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Cdc42 is a member of the Rho family of small GTPases and a master regulator of the
actin cytoskeleton, controlling cell motility, polarity and cell cycle progression. This small
G protein and its regulators have been the subject of many years of fruitful investigation
and the advent of functional genomics and proteomics has opened up new avenues of
exploration including how it functions at specific locations in the cell. This has coincided
with the introduction of new structural techniques with the ability to study small GTPases
in the context of the membrane. The role of Cdc42 in cancer is well established but the
molecular details of its action are still being uncovered. Here we review alterations found
to Cdc42 itself and to key components of the signal transduction pathways it controls in
cancer. Given the challenges encountered with targeting small G proteins directly thera-
peutically, it is arguably the regulators of Cdc42 and the effector signalling pathways
downstream of the small G protein which will be the most tractable targets for therapeutic
intervention. These will require interrogation in order to fully understand the global signal-
ling contribution of Cdc42, unlock the potential for mapping new signalling axes and
ultimately produce inhibitors of Cdc42 driven signalling.

Introduction
The human homologue of Saccharomyces cerevisiae CDC42 (cell division control protein 42) was
identified in 1990 [1,2] and Cdc42 joined the Rho family of GTPases. Cdc42, together with Rac1 and
RhoA, was amongst the first Rho family GTPases to be characterized both structurally and biologically
[3]. The structures of these proteins in complex with their regulator and effector proteins provided the
molecular details of the biological activity of these classical Rho GTPases [4–6]. Rho family proteins
are found in all eukaryotes and 20 genes encoding Rho proteins have been identified in humans.
Structurally, Cdc42 has all the key features of a Rho family GTPase (Figure 1): a P-loop (residues

10–15), two switch regions (switch I, residues 28–40 and switch II, residues 60–70), a Rho insert
region (residues 122–135), a C-terminal polybasic region and a CAAX box (where C represents a con-
served cysteine, Cys188 in Cdc42) which is the site for post-translational geranylgeranylation. Two
splice variants of Cdc42 have been identified, which differ in their final exon. The ubiquitously
expressed and more widely studied isoform, Cdc42u, was originally isolated from placenta, while a
second isoform (Cdc42b) is restricted to brain. The two differ in their C-terminal ten amino acids,
with Cdc42u terminating in a polybasic region 183KKSRR187 followed by CVLL, while the brain
isoform, Cdc42b, has 183QPKRK187 preceding CCIF (Figure 1). The presence of two cysteines in the
CAAX motif of Cdc42b results in the potential for this isoform to be lipidated by both a stable prenyl
and by a reversible palmitate group, bypassing C-terminal proteolysis and carboxymethylation [7].
The two isoforms have recently been shown to have distinct functions in neurogenesis [8].
The activity of Cdc42 is dictated by the bound nucleotide and regulated by three sets of regulatory

proteins (Figure 2). Cdc42 activation is controlled by guanine nucleotide exchange factors (GEFs),
which facilitate the exchange of GDP to GTP [9]. Cdc42 is however a hydrolase and the hydrolysis of
GTP to GDP inactivates the protein, with the reaction facilitated by GTPase activating proteins
(GAPs) [9]. Additionally, the activity of Cdc42u is modulated by RhoGDI proteins [10]. RhoGDIs act
as inhibitors, by binding to the switch regions inhibiting nucleotide exchange and to the lipid
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modifications on the GTPase preventing membrane attachment. However, RhoGDI proteins also act as chaper-
ones, ensuring that Cdc42 is delivered to the correct subcellular localization and protecting it from degradation
[11,12].
Cdc42 can adopt two configurations, defined by the bound nucleotide, allowing it to function as a bimodal

molecular switch and control downstream signalling pathways. Interestingly the GDP and GTP bound forms of
Cdc42 adopt near identical structural states, unlike many other small G proteins including Ras [13]. In particu-
lar, in the absence of an effector protein, switch I occupies a very similar position in both forms [14]. Yet, the
binding of effector proteins remains exclusive to Cdc42·GTP and results in the induction of conformational
changes within the protein, resulting in an active signalling complex [14].
Membrane localization of Cdc42 is crucial for its downstream signalling and is dependent on multiple

factors including lipid modification, proteolytic processing and the ability to interact with the RhoGDI chaper-
ones [7]. Localization to specific subdomains of the relevant membranes is also critical for signalling.
Nanoclustering of Cdc42 on the plasma membrane has been observed in yeast, in conjunction with an enrich-
ment of phosphatidylserine [15]. It has also been demonstrated that phospho-4,5-bisphosphate (PIP2) interacts
with the C-terminal di-arginine motif of Cdc42u, acting as another localization signal within membranes [16].
Cdc42 is well documented to play an important role in malignancies due to its key physiological functions.

Cdc42 participates in the regulation of cytoskeletal and microtubule dynamics, transcription, cell cycle progres-
sion, cell polarity, apoptosis, phagocytosis, vesicle trafficking and cell adhesion, leading to roles in tumourigen-
esis as well as invasion and metastasis. Inhibition of Cdc42 and components of its signalling pathways are
therefore attractive therapeutic targets in cancer and are currently the subject of small molecule and biologic
based targeting efforts, which we have recently reviewed [17]. Here we review alterations found to Cdc42 itself
and to key components of the signal transduction pathways it controls in cancer.

Cdc42 alterations in cancer
Relatively few Cdc42 mutations have been reported in cancer and there have been no recurring driver
mutations identified in the gene [18]. Most mutations have been observed in only a single sample and some of
these will represent passenger mutations. The mutations recorded in COSMIC representing the TCGA dataset

Figure 1. The structure of Cdc42.

Cartoon representation of Cdc42 (PDB:1NF3) with key features highlighted (left): P-loop (orange, residues 10–15), Switch I, (pale yellow, residues

28–40), switch II, (green, residues 60–70), the Rho insert loop (blue, residues 122–135), the C-terminal region (magenta) encompassing a polybasic

region and a CAAX box (where C represents a conserved cysteine) which is a site for post-translational lipid modification. The Mg2+ ion is shown as

a red sphere and the bound nucleotide (GMPPNP) is shown as sticks in red. The lipid modifications for membrane anchoring of Cdc42 comprise a

prenyl (geranylgeranyl) group and a palmitoyl group for the brain isoform (right).
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are shown mapped onto the structure of Cdc42 in Figure 3. We have also included three mutations recorded in
COSMIC outside the TCGA dataset, which have been studied widely in the literature [19,20]. Not all of these
mutations are expected to increase the activity of Cdc42; indeed, some of them are predicted to decrease signal-
ling or affect localization. This is similar to the activating and deactivating RhoA mutations that have been
found in lymphomas [21].
Most of the biological consequences of the Cdc42 mutations identified in cancer have not been determined

but it is useful to consider what the manifestation of these mutations could be in terms of function. Some of
them (D11N, G12V [20], A13V, A13P and K16R) fall within the P-loop, a conserved, nucleotide-binding
region of the protein. Gly12 is critical for GAP-assisted GTP hydrolysis and is conserved across the Ras super-
family. Mutation to any other residue except Pro at this position activates Ras proteins. Mutation at Gly12 will
decrease GAP-assisted hydrolysis, locking Cdc42 in the active form and increasing output from Cdc42 regu-
lated signalling pathways. A recent molecular dynamics simulation (MD) study highlighted solvent exposure of
the nucleotide-binding site in Cdc42 G12V, suggesting that the mutation has the same effect observed for Ras
proteins [22]. Mutations at residue 13 also occur in Ras and likely interfere with GAP-assisted hydrolysis due
to their proximity to an essential arginine (the ‘arginine finger’) of the GAP, leading to activation. Although
mutations at residue 11 have been studied less, the same argument would likely hold true. Lys16 is conserved
across the Ras superfamily and contacts the β and γ phosphates of GTP. An Arg at this position could make
the same contacts but the bulkier guanidino group could either increase the size of the nucleotide-binding
pocket creating a fast-cycling mutant (similar to the known transforming mutant P29S in Rac1 [23]) or could
prevent the γ phosphate being positioned correctly for the hydrolysis reaction.
Two of the mutations, S30L and P34Q, fall within switch I of Cdc42, which classically interacts with down-

stream effector proteins. Mutations in this region would be expected to alter downstream signalling from

Figure 2. The regulation of Cdc42.

Extracellular receptors (for example, TRPV4, EGFR, RET and CD44) activate Cdc42 signalling. The signals activate GEF proteins, which catalyze

nucleotide exchange, resulting in the production of Cdc42·GTP. GAP proteins, which assist with hydrolysis of the GTP nucleotide, switch off the

signal by promoting the formation of Cdc42·GDP. RhoGDI proteins can sequester Cdc42u in the cytoplasm, stabilizing the inactive GDP-bound

form but can also act as chaperones, shuttling Cdc42u between the plasma membrane and the Golgi apparatus. Cdc42-effector interactions

modulate key cellular processes including regulation of actin dynamics and polymerization, vesicle trafficking, receptor endocytosis and

degradation, cell motility, actin-myosin regulation and apicobasal polarity.
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Cdc42. Pro34 is known to form key contacts with downstream effectors of Cdc42, for example, the β-hairpin of
the PAK GBD [6] and a conserved YYR motif in IQGAP [24]. Mutations here may decrease effector binding
but could also increase affinity in some complexes and therefore alter effector preference and Cdc42 signalling
outcome. MD simulations indicate that a hydrogen bond forms from the Mg2+ ion via a water molecule to
Pro34 of Cdc42·GDP to lock its conformation [25]. Hence Pro34 is an important residue for mediating switch
I conformational mobility and its mutation may alter effector interactions or activation by GEFs. The S30L
mutation may also alter specificity of the DOCK family GEFs for Cdc42 (see next section), as Ser30 has been
identified as critical for the Cdc42–DOCK9 interaction, forming a hydrogen bond to Gln1812DOCK9 [26].
A41T, V42G, M45T, Y51H and G54E fall in the region between switch I and switch II of Cdc42 and may

also therefore alter downstream effector binding. For example, V42G, is likely to have a similar effect to the
V42A mutant, which has been shown to disrupt binding to effector, ACK [27]. Val42 is also known to form
interactions with other effectors, for example, hydrophobic contacts with Pro241 of WASP [28]. Met45 has
been identified as a critical residue interacting with Ser76PAK1 and Gly239N-WASP, respectively [27]. However,
the M45T mutation had little effect on the binding of ACK, PAK and WASP, so its effects in vivo are difficult
to assess [27]. Interestingly, some of the critical determinants for binding of the Dbl family GEFs, including
residues Ala41 and Gly54, are also mutated. It is therefore possible that these mutations will affect activation of
Cdc42. Where levels of active Cdc42 are lower, it is likely that the balance of active Rho family GTPases con-
trolling migration and invasion will be altered as a result, leading to perturbation of these finely balanced
systems (see later) [29].
A large number of the mutated residues found in cancers, (D57Y, T58A, Q61R [19], E62D, D63V, D65V,

R66K, P69L, P73L) lie within or next to switch II, a region contributing to both effector and regulator binding.
Switch II is highly charged and any changes to the charge distribution may affect effector binding, including
WASP, PAK and ACK [5,27]. It is likely that the removal of negative charge in mutants D57Y, D63V and
D65V will disturb key electrostatic interactions. For example, Glu62, Asp63 and Arg66 all make key contacts

Figure 3. Cancer mutations in Cdc42.

COSMIC mis-sense mutations shown as sticks mapped onto individual amino acid residues on the structure of Cdc42 (PDB:1NF3), colour coded

by structural region. The structure of Cdc42 is shown in two orientations, rotated by 180° around the vertical axis. Numbers in brackets after

mutations indicate the number of incidences documented: mutations with no associated number are found once. Data accessed January 2021 from

the COSMIC v91 whole genome screening database, representing the TCGA dataset. All cancer types are included.
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with the second armadillo repeat of the effector FMNL2 via salt bridges and polar interactions [30]. Glu61 is
highly conserved across the Ras superfamily and a mutational hotspot in the oncogenic Ras proteins. Glu61 is
the catalytic residue in GTP hydrolysis, so Q61R represents an activating mutation in Cdc42, with reduced
GAP-mediated GTP hydrolysis. A number of mutants fall in the β4 and α3 regions of Cdc42: their potential
functional consequences are unknown, but their positions suggest that they may affect the stability of the
protein, leading to decreased signalling.
Two conservative mutations (D122N, E127D) lie in the Rho insert region, another highly charged region of

the protein. Early work indicated that the Rho insert region was critical for the transforming properties of
Cdc42 [31], however its molecular role remains unresolved. Whilst removal of the Rho insert region has no
effect on the rate of GTP hydrolysis of Cdc42, studies have indicated that it may be an essential recognition
and activation site for some effectors, such as phospholipase D [32], and can undergo significant conform-
ational changes [32–34]. MD studies have indicated that the insert region of Cdc42 is more flexible and less
helical in the GDP-bound form compared with the GTP-bound form [22]. Furthermore, in complex with
RhoGDI, the insert region may undergo a reorientation of the helix and/or loss of helical structure as it has a
higher temperature factor suggesting flexibility [33,34]. The insert region is also involved in binding to the scaf-
fold protein IQGAP [24]. Asp122 and Glu127 both form salt bridges with Lys residues in IQGAP2 that are
important for IQGAP dimerization. Therefore, mutations identified within the Rho insert region which alter
these residues will result in ablation of key salt bridges and polar interactions with interacting partners.
R147S and K150N in α4 helix could represent mutations that alter Cdc42 membrane orientation and effector

engagement. Helix α4 has been described as switch III in Ras and removal of arginine residues in Ha-Ras
decreased nanoclustering of Ras at the membrane and ultimately MAPK-signalling [35]. This region may also
be key to Cdc42 nanoclustering and effector engagement, although these are currently unexplored.
Mutation of Lys166Cdc42 is found in three cancer types: K166E, stomach; K166N, large intestine and K166N,

endometrial cancer, representing a minor hotspot. Lys166 is a ubiquitination site on Cdc42, which directs pro-
teasomal degradation [36]. This mutation would therefore be predicted to increase cellular levels of Cdc42 and
consequently signalling. Lys166 also interacts with downstream effectors, for example with Pro241WASP [28]
and Leu77PAK [6], and its mutation may also result in altered effector binding.
The final group of mutations (P180L, S185C, R186H, V189G) falls in the hypervariable region (HVR) of

Cdc42u, a region regulating membrane localization [37]. Pro180 precedes the HVR and a P180L mutant may
result in altered membrane localization if the HVR orientation becomes unfavourable for membrane inter-
action. Ser185 is a phosphorylation site on Cdc42, regulating its translocation to the cytosol by favouring its
interaction with RhoGDI-1 [38], so that its mutation would affect localization of Cdc42. Arg186 is part of the
di-arginine motif of Cdc42u, which mediates binding to PIP2-containing membranes [16]. An R186H mutation
is also therefore likely to affect membrane association and potentially localization to the appropriate membrane
subdomain. Interestingly, a R186C mutation resulted in aberrant palmitoylation, trapping Cdc42 in the Golgi
[39]. The effect of V189G is unknown but it could affect processing or localization of canonical Cdc42 as it is
juxtaposed to Cys188, the site of geranylgeranylation. Generally, HVR mutants of Ras affect nanoclustering in
the membrane, altering effector recruitment and signalling, so HVR mutants in Cdc42 may have similar
effects [35].
Along with mutations, gene amplifications and deletions have been documented for Cdc42 (cBioPortal). The

consequences of these seem to be highly cancer type specific and still require elaboration in clinically relevant
models. The top incidences of Cdc42 amplification (cBioPortal) are in endometrial carcinoma, bladder urothe-
lial carcinoma, sarcoma and ovarian epithelial tumours, and suggest an increase in protein levels and therefore
signalling. However, deletion of Cdc42 has also been linked to tumour formation in some cancer types, with
one study demonstrating that deletion of Cdc42 in hepatocytes induced spontaneous hepatocellular carcinoma
formation in vivo [40]. Intestinal deletion of Cdc42 has also been linked to hyperplasia [41].

Oncogenic alterations to Cdc42 GEFs
While relatively few alterations to Cdc42 itself have been documented in cancer, changes to its activators, the
RhoGEFs, are widely seen. Indeed many RhoGEFs were discovered as oncogenes in their own right, long before
biochemical analysis revealed their regulation of Rho family nucleotide exchange [42]. Early studies led to con-
fusion over the specificity of RhoGEFs towards their targets, with many GEFs displaying promiscuity in vitro
[43,44]. Around 40 of the 80 known RhoGEFs have been linked to Cdc42 regulation and these fall into two
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classes: the Dbl-related proteins and the DOCK family proteins. A recent comprehensive study found 19
RhoGEFs that co-localize with Cdc42 and show activity [45], while an equally systematic investigation identified
16 RhoGEFs with activity for Cdc42 [46]. Combining these datasets identifies 28 potential Cdc42 GEFs
(Tables 1 and 2).
Amongst the Cdc42 GEFs, many Dbl family members are altered in cancers, for example Ect2, Tiam-1, Trio,

P-Rex1–2 and Vav1–3 (reviewed in [47]). The DOCK family consists of 11 members and has been linked to
roles in cancer migration and invasion [48]. DOCK proteins modulate switching between the two main modes
of cell motility (see later) via the Rho GTPases. DOCK10, a Cdc42 GEF, is necessary for amoeboid motility
[49] while DOCK3 drives mesenchymal motility and invasion in melanoma cells through Rac1 [50]. A recent
analysis of TCGA data identified significantly higher expression of the RhoGEFs Trio, Net1, Ect2, Tiam2,
Farp1, ARHGEF12 and BCR in primary cancer types compared with normal tissues [51]. Additionally, in
gastric cancer, eight Cdc42 regulating RhoGEFs were correlated with poor patient survival: Trio, PlekHG3,
ITSN1, Ect2, Tiam2, Farp1, ARHGEF10, ARHGEF12 [51].
For the 28 potential Cdc42 GEFs [45,46], amplification and mutation are the most frequently reported types

of alteration across all cancer types (Tables 1 and 2). For the Cdc42-active Dbl proteins, oesophageal squamous

Table 1 Percentage alterations for 23 Dbl Rho GEFs with Cdc42 activity across multiple cancer types from cBioPortal, TCGA datasets,
Accessed January 2021

ESCC1 OET NSCLC HNSC UCEC CESC EGA PAAD BRCA COAD PRAD GBM M LIHC

ARHGEF4 0 0.51%* 2 1.71%† 1.15%† 4.61%† 1.20%† 1.75%† 0.54%* 0.73%† 2.18%† 3.23%‡ 0.51%† 4.05%† 1.08%†

ARHGEF7 3.16%* 2.23%* 1.04%† 1.53%* 6.66%* 3 1.59%† 0 0.54%† 1.66%* 2.69%* 0.61%* 0.68%† 2.70%† 2.98%*

ARHGEF9 2.11%*,† 1.71%* 1.52%† 0.96%† 6.31%† 3.19%† 0.97%† 1.08%† 0.65%† 2.36%† 0.40%* 0.68%† 1.80%† 0.54%‡

ARHGEF10 6.32%‡ 8.39%‡ 6.17%‡ 4.02%‡ 7.00%† 1.59%‡ 4.47%† 4.86%‡ 4.98%‡ 5.72%‡ 2.17%‡ 0.68%† 6.08%† 7.32%‡

ARHGEF15 2.11%† 1.03%† 1.71%† 0.96%† 7.34%† 1.99%† 4.47%† 0.54%† 0.65%† 3.20%† 1.21%‡ 0.51%† 6.08%† 2.44%‡

ARHGEF16 2.11%* 2.05%* 1.04%* 0.57%‡,* 3.41%† 1.59%† 0 1.63%* 0.92%‡ 1.18%† 0.40%* 0.68%† 2.70%† 1.63%‡

ARHGEF26 23.16%* 8.22%* 9.12%* 8.41%* 7.85%† 8.76%* 2.33%† 1.63%* 1.29%* 4.55%† 1.42%* 0.51%† 4.73%† 0.27%*

ARHGEF29 1.05%* 0.86%‡ 0.76%‡ 0.57%‡,† 3.24%† 1.20%†,‡ 2.14%* 0.54%† 0.65%* 4.38%* 1.21%‡ 0.17%†,*,‡ 2.93%† 0.81%*

FGD1 2.11%‡ 2.05%* 1.90%† 1.72%†,‡ 6.48%† 1.20%† 2.53%† 1.09%† 1.20%* 2.70%† 0.20%*,‡ 0.84%† 3.83%† 1.08%‡

FGD2 0 4.62%* 0.85%‡ 0.96%† 3.92%† 0.80%† 1.36%* 0.54%† 1.11%* 2.69%† 0.20%†,‡ 0.34%* 6.53%† 1.90%*

FGD3 1.05%* 0.68%† 1.71%† 1.34%† 6.48%† 0.80%† 3.50%† 0.54%‡ 0.37%†,‡ 1.85%† 0.61%* 0.51%†,* 2.48%† 1.08%†

FGD4 2.11%* 5.31%* 2.75%* 1.72%* 3.58%† 0.80%* 2.14%† 3.26%* 0.83%* 1.68%† 0.81%* 0.84%†,* 2.25%† 1.08%†

PLEKHG1 0 1.88%‡ 1.80%† 2.87%* 7.51%† 2.00%† 4.09%† 1.09%‡,† 0.92%† 3.37%† 0.81%† 1.18%† 5.63%† 0

PLEKHG2 0 8.56%* 3.80%* 1.52%† 7.34%† 4.38%* 2.14%* 8.15%* 2.12%* 3.20%† 0.40%* 0 6.53%† 1.08%*

PLEKHG3 1.05%† 0.34%† 2.47%† 1.34%† 5.46%† 1.20%† 3.31%† 0.54%† 0.46%* 2.02%† 0.61%* 0.84%† 6.08%† 1.08%†

PLEKHG4 2.11%* 2.05%‡ 2.09%† 1.15%† 6.14%† 3.19%† 2.33%† 0 1.29%‡ 2.02%† 0.40%† 0.68%† 6.31%† 0.54%†

PREX2 3.16%* 5.99%* 6.74%† 3.25%† 7.51%† 1.99%† 12.2%† 3.80%* 5.17%* 6.73%† 6.48%* 0.84%† 22.5%† 6.50%*

MCF2 (DBL) 4.21%* 2.23%* 3.99%† 2.29%† 10.2%,† 2.39%† 2.72%† 1.63%* 0.74%* 4.38%† 0.81%‡ 0.34%*,† 9.68%† 0.81%†

MCF2L
(DBS)

4.21%* 2.57%* 2.09%† 1.91%* 5.29%† 2.79%† 3.11%† 1.63%† 1.75%* 3.70%† 0.81%†,‡ 0.68%† 5.18%† 2.71%*

RASGRF2 2.11%‡ 3.08%‡ 3.51%† 1.91%† 7.17%† 1.99%† 3.31%† 1.09%† 0.74%† 4.04%† 1.82%‡ 1.01%† 6.98%† 1.36%†

VAV2 2.11%* 0.85%† 1.80%† 0.96%*,† 5.63%† 1.20%† 2.14%† 0.54%‡ 0.55%† 1.85%† 1.21%* 0.68%* 3.60%† 1.36%*

FARP1 12.10%† 1.88%* 1.52%† 1.91%† 5.97%† 1.99%† 3.89%† 0.54%*,† 1.75%* 2.86%† 0.61%‡ 0.34%† 5.63%† 2.98%*

TUBA 2.11%† 1.20%† 2.09%† 2.29%† 7.85%† 2.39%† 3.31%† 1.09%† 1.01%† 3.54%* 1.21%‡ 0.68%† 8.78%† 0.81%*

1Cancer types key: Cervical Squamous Cell Carcinoma (CESC), Colorectal Adenocarcinoma (COAD), Uterine Corpus Endometrial carcinoma (UCEC), Esophageal Squamous
Cell Carcinoma (ESCC), Esophagogastric Adenocarcinoma (EGA), Glioblastoma (GBM), Liver Hepatocellular Carcinoma (LIHC), Head and Neck squamous cell carcinoma
(HNSC), Invasive Breast Carcinoma (BRCA), Melanoma (M), Ovarian Epithelial Tumour (OET), Pancreatic Adenocarcinoma (PAAD), Prostate Adenocarcinoma (PRAD)
2Alteration type key:* amplification,† mutation,‡ deep deletion.
3Grey shading denotes a percentage alteration type above 5% for an individual RhoGEF in a single cancer type
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cell carcinoma, endometrial carcinoma and melanoma show the highest mutational alterations (Table 1). The
DOCK Family GEFs are also mutated, particularly in melanoma and in endometrial carcinoma (Table 2),
which often displays a high mutational burden due to increased DNA mismatch repair [52].

Cdc42 GAP alterations in cancer
Another key family of Cdc42 regulatory proteins are the GAP proteins. As GAPs catalyze the hydrolysis of
GTP to GDP and act as negative regulators they should be tumour suppressors. However, RhoGAPs have been
associated with both pro- and anti-proliferative functions and their role is nuanced and complex within specific
Rho GTPase signalling pathways. The RhoGAPs are thought to be relatively promiscuous [46], although a
number had been suggested to be Cdc42 exclusive, including ARHGAP1, ARHGAP17 and ARHGAP31 [45].
In a recent survey, however, none of the 50 GAPs tested had activity restricted to Cdc42, although 16 were
identified as regulating Cdc42 alongside RhoA and/or Rac1 [45]. A complementary analysis documented a
further 11 Cdc42 GAPs [46], giving a total of 25 RhoGAPs active against Cdc42.
Where there are alterations to these 25 RhoGAPs, amplification and mutation are most frequently reported

(Table 3). Mutations in the highly conserved arginine finger of the GAP domain are rare but some have been
reported, including: ARHGAP11b (R87W (2)), ARHGAP5 (R1297L/C/S), ARHGAP17 (R288Q), ARHGAP30
(R55H (2)), ARHGAP31 (R56W), STARD8 (R608H), SYDE1 (R436H) and OPHN1 (R409S). Mutation of this
residue would prevent GAP-assisted GTP hydrolysis and result in sustained activation of Cdc42.
Studies into the biological relevance of some RhoGAP domain missense mutants have focused on the DLC

(deleted in liver cancer) family of GAPs, established tumour suppressors found down-regulated or deleted in
cancer [53,54]. DLC3 (STARD8) has been identified as a Cdc42 regulator whose levels are reduced, at the
mRNA level at least, in kidney, lung, ovarian, uterine and breast cancer [53]. Missense mutations are relatively
common in the DLC genes. 7/9 mutations in the GAP domain of DLC1, identified in cBioPortal, showed
decreased GAP activity in vitro, while mutations in two other regions also resulted in less biological activity
due to reduced interactions with cellular partners [55]. Hence, mutations that reduce the GAP activity of
RhoGAPs are associated with cancer, but other mutations affecting intramolecular interactions, scaffolding
functions or subcellular localization, also contribute to the oncogenic process.
Amplification of the Cdc42 GAPs however would increase GAP activity and could serve to selectively deacti-

vate Cdc42. This would affect the fine balance of active Rho family proteins and potentially perturb the func-
tions that rely on this, for example, cell motility. Alternatively, the non-GAP functions of these proteins may
also make an important contribution to oncogenic pathways.
In terms of the global contribution of RhoGAPS to cancer, several studies have recently identified a role for

RhoGAPs in regulating cell morphology. Depletion of 15 RhoGAPs in MCF10A resulted in a significant
change in morphological parameters associated with epithelial-mesenchymal transition (EMT), including a
change to elongated spindle-like morphologies [56]. Amongst these, ARHGAP43 (SH3Bp1) and ARHGAP4
were identified as major regulators of cell morphology. Depletion of SH3Bp1 has previously been linked to a

Table 2 Percentage alterations for five DOCK Rho GEFs with Cdc42 activity across multiple cancer types from cBioPortal, TCGA
datasets, Accessed January 2021

ESCC1 OET NSCLC HNSC UCEC CESC EGA PAAD BRCA COAD PRAD GBM M LIHC

DOCK7 1.05%*2 2.23%* 3.04%† 2.68%† 10.5%† 3 2.39%† 3.89%† 1.09%† 1.48%† 4.21%† 1.01%‡ 1.01%† 8.56%† 1.63%†

DOCK8 4.21%‡ 2.40%* 2.66%† 2.68%* 10.4%† 2.39%† 3.70%† 1.09%† 1.38%* 5.05%† 1.01%‡ 1.35%† 12.84%† 2.44%†

DOCK9 3.16%† 2.23%* 2.75%† 1.53%† 9.56%† 2.79%† 3.50%† 1.63%† 1.75%* 5.05%† 0.81%‡ 0.51%† 10.59%† 3.52%*

DOCK10 3.16%† 1.37%† 7.12%† 2.10%† 11.9%† 3.98%† 6.42%† 2.17%* 1.75%† 4.48%† 1.01%† 1.18%† 10.81%† 2.71%†

DOCK11 2.11%* 1.37%† 4.37%† 3.25%† 13.6%† 5.58%† 4.09%† 1.09%† 2.31%† 4.55%† 0.81%† 1.01%† 11.04%† 1.08%†

1Cancer types key: Cervical Squamous Cell Carcinoma (CESC), Colorectal Adenocarcinoma (COAD), Uterine Corpus Endometrial carcinoma (UCEC), Esophageal Squamous
Cell Carcinoma (ESCC), Esophagogastric Adenocarcinoma (EGA), Glioblastoma (GBM), Liver Hepatocellular Carcinoma (LIHC), Head and Neck squamous cell carcinoma
(HNSC), Invasive Breast Carcinoma (BRCA), Melanoma (M), Ovarian Epithelial Tumour (OET), Pancreatic Adenocarcinoma (PAAD), Prostate Adenocarcinoma (PRAD)
2Alteration type key:* amplification,† mutation,‡ deep deletion.
3Grey shading denotes a percentage alteration type above 5% for an individual RhoGEF in a single cancer type
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loss of spatial control of Cdc42 activity in epithelial junction formation and enhanced growth of filopodia [57],
linking this Cdc42 GAP to increased cancer cell migration.

Cdc42–RhoGDI alterations in cancer
Three proteins comprise the RhoGDI family, which act as multi-functional regulators of Rho family GTPases.
RhoGDIs can extract Rho GTPases from membranes, burying the G protein prenyl moiety into the hydropho-
bic pocket of their C-terminal Ig domain. The RhoGDI proteins therefore control the subcellular localization of
Cdc42 and a subset of other Rho GTPases [58–61]. They also act as chaperones, regulating the levels of Rho
family GTPases and maintaining a balance between the individual members of the family relative to one
another [62,63]. Finally, RhoGDIs are conventional negative regulators, preventing nucleotide exchange on
their targets by binding to the switch regions of Rho family GTPases via their N-terminal domain [64].
The specificity of the RhoGDI proteins is key to their regulation of Rho GTPase signalling pathways within

cancer but the molecular basis behind their selectivity is not well understood. Cdc42 has been found to interact
with both RhoGDI-1 and -2 [58,65], although it is preferentially regulated by RhoGDI-1 [66]. Loss of

Table 3 Percentage alterations for 25 RhoGAPs with Cdc42 activity across multiple cancer types from cBioPortal, TCGA datasets,
Accessed March 2021

ESCC OET NSCLC HNSC EC CESC EGA PAAD BRCA COAD PRAD GBM M LIHC

ARHGAP1 1.05%* 1.03%* 0.66%† 1.53%* 1.37%* 0.80%* 1.94%† 1.09%* 0.65%* 0.67%† 1.01%‡ 0.34%‡ 1.58%† 0

ARHGAP5 3.16%† 1.03%* 3.04%* 1.72%† 9.22%† 3.59%† 4.86%† 1.63%† 1.38%* 4.71%† 0.81%† 0.34%† 6.76%† 0.81%†

ARHGAP11b 1.05%* 1.88%‡ 1.71%‡ 0.38%* 2.22%† 0.40%‡ 0.78%† 0.54%†,‡ 1.85%‡ 1.35%‡ 0.81%*,‡ 0.17%‡,* 1.35%‡ 0.54%‡

ARHGAP17 0 1.03%* 2.47%† 2.10%† 7.00%† 1.20%† 2.53%† 1.09%† 3.41%* 1.68%† 1.21%* 0.34%† 4.50%† 0.54%†

ARHGAP20 1.05%† 1.20%* 2.28%† 1.72%† 8.02%† 3.19%‡ 3.31%† 0.54%† 1.11%‡ 3.7%† 0.61%‡ 0.51%* 5.63%† 0.81%†

ARHGAP21 3.16%† 2.91%* 3.13%† 1.91%† 10.9%† 1.99%† 2.72%† 1.63%† 1.20%† 5.05%† 0.81%† 1.1%† 8.11%† 1.08%*

ARHGAP22 1.05%*,‡ 0.68%* 0.95%† 0.76%* 6.48%† 0.80%‡† 1.95%† 0 0.37%* 4.04%† 0.81%‡ 0.51%‡ 6.98%† 1.63%†

ARHGAP30 2.11%* 2.05%* 5.41%* 1.72%† 6.66%† 2.39%* 4.28%† 3.26%* 9.23%* 2.86%† 0.61%‡,* 1.01%† 8.78%† 10.0%*

ARHGAP31 5.26%* 2.40%* 3.51%† 2.68%* 8.19%† 3.19%† 4.47%† 1.63%† 1.57%† 4.88%† 0.40%†,* 0.68%† 8.11%† 1.63%†

ARHGAP32 3.16%* 2.23%* 4.18%† 1.34%† 10.1%† 3.19%‡,† 3.70%† 1.63%† 0.74%‡ 3.54%† 0.81%† 1.52%† 9.68%† 1.36%†

SRGAP2 1.05%* 2.74%* 2.94%* 0.57%† 5.63%† 1.99%† 1.75%* 1.63%* 8.30%* 2.86%† 0.61%* 0.84%* 3.6%† 6.23%*

ARHGAP39 12.63%* 25.86%* 4.65%* 7.84%* 3.92%* 3.19%* 5.45%* 8.15%* 10.3%* 3.20%* 6.28%* 1.01%* 6.53%† 9.21%*

ARHGAP40 0 1.71%* 0.95%* 0.57%* 1.19%* 1.20%* 2.92%* 0 1.11%* 7.24%* 0.40%*,‡ 0.17%* 0.90%* 0.27%*

GMIP 2.11%* 4.62%* 1.61%† 1.72%† 5.29%† 1.20%† 3.11%† 0.54% 0.74%* 1.35%† 0.61%† 0.51%† 3.83%† 1.36%*,†

FAM13B 1.05%† 0.86%* 0.47%† 0.76%† 5.97%† 0.80%† 1.56%† 1.63%† 0.74%† 1.18%† 0.61%*,‡ 0.34%† 4.05%† 0.81%†

MYO9B 2.11%† 7.88%* 2.56%† 2.49%† 7.85%† 2.39%† 2.92%† 2.17%† 1.57%* 3.70%† 1.21%† 1.18%† 6.76%† 2.71%†

STARD8 2.11%* 1.20%* 2.75%† 1.15%* 7.51%† 1.99%† 2.53%† 0.54%†,‡,* 0.75%† 2.86%† 0.61%* 0.51%† 5.41%† 0.54%†

PIK3R1 2.11%‡ 3.08%‡ 1.42%† 1.53%† 28.0%† 3.98%† 3.11%† 0.54%† 2.58%† 5.39%† 3.85%‡ 6.42%† 3.60%† 1.08%†

PIK3R2 1.05%* 4.96%* 1.42%† 0.96%† 4.10%† 0.40%*,†,‡ 2.14%† 0.54%† 1.20%* 1.68%† 0.61%† 0.68%† 2.48%† 1.90%*

DEPDC1B 3.16%‡ 3.08%‡ 1.61%† 1.14%‡ 4.44%† 0.80%† 2.14%‡ 0 1.20%‡ 1.18%† 3.24%‡ 0.34%† 2.70%† 0.54%†,*

SYDE1 1.05%†,* 11.1%* 0.66%†* 0.38%*,† 3.92%† 1.59%† 1.95%† 0.54%† 2.40%* 2.19%† 0.61%* 0.51%* 1.13%† 1.08%*,†

OPHN1 3.16%‡ 1.20%* 2.94%† 0.96%†,‡,* 7.85%† 1.59%† 1.75%† 0.54%*,‡ 0.55%* 1.18%† 0.81%* 1.01%† 4.05%† 0

ARAP1 20.00%* 5.14%* 1.99%* 4.59%* 6.66%† 1.99%† 2.92%† 1.63%† 3.87%* 4.71%† 0.81%† 0.34%* 5.18%† 0.81%†*

ARAP2 3.16%† 0.68%† 4.27%† 1.34%† 8.87%† 2.39%† 4.47%† 0.54%† 0.65%† 5.89%† 0.40%‡ 0.84%† 14.2%† 0.54%†,*

ARAP3 0 1.03%* 2.94%† 1.53%† 9.22%† 2.39%† 3.11%† 1.09%* 1.11%† 4.71%† 0.61%*,†,‡ 0.68%† 5.63%† 1.89%†

1Cancer types key: Cervical Squamous Cell Carcinoma (CESC), Colorectal Adenocarcinoma (COAD), Uterine Corpus Endometrial carcinoma (UCEC), Esophageal Squamous
Cell Carcinoma (ESCC), Esophagogastric Adenocarcinoma (EGA), Glioblastoma (GBM), Liver Hepatocellular Carcinoma (LIHC), Head and Neck squamous cell carcinoma
(HNSC), Invasive Breast Carcinoma (BRCA), Melanoma (M), Ovarian Epithelial Tumour (OET), Pancreatic Adenocarcinoma (PAAD), Prostate Adenocarcinoma (PRAD).
2Alteration type key:* amplification,† mutation,‡ deep deletion.
3Grey shading denotes a percentage alteration type above 5% for an individual RhoGAP in a single cancer type
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RhoGDI-1 stimulates constitutive activation of Cdc42, causing increased COX-2 activity, promoting breast
cancer development [67]. RhoGDI-3 is the least well studied of the RhoGDI family in terms of its Cdc42 inter-
action. It differs from the other RhoGDI proteins by an N-terminal extension, thought to be involved in Golgi
localization [61]. Depletion of RhoGDI-3 has been linked to increased amoeboid movement in diffuse large
B-cell lymphoma [68]. In terms of alterations in cancer, all three RhoGDIs show aberrant expression in a range
of cancers, although at relatively low levels (Table 4). cBioPortal data indicates that alteration frequencies across
all cancer types are highest in RhoGDI-1, followed by RhoGDI-3 and finally RhoGDI-2. All three proteins
show amplifications, mutations and deep deletions.
The RhoGDIs are regulated by post-translation modifications including phosphorylation, ubiquitination and

sumoylation, and by phospholipids and protein–protein interactions [9]. For example, RhoGDI-1 phosphoryl-
ation at Tyr156 by Src promotes Cdc42 activation [69], which is reversed by dephosphorylation of the same
residue by PTP-PEST [70]. Any mutations that ablate the Cdc42–RhoGDI-1 interaction will likely result in
aberrant Cdc42 activation [58]. For instance, R66A or R68A mutations within the Cdc42 switch II region
selectively interfere with its interaction with RhoGDI, resulting in the hyperactivation of Cdc42 [34]. Mutations
occurring within the hydrophobic, isoprene binding, cleft of RhoGDIs, such as I177M, will also disrupt the
binding between RhoGDIs and Cdc42 [71]. Besides the I177M mutation, several other mutations are recorded
in cBioPortal in the Ig domain such as L196R, R180H and K113Q, identified in glioblastoma, breast and colo-
rectal cancers, respectively.

Cdc42 effector alterations in cancer
The involvement of Cdc42 in both tumourigenesis and metastasis is reliant on its effector proteins. There are
currently 32 known Cdc42 effectors and Table 5 summarizes the alterations found in the Cdc42 effectors most
commonly associated with various cancer types.
Amongst the Cdc42 kinase effectors showing the highest frequencies of alterations are the myotonic dys-

trophy kinase-related Cdc42-binding kinases (MRCKα and MRCKβ). Binding of Cdc42 to MRCK likely directs
membrane recruitment rather than activation of kinase activity [72]. Amplifications predominate in MRCKα
alterations, for example in invasive breast carcinoma (Figure 4), while MRCKβ is predominantly mutated, with
the highest frequency in endometrial carcinoma (cBioPortal). Given that the C-terminal regulatory domains of
MRCK proteins autoinhibit the N-terminal kinase domain, activating mutations were predicted to lie in the
C-terminal regions of MRCK [73]. Four mutations have been reported C-terminal to the kinase domain of
MRCKβ, including the truncating mutation R1092* found in intestinal adenocarcinoma [72]. One minor muta-
tional hotspot occurs at Pro675 (cBioPortal) in MRCKα. P675S/T mutations are found in eight samples across
invasive breast carcinoma, endometrial carcinoma, oesophageal squamous cell carcinoma and oesophagogastric
adenocarcinoma. Pro675 lies within a negative autoregulatory region, which is known to interact with the
kinase domain [74].
Another family of serine-threonine Cdc42 effector kinases with high alteration frequencies are the

p21-activated kinases (PAKs). PAKs are mainly amplified, for example PAK2 in non-small cell lung cancer,
ovarian epithelial tumour and endometrial carcinoma (Figure 4). Increased PAK1 and PAK4 activity is known
to result from gene amplification [75]. Mutations do not feature largely in PAK alterations. Instead, their hyper-
activation plays a major role in their contribution to cancer [75]. Hyperactivation of the PAK can result from
excessive activation by Cdc42/Rac1, or by upstream miRNAs, for example miR-424 was recently found to
hyperactivate the cancer stem cell pool in breast cancer through activation of PAK1 [76].

Table 4 Percentage alteration for three RhoGDIs of multiple cancers from cBioPortal. Accessed: March 2021

ESCC1 OET NSCLC HNSC UCEC CESC EGA PAAD BRCA COAD PRAD GBM M HC

RhoGDI-1 - 3.42%*2 1.52%* 0.38%‡,†,* 2.73%* 0.79%‡ 0.78%† 0.54%†,* 3.60%* 0.67%* 0.40%* 0.34%† 2.48%* 4.34%*

RhoGDI-2 3.16%* 3.77%* 0.66%‡ 0.38%* 2.22%† 0.40%† 0.97%‡ 2.72%* 0.92%* 1.01%† 1.21%‡ 0.68%* 1.35%† 0.27%‡

RhoGDI-3 - 1.71%* 0.38%‡ 0.19%* 0.85%‡,* 0.40%‡,† 1.75%‡ 0.54%‡ 3.69%* 0.51%‡ 1.01%* 0.34%* 1.13%† 0.81%‡

1Cancer types key: Cervical Squamous Cell Carcinoma (CESC), Colorectal Adenocarcinoma (COAD), Uterine Corpus Endometrial carcinoma (UCEC), Esophageal Squamous
Cell Carcinoma (ESCC), Esophagogastric Adenocarcinoma (EGA), Glioblastoma (GBM), Liver Hepatocellular Carcinoma (LIHC), Head and Neck squamous cell carcinoma
(HNSC), Invasive Breast Carcinoma (BRCA), Melanoma (M), Ovarian Epithelial Tumour (OET), Pancreatic Adenocarcinoma (PAAD), Prostate Adenocarcinoma (PRAD)
2Alteration type key:* amplification,† mutation,‡ deep deletion.
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Activated Cdc42-associated kinase (ACK) is a non-receptor tyrosine kinase with additional scaffolding func-
tions and an effector of Cdc42 [77]. ACK is predominantly subject to genomic amplifications, for example in
NSCLC, ovarian epithelial tumour, HNSC and endometrial carcinoma (Figure 4). ACK mRNA overexpression
is frequently observed, for example in lung, prostate, breast, pancreatic, hepatocellular and gastric carcinoma
[78]. In terms of mutations, several cancer driver mutations have been identified in ACK [79], including R34L,
R99Q, E346K and M409I, which result in increased kinase activity [80]. A frameshift mutation, P761Rfs*72, in
endometrial carcinoma is a minor recurrent mutation, resulting in truncation of the UBA domain of ACK,
which regulates the proteasomal degradation of the protein [81].
The best characterized Cdc42-controlled actin polymerization pathways regulating migration involve the

Wiskott Aldrich Syndrome scaffold proteins (WASP and N-WASP). Cdc42·GTP alleviates intramolecular inhib-
ition of WASP proteins, allowing engagement of the Arp2/3 complex [82], which nucleates actin filament
growth. Activating mutations (L270P and I294T) in WASP, which relieve autoinhibition, are associated with
immunodeficiency disease X-linked neutropenia (XLN), whilst loss of function mutations are associated with
Wiskott–Aldrich syndrome (WAS) [83]. Both diseases have been linked to a high incidence of cancer; WAS
with non-Hodgkin, Hodgkin and Burkitt lymphomas and XLN with acute myeloid leukaemia and myelodys-
plastic syndrome [84]. Alterations in other cancer types occur at a very low frequency (Table 4). Deletions of
WASP are recorded in NSCLC and HNSC, and WASP has been shown to play a tumour suppressor role in
some cancers [85].
Th role of N-WASP in metastasis has been the subject of multiple recent studies, particularly in pancreatic

ductal adenocarcinoma (PDAC) [86,87]. Activation of the spindle and kinetochore-associated protein 1 (SKA1)
by Cdc42 in PDAC has been correlated with poor survival and with increased N-WASP-Arp2/3 activity and
actin remodelling [88]. Combining 3D matrices with microfluidics demonstrated a role for N-WASP in regulat-
ing invasive protrusion in NIH3T3 fibroblast and human osteosarcoma cell models [89]. Very few alterations
are reported for N-WASP (WASL) in cancers. A minor mutational hotspot occurs at Val422 in gastrointestinal
cancer, where frameshift results in loss of actin polymerization [90]. Another minor mutational hotspot is
Arg131 in the WH1 domain, and the R131Q mutation likely affects protein–protein interactions [90]. The
tumour promoting and suppressing roles for the WASP proteins in different cancer types are currently not well
understood. Greater understanding of the expanding roles for the proteins in both the cytoplasm and the
nucleus may reconcile these contradictions in the future [90].
The classic role of Cdc42 in regulating apicobasal polarity and sustained directionality in motility is mediated

by the Cdc42–aPKC–Par6–Par3 complex, in which Cdc42 interacts with Par6 [91]. PARD6A mainly shows

Table 5 Percentage alterations for Cdc42 downstream effector proteins, representing every effector family (WASPs, PAKs, TNKs,
Cdc4EP1s/BORGs, MRCKs, MLKs, SPECs, IQGAPs, PARs, Formins) across multiple cancer types from cBioPortal, TCGA datasets,
Accessed March 2021

ESCC1 OET NSCLC HNSC UCEC CESC EGA PAAD BRCA COAD PRAD GBM M LIHC UDSA

WASP 4.21%‡ 2,3 5.31%* 1.42%† 1.91%‡ 5.11%† 1.20%* 0.97%‡ 0.54%*,† 1.11%† 1.18%† 0.61%* 0.34%† 2.93%† 1.08%‡ 7.69%‡

PAK2 27.37%* 15.58%* 15.0%* 12.81%* 6.31%* 14.74%* 4.67%* 2.72%* 2.40%* 1.35%† 2.43%‡ 1.01%* 2.52%† 0.81%* 15.38%†

ACK 28.42%* 15.92%* 14.25%* 12.81%* 6.83%* 15.14%* 5.06%* 1.63%* 2.31%* 2.52%† 2.02%‡ 0.84%* 6.08%† 1.08%* 0

CEP4 0 1.54%* 1.99%* 0.96%† 1.54%* 1.20%*,† 1.95%* 1.63%* 4.52%* 1.35%† 0.61%* 0.34%† 2.93%† 3.52%* 0

MRCKα 2.11%†,* 4.97%* 3.61%† 1.34%† 7.68%† 3.19%† 3.50%† 1.63%* 8.95%* 4.21%† 1.01%‡ 0.34%* 6.53%† 5.15%* 0

MLK4 2.11%* 4.97%* 2.75%* 0.76%† 4.78%† 1.20%† 3.11%† 2.72%† 9.04%* 5.05%† 1.42%‡ 1.01%† 9.91%† 6.23%* 0

SPEC1 2.11%* 7.19%* 7.41%* 0.96%* 6.83%* 2.39%* 3.70%* 2.72%* 9.04%* 0.67%* 1.62%* 0.51%* 2.03%* 10.84%* 0

IQGAP3 2.11%† 3.77%* 5.03%* 2.29%† 7.85%† 1.99%* 3.31%† 3.80%* 7.93%* 3.70%† 0.61%* 0.84%† 8.33%† 10.57%* 0

Par6b 1.05%*,† 3.94%* 1.71%* 0.19%*,† 2.90%* 1.20%* 4.47%* 1.09%* 2.86%* 6.57%* 1.21%* 0.34%† 1.35%† 1.08%* 7.69%*

mDia2 2.11%‡ 1.37%‡ 3.32%† 2.29%† 7.51%† 2.00%‡ 3.31%† 0.54%† 0.74%‡,† 3.20%† 7.09%‡ 0.84%† 5.63%† 1.63%‡ 15.38%†

1Cancer types key: Cervical Squamous Cell Carcinoma (CESC), Colorectal Adenocarcinoma (COAD), Uterine Corpus Endometrial carcinoma (UCEC), Esophageal Squamous
Cell Carcinoma (ESCC), Esophagogastric Adenocarcinoma (EGA), Glioblastoma (GBM), Liver Hepatocellular Carcinoma (LIHC), Head and Neck squamous cell carcinoma
(HNSC), Invasive Breast Carcinoma (BRCA), Melanoma (M), Ovarian Epithelial Tumour (OET), Pancreatic Adenocarcinoma (PAAD), Prostate Adenocarcinoma (PRAD),
Undifferentiated Stomach Adenocarcinoma (UDSA)
2Alteration type key:* amplification,† mutation,‡ deep deletion.
3Grey shading denotes a percentage alteration type above 5% for an individual Rho effector in a single cancer type
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amplifications; very few mutations are reported. Overexpression of the PARD6A and PARD6B genes have been
associated with increased cell proliferation, tumour initiation and epithelial-to-mesenchymal transition (EMT)
in breast cancer [92,93]. Overall, the Par proteins, like the WASPs, have lower alteration frequencies compared
with the Cdc42 kinase effectors (Figure 4).
Interestingly, 29 of the 32 Cdc42 effectors have endometrial carcinoma in the top five cancer types where

they are found altered, suggesting understanding and potentially targeting Cdc42 signalling in this cancer could
have therapeutic benefit. Relatively little is known regarding the role of Cdc42 in endometrial carcinoma,
however CD73-generated adenosine underpins epithelial integrity in endometrial cancer, potentially through
an A1R-Cdc42-N-WASP-Arp2/3 pathway [94] and prostaglandin F2α involvement in endometrial cancer cell
migration and adhesion is also dependent on Cdc42 [95]. Additionally, the receptor TRPV4 has been linked to
metastasis in endometrial cancer via Rac1 and RhoA/ROCK signalling [96] and there is an established link for
TRPV4-Cdc42-N-WASP signalling in glioblastoma migration [97].

Cdc42 and its effectors in cancer metastasis
There is a growing body of evidence implicating Cdc42 in the formation and regulation of specialized cellular
protrusions associated with invasion and metastasis, including invadopodia [98] and extracellular vesicles (EVs)
[99]. EVs are now recognized to be important for transferring cargo between different tumour subpopulations
and between cancer and normal cells [100]. The proteomes of invadopodia and EVs revealed a set of common

Figure 4. Cdc42 effector alterations in cancer.

Alterations of a selection of Cdc42 effector genes TNK2 (ACK), CDCBPA (MRCKα), PAK2 (PAK2), WAS (WASP) and PARD6B (Par6b) for the five

cancer types with the highest incidence, where the Y axes represent absolute counts of incidence recorded for each gene and the X axes indicate

specific cancer type. Both mutation and copy number alteration (CNA) data are shown. Green represents mutations; red, amplification; blue, deep

deletion; purple, fusion and grey, multiple alteration. Data is from cBioPortal, January 2021. Key for cancer types: CESC, Cervical Squamous Cell

Carcinoma; COAD, Colorectal Adenocarcinoma; UCEC, Uterine Corpus Endometrial carcinoma; EGA, Esophagogastric Adenocarcinoma; HNSC,

Head and Neck squamous cell carcinoma; BRCA, Invasive Breast Carcinoma; M, Melanoma; OET, Ovarian Epithelial Tumour. Note that the bar

charts utilize different vertical axis scales for clarity.
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proteins regulating their assembly including Cdc42, EGFR, RhoA, RhoC, Src, several subunits of the ARP2/3
complex, IQGAP1 and moesin [99]. Additionally, the growing understanding of the role of the stroma in
metastasis implicates Cdc42, with the Cdc42 GAP, ARHGAP31, being highly expressed in cancer-associated
stroma [101]. Increasingly, studies of pre-cancerous neoplasms aim to predict alterations which drive metastasis
[102]. A role for Cdc42 in regulating angiogenesis has been proposed recently, with Cdc42 driving vascular tip
migration via N-WASP in endothelial cells [103]. Abnormalities in tumour vascularization lead to hypoxia,
which promotes metastasis [103].
The complexity of Cdc42’s role in metastasis can be partly attributed to the different modes of cell migration

that exist: an elongated mesenchymal mode, a rounded amoeboid mode [104] and collective migration [105].
Generally, the elongated mode of migration is associated with actin polymerization and Rac1 activation, whilst
the amoeboid mode is characterized by higher levels of actomyosin contractility and RhoA/ROCK signalling
[104] (Figure 5). The balance between Rac1 and RhoA signalling is key to determining which mode of migra-
tion occurs under normal physiological conditions. It is known that tumour cells can switch between either
mode of migration [104,106,107].
Cdc42 signalling pathways have been linked to the faster amoeboid mode of migration [49]. DOCK10 acti-

vates Cdc42 which in turn leads to phosphorylation of MLC2 by PAK2, driving the amoeboid phenotype in
melanoma [49] (Figure 5). Cdc42 also controls the transcription factor Stat3, linked to increased secretion of
MMP-9 into the ECM via ROCK-JAK1-Stat3 signalling, increasing invasion by amoeboid cells [108].

Figure 5. Cdc42 signalling in cell migration.

Cdc42 is capable of regulating both mesenchymal migration and amoeboid migration due to the selective activation of Cdc42 by different GEF

proteins. In melanoma cells, DOCK10 activates Cdc42, which can then interact with its downstream effector PAK2 to promote amoeboid migration

through MLC2. The other well characterized signalling pathway which promotes amoeboid migration is RhoA activation of ROCK kinase.

Mesenchymal migration is regulated by Rac1, via activation of WAVE2. Additionally, Cdc42 is proposed to regulate Rac1 activation via a currently

uncharacterized GEF. Cdc42 mediated activation of MRCK proteins is also known to drive mesenchymal migration. Rac1 signalling to NFκB

induces transcription of the IL-6 gene. IL-6 binds to IL-6R to activate JAK2, which phosphorylates Stat3, allowing it to dimerize and translocate to

the nucleus, where it is transcriptionally active.
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Additionally, negative regulators of Cdc42, the RasGRFs, have recently been suggested to be a major determin-
ant of the transition between the two modes of migration [109]. RasGRF1/2 bind to Cdc42 via their DH
domain, preventing Cdc42 activation by outcompeting Cdc42 GEFs (Dbl, Ost and DOCK10) and therefore
inhibiting amoeboid motility [109]. RasGRF2 in particular, has reduced expression across multiple human
cancers [110]. GM130-RasGRF also importantly controls levels of active Cdc42 at the Golgi, therefore contrib-
uting to cell polarity and directional migration in tumourigenesis [111]. Overall, down-regulation of negative
regulators such as the RasGRFs, overexpression of exchange factors including DOCK10 and signalling from
transcription factors downstream of Cdc42 contribute to increased amoeboid migration and a metastatic
phenotype [109].
Cdc42 has also been shown to drive the second mode of migration, mesenchymal migration (Figure 5).

Mesenchymal morphology and invasion have been shown to be regulated by Cdc42-MRCK signalling [112].
However, deletion of DOCK10, PAK2 or N-WASP, which all contribute to amoeboid migration in melanoma
cells, also resulted in an elongated morphology, implicating more Cdc42 pathways in mesenchymal migration
[49]. Although less well studied, Cdc42 is also active in collective migration [105].

Conclusions and future perspectives
Overall, it is clear that the pathways Cdc42 controls are potential targets for therapeutic intervention in cancer,
despite the lack of driver mutations identified in Cdc42 itself. There are multiple alterations found in Cdc42’s
regulators and effectors, particularly its activators, the GEFs, and its downstream kinases. However, despite
growing indications of the importance of Cdc42 signalling axes therapeutically, the role of all of the Rho family
GTPases still requires more rigorous experimental validation in clinically relevant models. There has however
been progress in the application of 3D models to study the biological roles of the GTPases and their binding
proteins [113,114], with Cdc42 identified as a key regulator in the formation of single cell 3D invasion tunnels
[115].
The biological challenges involve targeting this key switch of multiple signalling pathways, as highlighted by

the recent systems-based studies of Rho family networks [45,46]. Inhibiting a signalling node protein with
functions essential to normal physiology is no small task. There is acknowledgement within the field of the
need to identify which subtypes of cancer would benefit from a potent and selective Cdc42 inhibitor if one
were available [17]. Nevertheless, the role of Cdc42, in migration and in regulation of specialized invadopodia
and extracellular vesicles, positions it at the centre of multiple investigations into cell invasion and metastasis
in different cancer types. There is clearly still more to understand including its response and contribution to
the mechanisms of stromal and ECM regulation. As more receptor signalling axes are found to converge on
Cdc42 controlled signalling pathways, tractable extracellular receptors are also emerging for potential thera-
peutic inhibition. Cdc42 and its regulatory and effector protein partners continue to demonstrate an ever-
central role in the molecular subversion of signalling in cancer.

Perspectives
• Importance of the field: Cdc42 is one of the ‘classical’ Rho GTPases and acts as a central

signalling node for pathways regulating cell migration, apicobasal polarity and vesicle traffick-
ing. A complete understanding of its structure, membrane localization, regulation and down-
stream signalling is essential to an assessment of its overall contribution to pathologies in
different tissue types.

• Current thinking: In cancer, multiple oncogenic alterations are found in Cdc42 regulating
GEFs and its downstream kinases, and Cdc42 is known to regulate signalling pathways con-
trolling cellular processes of migration and invasion via its control of specialized invadopodia
and extracellular vesicles.

• Future directions: There is more to understand of the contribution of Cdc42 to the mechan-
isms of cancer cell migration, invasion, stromal and ECM regulation. This will contribute to
understanding the relevance of inhibiting Cdc42 signalling axes therapeutically.
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