Structural Model and Structural Responses for Damage Identification

In this study, a lumped mass model (LMM) is considered as the structural model of
the building, which takes into account the concentrated mass and the hysteresis model in
each story of a low- to mid-rise building as shown in Figure 1.

Figure 1. Structural model.

The structural responses (displacement, acceleration, etc.) of each story of the LMM
under the ground motion acceleration are obtained by a time history response analysis
using the STERA_3D software [28]. The process is shown in Figure 2.
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Figure 2. The general process of structural analysis.

The maximum ductility ratio (ductility ratio from now on) indicates the amount of
inelastic deformation over the yielding threshold as defined in Figure 3. This parameter
is related to damage in the structural components of a building. Damage identification
based on the ductility ratio is based on the performance-based guideline developed by
JSCA [27] as follows: a ductility ratio <1.0 means no damage, a ductility ratio ≥1.0 but <2.0
means minor damage, a ductility ratio ≥2.0 but <3.0 means significant damage, a ductility
ratio ≥3.0 but <4.0 means severe damage, and a ductility ratio ≥4.0 means collapse. These
values are shown in Table 1. Notice that the ductility ratio is always greater than 1, however,
in this study, ratios less than 1 are obtained as well to differentiate between the elastic and
inelastic behavior.

Figure 3. Definition of ductility ratio.

Table 1. Proposal of damage condition according to the structural response for damage identification.

Damage Condition No Damage Minor Damage Significant Damage Severe Damage Collapse

Ductility ratio <1 ≥1.0 but <2.0 ≥2.0 but <3.0 ≥3.0 but <4.0 ≥4.0
Story drift ratio <1/300 ≥1/300 but <1/150 ≥1/150 but <1/100 ≥1/100 but < 1/75 ≥1/75

Acceleration (gal) <250 ≥250 but <500 ≥500 but <1000 ≥1000 but < 1500 ≥1500

The maximum story drift ratio (story drift ratio from now on) represents the maximum
relative displacement that a certain story reaches that is associated with the damage of struc-
tural components as defined in Figure 4. A larger story drift (relative displacement) after
the yielding stage corresponds to a larger extent of damage. Damage identification based on
the story drift ratio is based on the performance-based guideline developed by JSCA [27], as
follows: a story drift ratio <1/300 means no damage, a story drift ratio ≥1/300 but <1/150
means minor damage, a story drift ratio ≥1/150 but <1/100 means significant damage, a
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story drift ratio ≥1/100 but <1/75 is severe damage, and a story drift ratio ≥1/75 means
collapse. These values are shown in Table 1.

Figure 4. Definition of story drift ratio.

The maximum absolute acceleration (acceleration from now on) indicates the intensity
that a certain story is subjected to and is associated with the damage of nonstructural
components. Damage identification based on the acceleration is based on the performance-
based guideline developed by JSCA [27], as follows: an acceleration <250 gal means no
damage, acceleration ≥250 gal but <500 gal means minor damage, acceleration ≥500 gal
but <1000 gal means significant damage, an acceleration ≥1000 gal but <1500 gal means
severe damage, and an acceleration ≥1500 gal means collapse. These values are shown in
Table 1.

Note that the damage condition after severe damage in all cases is considered collapse
condition. Besides, no damage and minor damage represent a building that is safe for use,
significant damage represents a building that can have restricted use, and severe damage
represents a building that is unsafe for use, that is, a value greater than minor damage is a
restricted or unsafe condition, which is a parameter used for evacuating the building.

2.2. Wavelet Spectrum

Various transformation functions are used to extract the characteristics of a signal.
For example, the Fourier transform can be used to obtain the frequency components of a
signal, but it cannot capture the changes over time. On the other hand, if the frequency
component varies with time, there are methods such as using the instantaneous frequency
or the short-time Fourier transform, both of which have the property that the resolution of
time and frequency is constant. However, in actual analysis, it is often the case that low
frequency components change slowly over time, while high frequency components change
rapidly over time. In the wavelet transform, the optimal time and frequency resolution
for each component can be obtained by changing the time resolution according to the
frequency of the signal component (see Figures 5 and 6, respectively).

Figure 5. Types of dilation of the mother wavelet function.
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Figure 6. Translation of wavelets over time.

The continuous wavelet transform (CWT) of a signal s(t) is given by Equation (1):

w(a, b) =
1√
a

∫ ∞

−∞
s(t)ψ∗

(
t− b

a

)
dt (1)

where the function ψ(t) is the mother wavelet (Morlet wavelet [29] used in this study),
and “a” and “b” are dilation (scale) and translation (position) parameters, respectively [20].
The symbol (*) denotes complex conjugation. Therefore, the wavelet transform permits
transformation from a signal to a spectrum (wavelet spectrum) in two dimensions (time
and frequency) with coefficients (scales) that represent the intensity of the signal, in the
time-domain and frequency-domain. The wavelet spectrum shows the highest intensity of
the wave on the time-domain and frequency-domain only in one graph (Figure 7b). As a
reference, Figure 7a shows the acceleration wave, and Figure 7c shows a 3D graph of the
wavelet spectrum.

Figure 7. (a) Acceleration wave; (b) 2D wavelet spectrum; (c) 3D wavelet spectrum.



Sensors 2021, 21, 6795 8 of 22

This is a powerful tool for extracting the characteristics of the waveform signals such
as response acceleration, velocity, and displacement. Thus, the wavelet spectrum of the
acceleration response waveform obtained from the accelerometer installed in the building
is computed in this study and used as an input to the CNN model.

2.3. Convolutional Neural Network (CNN)

An image is processed by a computer as a grayscale image (image from now on)
represented by an arrangement of numbers. For example, in Figure 8, the right matrix
contains numbers between 0 and 255, each of which corresponds to the pixel brightness in
the left image [30].

Figure 8. Digital image by an arrangement of pixels represented as numbers.

The convolution of the input image is performed by applying a set of weights, also
known as a kernel or filter, as shown in Figure 9 [31].

Figure 9. Convolution process of a part of an image by matrix multiplication. The symbol (*) means
the convolution operator.

In the CNN method, images are used as input data, and for every input data set, the
features of the input data are extracted by the convolution of the kernels. However, this
convolution step loses information that might exist on the border of the image because
they are only captured when the kernel slides (the kernel has to start and finish its process
on the image borders) [32]. For this reason, the size of the input image is reduced as shown
in Figure 9 (from input size: 3 × 3 to output size: 2 × 2). In order to obtain the same size as
the original input, it is possible to apply the “same padding”, also called “zero-padding”,
method (used in this study), which means the input is filled with zeros along its border as
shown in Figure 10.
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Figure 10. Padding same. The input image is filled with zeros along its border so that the output size is the same as the
original input size. The symbol (*) means the convolution operator.

Then, every resultant matrix is evaluated by a nonlinear activation function to allow
for the learning of more complex models. The nonlinear activation function (activation
function from now on) used in this study is the rectified linear unit (ReLU), defined as the
function Y = max(X, 0) [33], as shown in Figure 11.

Figure 11. ReLU activation function.

Finally, the new input data, the feature maps, are obtained. The process from the input
data to the feature maps using the previous definitions is called the typical convolutional
layer (see Figure 12).

Figure 12. Typical convolutional layer, note that the input data is a representation of the wavelet coefficient’s matrix.
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Usually, the typical convolutional layer is followed by a pooling layer to reduce the
number of operations since the number of parameters increases as the network processes
more kernels. A type of pooling layer is the “maximum pooling” or “max pooling” process,
which takes the maximum value sliding along the feature map [30], as shown in Figure 13.

Figure 13. Maximum pooling process.

The pooling layer is required for image classification. It adjusts the features’ robust-
ness to noise and disorder by reducing the resolution of the previous feature maps [33].
However, in this study, the CNN models with and without the maximum pooling layer
were trained, and the CNN model without the maximum pooling layer converged on the
output prediction more effectively. Therefore, the pooling layer is not used in the proposed
CNN model.

Usually, a hierarchical architecture is used in advance to propose the number of
convolutional layers for the CNN architecture model [34]. In this study, after training the
CNN models with different numbers of convolutional layers, 17 convolutional layers are
finally used in the proposed CNN model, as shown in Figure 14.

Figure 14. Convolutional neural network scheme. Structural response: ductility ratio, story drift ratio, or acceleration.

Subsequently, the last convolutional layer is fully connected to the 1D layer or the flat-
tening layer [33] (matrix of one column) with the number of stories as shown in Figure 14.
In order to optimize the convergence and measure the error between the predicted and
reference output, “Adam” [35] and mean squared error (MSE) are used as the optimizer
function and the loss function. Equation (2) defines MSE, where ypred is the prediction
output, yref is the reference output, and N is the number of samples.

MSE =
1
N
·∑N

i=1

(
ypred − yre f

)2
, (2)
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The flattening matrix contains structural responses for the damage identification,
which can be the ductility ratio, story drift ratio, and acceleration (see Section 2.1 for their
definitions). Figure 14 shows the CNN scheme used in this research.

Table 2 shows the architecture of the CNN for the structural response prediction
method. This was finalized by extensive analysis of trained CNNs in advance. In Table 2,
“No. kernels” is the number of filters or kernels assigned in each layer. Ten different
kernels are used for the first layer and eight kernels are used for the other layers. Two
types of kernel initializer are used in this study. “He_Normal” is used for the first four
convolutional layers and “glorot_uniform” is used for the rest of the others. The kernel
size is 10 × 10 for the first convolutional layer and 3 × 3 for the rest. The “same padding”
and ReLU activation function are used in all convolutional layers.

Table 2. CNN architecture for the structural response prediction method.

No. of Layer No. Kernels Kernel Size Padding Kernel Initializer Activation Function

Convolutional Layer 01 10 10 × 10 Same He Normal ReLU
Convolutional Layer 02 8 3 × 3 Same He Normal ReLU
Convolutional Layer 03 8 3 × 3 Same He Normal ReLU
Convolutional Layer 04 8 3 × 3 Same He Normal ReLU
Convolutional Layer 05 8 3 × 3 Same glorot_uniform ReLU
Convolutional Layer 06 8 3 × 3 Same glorot_uniform ReLU
Convolutional Layer 07 8 3 × 3 Same glorot_uniform ReLU
Convolutional Layer 08 8 3 × 3 Same glorot_uniform ReLU
Convolutional Layer 09 8 3 × 3 Same glorot_uniform ReLU
Convolutional Layer 10 8 3 × 3 Same glorot_uniform ReLU
Convolutional Layer 11 8 3 × 3 Same glorot_uniform ReLU
Convolutional Layer 12 8 3 × 3 Same glorot_uniform ReLU
Convolutional Layer 13 8 3 × 3 Same glorot_uniform ReLU
Convolutional Layer 14 8 3 × 3 Same glorot_uniform ReLU
Convolutional Layer 15 8 3 × 3 Same glorot_uniform ReLU
Convolutional Layer 16 8 3 × 3 Same glorot_uniform ReLU
Convolutional Layer 17 8 3 × 3 Same glorot_uniform ReLU

Figure 15 shows the convergence curve of the CNN model using the CNN architecture
shown in Table 2, where “Loss” is the value of the loss function, and “Number of epochs”
is the number of training iterations over the input data [31].

Figure 15. Converge curve of the trained CNN.

Firstly, the CNN model is trained with known input and output data. This is called the
“training process”. Subsequently, new unknown input data are used to validate the trained
CNN model by comparing the output data (structural responses for damage identification)
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with the reference structural responses. This process is called the “validation process” and
the MSE function is used to evaluate the error.

2.4. Case Study and Input Ground Motion
2.4.1. Case Study

The case study is a building of five stories with the following considerations (see
Table 3 for more details):

• The fundamental period is considered the following: T1 = 0.025 H (H: total height of
the building). The height of each story (h) is considered to be 4.0 m, then, H is 20 m
and T1 is 0.5 s.

• LMM is used for the model of the building, and the bilinear hysteresis model (see
Figure 5) is used to represent the nonlinear relationship between shear force and story
drift for each story.

• The structural responses for damage identification (ductility ratio, story drift ratio,
and acceleration) under earthquake ground motions are calculated by STERA 3D
software [28].

Table 3. Structural configuration of the case study.

Description Nomenclature (Units) Value

Number of stories N 5
Story height h (m) 4

Building height H (m) = h × N 20
Width B (m) 30

Area of floor A = B2 (m2) 900
Weight per floor area w (kN/m2) 12

Weight of floor W (kN) 1080
Fundamental Period T1 (s) 0.5

In order to build the bilinear hysteresis model, the yielding shear force (Qi) is calcu-
lated to be equal to the design shear force under the horizontal seismic load according to
Japanese code. Moreover, the story stiffness (ki) is calculated so that the first mode shape
becomes a triangular shape. Table 4 shows the parameters used in this study to define the
bilinear hysteresis model in each story. The post-yield stiffness ratio (k2/k1, see Figure 16)
is 0.1 for each story.

Table 4. Parameters of the bilinear hysteresis model used in the case study.

Story ki (kN/mm) Qi (kN)

5 87 587.87
4 157 954.15
3 209 1240.66
2 244 1460.87
1 261 1620.00

2.4.2. Input Ground Motion

Table 5 shows the 25 earthquake ground motions considered in this study. Every
earthquake contains two directions (E–W and N–S). As a consequence, the total number of
records used is 50. As mentioned, there are two processes in the CNN method—the training
and the validation processes. For this reason, the records are subdivided into two groups.
The number of records for the training is 40 (20 earthquakes) and the number of records
for the validation is 10 (5 earthquakes). This obeys the split ratio recommended for typical
CNN procedures (80% training records and 20% validation records). The earthquakes are
selected randomly to avoid extracting the same characteristics between different records.
Figure 17 shows the acceleration response spectrum of the 50 records scaled to have the
same values at the fundamental period of the structure (T1 = 0.5 s) as Sa (T1) = 100 gal.
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Figure 16. Bilinear hysteresis model for each story.

Table 5. Earthquake ground motions.

No. Name Location Station Reference Magnitude Date

Training Process *

01 Anza_01 USA 33.706N, 116.235W/Ground Floor: South Wing Mw = 5.2 12/06/2005
02 Anza_02 USA 33.706N, 116.235W/Roof: Center Hallway of S. Wing Mw = 5.2 12/06/2005
03 El Centro 1940 USA Imperial Valley Earthquake Mw = 6.9 18/05/1940
04 Kobe 1995 Japan Great Hanshin Earthquake/Kobe Marine Observatory Mw = 6.9 17/01/1995
05 Loma Prieta_01 USA 36.974N, 121.952W/Capitola—Fire Station Ms = 7.1 18/10/1989
06 Loma Prieta_02 USA 36.973N, 121.572W/Gilroy #1—Gavilan College Ms = 7.1 18/10/1989
07 Loma Prieta_03 USA 36.987N, 121.536W/Gilroy #3—Gilroy Sewage Plant Ms = 7.1 18/10/1989
08 Loma Prieta_04 USA 37.046N, 121.803W/Corralitos—Eureka Canyon Rd. Ms = 7.1 18/10/1989
09 Loma Prieta_05 USA 37.118N, 121.550W/Coyote Lake Dam Ms = 7.1 18/10/1989
10 Loma Prieta_06 USA 37.255N, 122.031W/Saratoga—Aloha Ave. Ms = 7.1 18/10/1989
11 Northridge_01 USA 34.068N, 118.439W/Los Angeles—UCLA Grounds Mw = 6.7 17/01/1994
12 Northridge_02 USA 34.236N, 118.439W/Arleta—NordHoff Ave. Fire Station Mw = 6.7 17/01/1994
13 Northridge_03 USA 34.387N, 118.530W/Newhall—LA County Fire Station Mw = 6.7 17/01/1994
14 Petrolia_01 USA 40.325N, 124.287W/Petrolia Mw = 7.0 25/04/1992
15 Petrolia_02 USA 40.503N, 124.100W/Rio Dell—101/Painter St. Overpass Mw = 7.0 25/04/1992
16 Petrolia Aftershock_01 USA 40.325N, 124.287W/Petrolia/04/26/92, 07:41:40 UTC Ms = 6.6 26/04/1992
17 Petrolia Aftershock_02 USA 40.325N, 124.287W/Petrolia/04/26/92, 11:18:25 UTC Ms = 6.6 26/04/1992
18 Petrolia Aftershock_03 USA 40.026N, 124.069W/Shelter Cove—Airport Ms = 6.6 26/04/1992
19 Whittier_01 USA 34.037N, 118.178W/Los Angeles—Obregon Park Ml = 6.1 01/10/1987
20 Whittier_02 USA 34.160N, 118.534W/Tarzana—Cedar Hill Nursery Ml = 6.1 01/10/1987

Validation Process *

21 Palm Springs USA 33.962N, 116.509W/Desert Hot Springs Ml = 6.1 08/07/1986
22 Petrolia California USA 40.325N, 124.287W/Petrolia Ml = 5.9 17/08/1991
23 Taft 1952 USA Kern County, California Earthquake Mw = 7.3 21/07/1952
24 Tohoku 1978 Japan Miyagi Earthquake/Recorded at Tohoku University Ms = 7.7 12/06/1978
25 Westmorland USA 33.037N, 115.623W/Westmorland Ml = 6.0 26/04/1981

* See Section 2.5 for details.
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Figure 17. Acceleration response spectrum of 50 records scaled to have the same values at the fundamental period T1 = 0.5 s.

2.4.3. Scale Factor of Records

The linear and nonlinear behavior of the structure is obtained by using different
intensities of earthquake ground motions. Thus, the records are scaled to include a wide
range of earthquake intensity. In order to evaluate the range of the scale factors, an
incremental dynamic analysis with the structural responses for damage identification is
conducted by taking into account the variation of the Peak Ground Acceleration (PGA),
and the ordinate of the response acceleration spectrum evaluated on the fundamental
period of the structure (Sa(T1)).

Figure 18 presents the incremental structural responses for damage identification
(ductility ratio, story drift ratio, and acceleration) in each story for the input ground motion
“El Centro 1940” (Figure 18a) and “Northridge” (Figure 18b) using the same scale factor
applied to Sa(T1) such that the minimum scale factor produces Sa(T1) = 100 gals and
the maximum scale factor produces Sa(T1) = 1500 gals. Figure 18a shows the structural
response under the maximum PGA of El Centro up to 500 gals. As shown in Figure 18b,
the maximum PGA of Northridge must be around 1000 gals to achieve the same degree of
response. Furthermore, the PGA of the threshold of the nonlinear behavior is around 150
gals in Figure 18a (El Centro) and 250 gals in Figure 18b (Northridge). On the other hand,
the relationship between the responses and Sa(T1) is roughly the same in Figure 18a (El
Centro 1940) and 18b (Northridge). Therefore, the Sa(T1) is more stable for characterizing
the structural response of the structure. For this reason, the scale factor is based on Sa(T1)
such that the minimum scale factor produces Sa(T1) = 100 gals, and the maximum scale
factor produces Sa(T1) = 1500 gals and Sa(T1) = 1000 gals to train and validate the CNN
model, respectively. Figure 19 shows the Acceleration Response Spectra of the “Loma
Prieta” input ground motion considering the minimum and maximum scale factor and the
original value.
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Figure 18. (a) Incremental structural responses for damage identification in each story with “El Centro 1940” input
ground motion; (b) Incremental structural responses for damage identification in each story with “Northridge” input
ground motion.
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Figure 19. Acceleration response spectra of the “Loma Prieta” input ground motion. The red line is with the maximum
scale factor such that it produces Sa(T1) = 1500 gal, the green line is with the minimum scale factor such that it produces
Sa(T1) = 100 gal, and the black dashed line considers the original input ground motion.

2.5. Machine Learning Methodology

The methodology for predicting the structural responses for damage identification
was as follows:

• The wavelet spectrum was obtained from the time–history acceleration response on
the upper floor of the building. The frequency range was from 0.1/T1 to 5/T1, where
T1 is the fundamental period of the case study structure (T1 = 0.5s), which is from
0.2 Hz to 10 Hz. This covered the high and low frequencies produced during high
mode vibrations and nonlinear frequencies.

• There were two sets of scale factors for the training and validation of CNN processes.
• The training scale factor set was the minimum scale factor, which produces Sa(T1) = 100 gal,

to the maximum, which produces Sa(T1) = 1500 gal, at increments of 50 gal.
• The validation scale factor set was the minimum scale factor, which produces Sa(T1) = 100 gal,

to the maximum, which produces Sa(T1) = 1000 gal, at increments of 25 gal.
• There were 1160 structural analyses conducted for the training process by considering

40 records with 29 scale factors, while there were 370 structural analyses conducted for
the validation process by considering 10 new records with 37 scale factors. Therefore,
1530 structural analyses carried out were used in this study.

The application of the methodology to predict the structural responses for damage
identification was conducted as follows:

TRAINING PROCESS

• STEP 01: 40 training records are scaled with 29 scale factors per record. As a result,
1160 scaled records are generated.

• STEP 02: 1160 structural analyses are carried out for the structural model of the case
study. As a result, 1160 absolute acceleration data on the upper floor are obtained.
Additionally, the responses for damage identification (ductility ratio, story drift, and
acceleration) are computed from the structural analyses for validating and calibrating
the CNN model.

• STEP 03: 1160 wavelet spectra are obtained from the absolute acceleration of the
previous step. The wavelet spectra are the input data for training the CNN model.

• STEP 04: The CNN model is trained for each structural response for damage identifi-
cation (ductility ratio, story drift ratio, and acceleration).

VALIDATION PROCESS

• STEP 01: 10 validation records are scaled with 37 scale factors per record. As a result,
570 scaled records are generated.

• STEP 02: 370 structural analyses are carried out for the structural model of the case
study. As a result, 370 absolute acceleration data on the upper floor are obtained.
Additionally, the responses for damage identification (ductility ratio, story drift, and
acceleration) are computed as reference outputs to validate the prediction.
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• STEP 03: 370 wavelet spectra are obtained from the absolute acceleration of the previ-
ous step. The wavelet spectra are the input data for predicting the structural response
for the damage identification using the trained CNN model.

• STEP 04: Prediction outputs are calculated using the CNN model for each structural
response for damage identification (ductility ratio, story drift ratio, and acceleration).

• STEP 05: The reference and prediction outputs are compared.

3. Prediction and Validation of the Case Study

An example of the analysis results is shown in Figure 20. Figure 20a shows the
ductility ratio results under the scaled Petrolia California E–W records, comparing the
prediction (horizontal axis) and the reference (vertical axis). In the figure, the straight line
represents the perfect prediction. The points represent the results of each story and scale
factor defined in Sections 2.1 and 2.4. Additionally, Figure 20a shows the regions that
define the damage condition. The green, yellow, orange, and red regions represent the no
damage, minor damage, significant damage, and severe damage conditions, respectively.
The collapse condition is considered for any value greater than the severe damage condition.
The dashed red rectangle encloses the region for any value that is greater than the minor
damage condition and means that the use of the building is restricted or unsafe (condition
for evacuating the building). Figure 20b shows an example of the prediction and reference
values of each story for a scale factor that produces Sa(T1) = 900 gal.

Figure 20. Example of the ductility ratio results (Petrolia California E–W record); (a) Comparison between prediction and
reference values (points) and damage condition regions; (b) Prediction and reference ductility ratio of each story for a scale
factor that produces Sa(T1) = 900 gal.

Figure 21 shows the results of the ductility ratio, story drift ratio, and acceleration
for the validation process under the scaled Petrolia California N–S records. The regions
that define the damage condition are also shown in the figure. As seen in Figure 21b,
the story drift ratios do not reach the significant damage, severe damage, and collapse
condition. Likewise, the restricted or unsafe use condition is not reached. Figure 22
shows the prediction and reference values of the ductility ratio, story drift ratio, and
acceleration on each floor considered under the same record for a scale factor that produces
Sa(T1) = 875 gal.
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Figure 21. Comparison between reference and prediction of the Petrolia California N–S record for the validation process of
(a) Ductility ratio; (b) Story drift ratio, and (c) Acceleration.

Figure 22. Prediction and reference values on each floor of the Petrolia California N–S record and scale factor that produces
Sa(T1) = 875 gal for the validation process of (a) Ductility ratio; (b) Story drift ratio, and (c) Acceleration.

The coefficient of correlation (r) is used to measure the accuracy of the CNN model in
this study, and it is defined as shown in Equation (3):

r =
1
N ·∑

N
i

(
ypred, i − ypred

)(
yre f , i − yre f

)
√

1
N ·∑

N
i

(
ypred, i − ypred

)2
·
√

1
N ·∑

N
i

(
yre f , i − yre f

)2
(3)

where ypred is the prediction output by the CNN model, yref is the reference output by the
structural analysis, ypred and yre f are the mean of ypred and yref, respectively, and N is the
number of samples. Table 6 shows the r-values for the validation process. The average
values of the r-values of the ductility ratio, story drift ratio, and acceleration are 0.905, 0.846,
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and 0.829, respectively. In particular, the accuracy of the estimation of the ductility ratio is
the highest.

Table 6. Coefficient of correlation for the validation process.

No. Record Ductility Ratio Story Drift Ratio Acceleration

01 Palm Springs E–W 0.953 0.947 0.928
02 Palm Springs N–S 0.895 0.917 0.951
03 Petrolia California E–W 0.933 0.845 0.873
04 Petrolia California N–S 0.972 0.926 0.956
05 Taft 1952 E–W 0.872 0.771 0.417
06 Taft 1952 N–S 0.806 0.848 0.870
07 Tohoku 1978 E–W 0.833 0.466 0.562
08 Tohoku 1978 N–S 0.943 0.890 0.797
09 Westmorland E–W 0.925 0.969 0.985
10 Westmorland N–S 0.916 0.883 0.950

Average 0.905 0.846 0.829

Two new ratios are introduced, the damage condition ratio (DCR) and the restricted
or unsafe use ratio (RUUR), to examine the accuracy of the prediction of structural damage.
The damage condition ratio (DCR) is defined as the ratio of the number of the predicted
values and the number of reference values inside the damage condition region as shown in
Equation (4). Likewise, the restricted or unsafe use ratio (RUUR) is defined as the number
of the predicted values and the number of reference values inside the restricted or unsafe
region as shown in Equation (5).

DCR =
No. of Predicted values inside the damage condition region
No. of Reference values inside the damage condition region

·100% (4)

RUUR =
No. of Predicted values inside the restricted or unsafe use region
No. of Reference values inside the restricted or unsafe use region

·100% (5)

Figure 23 shows the comparison of the DCR and RUUR for the ductility ratio. In
general, the DCR of no damage and collapse condition are larger and more accurate than
others. In most cases, RUUR has high precision—greater than 80%. Notice that DCR and
(or) RUUR for some records is not reached because the structural response is not over the
limit for being measured.

Figure 23. DCR and RUUR for ductility ratio of the validation process.

Figure 24 shows the comparison of the DCR and RUUR for the story drift ratio. In
general, the DCR of no damage and minor damage condition are larger and more accurate
than other conditions. Few data reach DCR of severe damage and collapse conditions.
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Figure 24. DCR and RUUR for story drift ratio of the validation process.

Figure 25 shows the comparison of the DCR and RUUR for the acceleration. In general,
the DCR of significant damage condition is larger and more accurate than others. Few
data reach DCR of severe damage and collapse conditions. In most cases, RUUR has high
precision—greater than 90%.

Figure 25. DCR and RUUR for the acceleration of the validation process.

4. Conclusions and Discussion

In this study, a method is proposed with which to estimate the damage of a building
by applying a machine learning method from the acceleration response at the upper floor
of the building. The results of this research are summarized as follows:

• The maximum ductility factor, inter-story drift ratio, and maximum response accelera-
tion of each floor were predicted via a CNN model using the acceleration record at the
upper floor of the building.

• The wavelet spectrum of the acceleration record of the upper floor of the building was
used as the input of the CNN model to account for the non-stationarity of both the
amplitude and frequency of the building response.

• A CNN model was trained for the linear to nonlinear response of a building by
inputting two horizontal components of 20 different earthquake ground motions
with varying scales. The trained CNN model was then validated by inputting the
two-directional horizontal components of five different earthquake motions to the
building with different scales.

• The correlation coefficients between the predicted values and the reference values by
the CNN model exceeded 0.8 for all response values, confirming the high accuracy of
the model.

• The damage information evaluated by the CNN model was classified according to
the target performance of the building as “no damage”, “minor damage”, “significant
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damage”, and “severe damage”. Furthermore, new ratios, DCR and RUUR, are
proposed to examine the accuracy of the prediction of structural damage.

Using this method, it is possible to estimate the degree of damage to a building
immediately after an earthquake using only the record of accelerometers installed on
the upper floor of the building. The results will be useful for countermeasures after an
earthquake, such as evacuation and decisions on the continued use of the building.
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