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ABSTRACT

The cellular morphology and sub-cellular spatial structure critically influence the function of microbial cells. Similarly, the
spatial arrangement of genotypes and phenotypes in microbial communities has important consequences for cooperation,
competition, and community functions. Fluorescence microscopy techniques are widely used to measure spatial structure
inside living cells and communities, which often results in large numbers of images that are difficult or impossible to
analyze manually. The rapidly evolving progress in computational image analysis has recently enabled the quantification of
a large number of properties of single cells and communities, based on traditional analysis techniques and convolutional
neural networks. Here, we provide a brief introduction to core concepts of automated image processing, recent software
tools and how to validate image analysis results. We also discuss recent advances in image analysis of microbial cells and
communities, and how these advances open up opportunities for quantitative studies of spatiotemporal processes in
microbiology, based on image cytometry and adaptive microscope control.
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INTRODUCTION

Optical microscopy has long been an important technique for
characterizing and understanding the microbial world. A key
advantage of microscopy over other techniques for character-
izing microbes is that it can acquire data for living cells with
high spatial resolution. With the discovery of fluorescent pro-
teins and improvements of fluorescent reporters, it has become
possible to specifically label particular components of cells and
follow cellular functions using microscopy (Specht, Braselmann
and Palmer 2017). The benefits of highly specific labeling and

high spatial resolution can be leveraged with a growing list of
fluorescence-based live-cell microscopy techniques, which have
been reviewed recently (Power and Huisken 2017; Schermelleh
et al. 2019). These microscopy techniques are optimized for par-
ticular samples and imaging requirements to enable imaging
from the length scale of single molecules to the length scale of
microbial communities, in two and three spatial dimensions.

As an alternative to optical microscopy, spatial sequenc-
ing techniques and imaging mass spectrometry are currently
emerging for fixed samples (Heacock-Kang et al. 2017; Kom-
pauer, Heiles and Spengler 2017; Rodriques et al. 2019; Geier
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et al. 2020; Pareek et al. 2020), which are promising even more
information than fluorescence-based microscopy. However,
these techniques are technically complex and not yet widely
available. Research areas in microbiology that depend on
dynamics and spatial information, such as microbial cell biol-
ogy or microbial community research, therefore often rely on
fluorescence-based microscopy for living or fixed samples.

After the acquisition of fluorescence images, the extraction
of quantitative properties from such images is a crucial, but
unfortunately difficult, step in the analysis of experiments. In
the past, image analysis in biology has often relied on manual
quantification. However, manual analysis suffers from limited
precision and becomes simply impossible when hundreds, thou-
sands or even more images need to be analyzed. The rapidly
improving accuracy and capabilities of computational image
analysis are currently revolutionizing the quantification of bio-
logical processes from images (Caicedo et al. 2017; Smith et al.
2018).

This review first provides an overview for how bacterial cells
and communities can be detected in images using traditional
image analysis and convolutional neural networks, and how quan-
titative properties can be extracted after the object detection.
This discussion is supported by an overview of recent image
analysis tools (Box 1), general tips for using these software
tools (Box 2), and guidance for quality control of the image
analysis results (Box 3). A glossary of specific terms used in
image processing is given in Box 4. When the terms explained
in the glossary are used for the first time in the text, they
are highlighted by italics. Finally, we provide an overview of
new opportunities that arise from the recent improvements
achieved in image analysis, with a specific focus on image
analysis-driven phenotyping of microbial systems, augmented
microscopy, and automated data acquisition aided by image
analysis.

Detection of microbial cells and communities in images

In order to quantitatively analyze cells or communities in
images, these objects have to be detected computationally. The
first goal in automated image analysis is therefore to iden-
tify the regions in images where the objects are located that
should be analyzed, and separate them from the background
and from objects that should not be analyzed. This task is typ-
ically referred to as semantic segmentation (Box 4). Examples of
semantic segmentation are the detection of all bacterial cells in
an image, or the distinction of bacterial cells from fungal cells
and from background in an image, or the detection of micro-
colonies in an image. Although this task can be obvious to a
human, it is a difficult problem in automated image analysis,
because computational rules have to be found for assigning each
image pixel to either the foreground (or different categories of
foreground, such as bacteria, fungi) or the background. Semantic
segmentation can be particularly challenging when the image
background is uneven or when the fluorescence signal-to-noise
levels are low. For some analyses, semantic segmentation is
already sufficient, e.g. if the average fluorescence of all bacterial
cells in the field of view needs to be quantified.

With current fluorescence-based microscopy techniques, it
has become common to acquire images with single-cell res-
olution, or even sub-cellular resolution (Turkowyd, Virant and
Endesfelder 2016; Heintzmann and Huser 2017; Schermelleh
et al. 2019). This image quality makes it often possible, at least for
a human adult, to distinguish each cell in the image. The process

of computationally identifying each individual cell separately in
the image is termed instance segmentation. When the cells are far
apart in the image, instance segmentation can be relatively easy.
However, for images where the cells are close together, achieving
perfect instance segmentation is a challenge (Vicar et al. 2019),
which is particularly difficult for dense bacterial communities
or during cell division. The availability of an accurate instance
segmentation is a requirement for downstream analyses of indi-
vidual cells.

There are many different methods for semantic and instance
segmentation. Broadly, they can be classified as traditional
image analysis methods and machine learning methods.
Although most image analysis tools for microbiology applica-
tions currently rely on traditional image analysis, we expect that
in the next few years, traditional object detection methods will
be replaced by convolutional neural networks for many com-
mon image analysis workflows. Nevertheless, it is important to
understand traditional segmentation methods in order to recog-
nize the capabilities and limitations of the current image anal-
ysis tools. In the next section we therefore discuss traditional
segmentation methods, followed by an overview and outlook for
segmentation using convolutional neural networks.

Traditional methods for microbial object detection

To understand the approach on which computational object
detection in images is built, it is important to appreciate some
basic properties of images. Highly sensitive scientific cameras
(or point-scanning confocal microscopes) typically acquire two-
dimensional (2D) digital grayscale images—one such 2D image
is acquired for each channel and/or imaging plane. A 2D image
is simply a 2D array (or ‘matrix’) of numbers representing the
intensity values of each pixel. The detection of objects in images
is then generally based on mathematical operations on this
matrix (Gonzalez and Woods 2018). A basic mathematical oper-
ation in image analysis is the convolution of the image matrix
with a kernel, referred to as filtering. When filtering, each pixel
of the image is modified based on its neighborhood, resulting
in a new image. For example, noise in images can be reduced
by averaging pixels over their local neighborhood, resulting in
a slightly blurred image. Other choices and combinations of
kernels may lead to filters that sharpen the image, emphasize
edges, or amplify the signal of structures that have a particular
size (e.g. the cell size) to facilitate object detection (Gonzalez and
Woods 2018).

In traditional image analysis, images are typically processed
by consecutively applying several different filters to achieve a
background removal, an enhancement of the signal-to-noise
level, and emphasis of structures of interest (illustrated in Fig. 1).
Although kernel sizes can be automatically set based on the size
of the cells (or colonies) that should be analyzed, the choice and
order of filters is ultimately guided by the experience of the per-
son who develops the code. If the quality or structure of the
input images are changed, the parameters and filters often need
to be adapted. To achieve a semantic segmentation that sepa-
rates the objects of interest from the background, a threshold is
then typically applied to images that have previously undergone
filtering, resulting in a binary image termed ‘mask’, which only
contains values of 1 and 0 for the foreground and background
respectively (Fig. 1). A series of morphological operations can
then be applied to the binary image so that the mask image rep-
resents an accurate semantic segmentation. These morpholog-
ical operations can for example be the removal of small objects,
filling of objects with holes, and widening or narrowing objects,
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Box 1:
Overview of recent software tools for microbial image analysis

Tremendous effort has been put into the development of many user-friendly tools for image analysis in prokaryotic cell biology
and microbial community research. Below, we provide an overview of recent tools that are available for segmentation and/or data
analysis following segmentation. While some of these tools are specialized for particular image types, others can be applied to a
wider range of image types and research questions. It should be noted that the functionality summarized in the column ‘scope
of tool’ is not a comprehensive list for the respective tool.
Many of the tools described below rely on traditional segmentation methods and offer a variety of settings to be modified by
the user for optimal segmentation results. Tuning these parameters makes the methods applicable to a wide range of images,
with different object sizes, signal-to-noise ratios or intensity ranges, which may vary from application to application. In many
cases, default parameters are provided that yield reasonable results for most image types. However, it is beneficial for users to
familiarize themselves with the options that are available and compare outputs generated by different settings for several test
images. Tips for how to get started with image analysis software tools are provided in Box 2, and a guide to validating image
analysis results is provided in Box 3.
Generalist image analysis tools, with an emphasis on tools for eukaryotes, have been reviewed recently (Eliceiri et al. 2012; Smith
et al. 2018) including additional tools to those that are listed below. General image analysis routines, including deconvolution and
powerful image visualization functionalities are also offered by commercial image analysis tools, such as cellSens (Olympus),
Huygens (Scientific Volume Imaging), Imaris (Oxford Instruments), LAS X (Leica), MetaMorph (Molecular Devices), NIS Elements
(Nikon), Volocity (Quorum Technologies) and Zen (Zeiss). As many commercial image analysis software tools and microscope
manufacturers use their own image formats, the development of the Bio-Formats library (openmicroscopy.org/bio-formats) for
standardizing image formats that are readable by most of the academia-developed software tools listed below is critically impor-
tant (Linkert et al. 2010).

Name (A-Z) Scope of tool Reference

Single cell analysis
BacStalk Single-cell segmentation, tracking, measurements of morphology,

fluorescence properties, intracellular structure and data
visualization. Focus on cells with stalks, flagella, pili.

(Hartmann et al. 2020b)
https://drescherlab.org/data/bacstalk

BactMAP Data visualization and post-processing of single-cell segmentation
results. Provided as R package and therefore compatible with any
other R functionality.

(van Raaphorst, Kjos and Veening 2020)
https://veeninglab.com/bactmap

CellProfiler,
CellProfilerAnalyst

Single-cell segmentation, classification, counting, tracking,
measurements of morphology, fluorescence properties,
intracellular structure, and data visualization. Widely used for
eukaryotic cells.

(Jones et al. 2008; Dao et al. 2016; McQuin
et al. 2018) https://cellprofiler.org https:
//cellprofileranalyst.org/

CellShape Single-cell segmentation, measurements of morphology,
fluorescence properties, intracellular structure and data
visualization.

(Goñi-Moreno, Kim and de Lorenzo 2017)
http://goo.gl/Zh0d9x

DeLTA Single-cell segmentation, demonstrated on mother machine data.
Includes neural-network based tracking and lineage
reconstruction, measurements of morphology and fluorescence
properties.

(Lugagne, Lin and Dunlop 2020)
https://gitlab.com/dunloplab/delta

MicrobeJ Single-cell segmentation, tracking, measurements of morphology,
fluorescence properties, intracellular structure and data
visualization.

(Ducret, Quardokus and Brun 2016)
https://www.microbej.com

MM3 Mother machine image analysis, segmentation via thresholding or
neural network based. Includes tracking, measurements of
morphology, fluorescence properties, intracellular structure.

(Sauls et al. 2019)
https://github.com/junlabucsd/mm3

MMHelper Mother machine image analysis, including segmentation, tracking,
measurements of morphology, fluorescence properties.

(Smith, Metz and Pagliara 2019)
https://github.com/jmetz/mmhelper

MoMA Mother machine image analysis, including segmentation, tracking,
measurements of morphology, fluorescence properties and data
visualization.

(Kaiser et al. 2018)
https://github.com/fjug/MoMA

Oufti Single-cell segmentation, tracking, measurements of morphology,
fluorescence properties, intracellular structure and data
visualization.

(Paintdakhi et al. 2016) https://oufti.org

SuperSegger Single-cell segmentation, tracking, measurements of fluorescence
properties, intracellular structure and data visualization.

(Stylianidou et al. 2016)
http://mtshasta.phys.washington.edu/web
site/SuperSegger.php

https://www.openmicroscopy.org/bio-formats/
https://drescherlab.org/data/bacstalk
https://veeninglab.com/bactmap
https://cellprofiler.org https://cellprofileranalyst.org/
http://goo.gl/Zh0d9x
https://gitlab.com/dunloplab/delta
https://www.microbej.com
https://github.com/junlabucsd/mm3
https://github.com/jmetz/mmhelper
https://github.com/fjug/MoMA
https://oufti.org
http://mtshasta.phys.washington.edu/website/SuperSegger.php
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Box 1:
Continued

Name (A-Z) Scope of tool Reference

Microbial community analysis
BiofilmQ Cube-segmentation or import of single-cell segmentation.

Includes spatial and temporal measurements of fluorescence,
cytometry inside biofilms, community architecture, global
measurements of microbial communities and data visualization.

(Hartmann et al. 2021)
https://drescherlab.org/data/biofilmQ

Comstat, Comstat2 Global biofilm segmentation, global measurements of microbial
communities.

(Heydorn et al. 2000; Vorregaard 2008)
http://www.comstat.dk

Daime Global biofilm or object segmentation. Includes fluorescence and
abundance measurements, classification of cell types, spatial
arrangement analysis and data visualization.

(Daims, Lücker and Wagner 2006)
https://dome.csb.univie.ac.at/daime

General segmentation tools
DeepCell 2.0 Online platform for image analysis using neural networks,

including pre-trained models and collection of jupyter notebooks
to facilitate training and usage of own models.

(Bannon et al. 2018) http://www.deepcell.org

Fiji, ImageJ General tool combining different image analysis workflows and
many plugins for specialty applications, including segmentation,
quantification and data visualization.

(Schneider, Rasband and Eliceiri 2012;
Gómez-de-Mariscal et al. 2019)
https://fiji.sc/https://imagej.net

ilastik Machine-learning based segmentation, counting, tracking,
classification, measurements of morphology, fluorescence
properties.

(Berg et al. 2019) https://www.ilastik.org

ImJoy Online and offline platform to apply and share deep learning
methods. Various plugins, including image annotation,
segmentation, classification.

(Ouyang et al. 2019) https://imjoy.io

Icy Platform with many image analysis protocols, plugins, including
segmentation, fluorescence quantification, and data visualization.
Includes possibility for graphical programming.

(De Chaumont et al. 2012)
http://icy.bioimageanalysis.org/

ZeroCostDL4Mic Online platform for image analysis using neural networks via
Google Colab including image segmentation, restoration,
reconstruction and augmentation. Based on jupyter notebooks.

(von Chamier et al. 2020) https://github.com
/HenriquesLab/ZeroCostDL4Mic

resulting in the final semantic segmentation (Srisha and Khan
2013).

When individual cells can be visually discerned in images, it
is possible to qualitatively pass judgment on the accuracy of the
semantic segmentation by comparing the segmentation result
with the input image. Such qualitative judgements reach their
limit when individual cells cannot be visually distinguished due
to crowding or lack of resolution. For example, when measuring
the biovolume of a microbial community such as a biofilm with-
out single-cell resolution, the pixel location of the biofilm edge
is not uniquely defined, as the biofilm edge is typically char-
acterized by a fluorescence signal gradient that spans several
cell diameters. Different segmentation algorithms will therefore
identify the biofilm edge to be at slightly different locations. As
images of microbial communities without single-cell resolution
are commonly analyzed in biofilm research, the need for accu-
rate semantic segmentation has led to a remarkable number of
different algorithmic solutions for biofilm biovolume detection
(Heydorn et al. 2000; Yang et al. 2001; Beyenal et al. 2004; Yerly
et al. 2007; Renslow, Lewandowski and Beyenal 2011; Klinger-
Strobel et al. 2016). As illustrated by the development of so many
solutions to a problem, traditional semantic segmentation pro-
vides users with a lot of freedom in terms of the filters, thresh-
olding and morphological operations, which each come with a
set of parameters that can be tuned. A systematic comparison
of the accuracy of segmentation results based on quantitative

metrics is therefore needed for any image analysis workflow, as
described in Box 3.

Following semantic segmentation with traditional computa-
tional techniques as outlined above, further processing needs
to be applied to achieve an accurate instance segmentation
result (Fig. 1). Traditional instance segmentation typically relies
on different types of edge detection algorithms (Roberts 1965;
Canny 1986; Sobel 2014), the watershed algorithm (Beucher
and Meyer 1993), skeleton algorithm (Lee, Kashyap and Chu
1994), or any other operation that works for a particular type
of image. Traditional instance segmentation forms the basis
of most current image analysis tools for microbiology (Box
1), including currently popular tools for bacterial cell biology
in 2D images (Ducret, Quardokus and Brun 2016; Paintdakhi
et al. 2016), and for 3D images of bacterial biofilm communities
(Drescher et al. 2016; Yan et al. 2016; Wang et al. 2017; Hartmann
et al. 2019).

Traditional image processing approaches can provide accu-
rate results for semantic and instance segmentation, but they
have substantial limitations. Usually the selection and order
of filters that are applied, the filter parameters, as well as the
thresholding and morphological operations have to be adapted
in cases when the cells are close together or even touching each
other. Similarly, input images that differ in terms of signal-to-
noise levels, cell sizes, image background, or distribution of cell
sizes, require the analysis algorithms to be adapted, limiting

https://drescherlab.org/data/biofilmQ
http://www.comstat.dk
https://dome.csb.univie.ac.at/daime
http://www.deepcell.org
https://fiji.sc/https://imagej.net
https://www.ilastik.org
https://imjoy.io
http://icy.bioimageanalysis.org/
https://github.com/HenriquesLab/ZeroCostDL4Mic
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Box 2:
Getting started with image analysis tools

The first step towards successfully performing quantitative image analysis is to choose the image analysis tool that is the best
fit for the purpose at hand. Since this decision affects all other processing steps, it is beneficial to take the time to thoroughly
research which tools are available and most suitable to perform the desired analysis. For this, the following questions may be
used as a first guide.
� Is there any tool specifically developed for the desired purpose, or a similar purpose? There is a plethora of specialized tools avail-

able, some of which might fit ideally to the question. There are more image analysis tools developed for eukaryotes than for
prokaryotes, but some tools that were originally developed for eukaryotes may also work for prokaryotes and vice versa.

� Is the tool still actively maintained? Is there a way to contact developers in case that questions or problems arise?
� How detailed is the documentation, and are there tutorials? Extensive documentation and tutorials are important for learning how

to use a tool without constant access to the developers.
� Is there a community around the tool? Some widely used tools, especially for research on eukaryotes, have grown an active com-

munity around them, with users helping each other, e.g. via a forum, such as image.sc.
� Is the tool based on a graphical user interface or does it require coding? If tools require coding, it is important to have a look at example

scripts that are (hopefully) provided, to obtain a feeling for the level of coding that is required.
� Does the tool cover all steps in the desired analysis? Some tools provide only segmentation or only data analysis and visualization,

while others provide a whole workflow. Choosing a tool that combines analysis steps may save time in the future. When using
several different tools for different steps, data format compatibility is critical.

Once a suitable tool has been identified for an image analysis task, a series of test images should initially be used by new users
to get started and familiarize oneself with the user interface, options, analysis sensitivity, and analysis results. Some tools also
offer test data for download, which can be useful for a first trial, but do not replace the user’s own test images. Test images should

� be raw unmodified images, without compression,
� include examples of images which are later going to be analyzed by the tool,
� cover the full variety of expected data,
� cover the full variety of different imaging conditions.

Following the guidelines given in the tool’s documentation or tutorials, the test data should be used to explore different options
and analysis pipelines available with the tool. At this stage,

� explore one relevant analysis option or parameter at a time, making use of its full dynamic range to gain intuition on its effect,
� use visual feedback of the effect of each option or parameter on the analysis result, if possible after each processing step,
� use the full range of test data to ensure robustness of the processing pipeline,
� if available, use annotated image data to validate results (see Box 3).

Finally, do not hesitate to reach out for help when encountering a problem. Especially when getting started, some aspects of the
program may be tricky to figure out, and advice from other users or the developers can save you a lot of work and trouble. If
questions are answered in a forum-like style, exploring previous threads will also provide valuable information.

their range of applicability without manual parameter adjust-
ments.

Convolutional neural networks for microbial object
detection

By bypassing the limitations of traditional image analysis
approaches, deep learning methods, such as convolutional neu-
ral networks (CNN) have dramatically improved segmentation
accuracy in recent years not only for microscopy images, but
for any type of image content (Caicedo et al. 2019). Given suf-
ficient training data and computational resources, they can
achieve highly accurate semantic or instance segmentation on
a wide variety of cell types (Ronneberger, Fischer and Brox 2015;
Schmidt et al. 2018; Hollandi et al. 2019; He et al. 2020; Stringer
et al. 2020). With the appropriate network architectures, the appli-
cations of CNNs for biological image analysis are very diverse,
ranging from classification tasks (e.g. identifying cell states), to
image restoration and segmentation (Weigert et al. 2018; Moen
et al. 2019a).

The performance of CNNs is closely linked to the network
architecture design, but also strongly dependent on the quality

and amount of training data that is available. For object detec-
tion tasks, training data consists of a pair of a raw image and
its corresponding segmentation ground truth, e.g. images in
which the locations of the cells are annotated (Fig. 2A). When
using experimentally acquired images as raw input, this ground
truth usually needs to be obtained via manual annotation, a
labour-intensive task that can quickly become a bottleneck in
the image analysis pipeline. Useful tools for 2D and 3D man-
ual image annotation are available, including napari and Anno-
tatorJ/ImageJ (Napari Contributors 2019; Hollandi and Horváth
2020). It is important to recognize that manually annotated
image segmentations are not free from error or uncertainty.
Inaccuracies of the training data can be learned by the CNN and
cause systematic errors in the segmentation results of the CNN.

To overcome the challenge of obtaining a large amount
of highly accurate manual annotations, several approaches
have proven successful in the recent years. Image augmentation
(Shorten and Khoshgoftaar 2019), for example, offers an option
to increase the amount of training data with basic image trans-
formations. Another common strategy to reduce the amount
of new training data required for obtaining accurate segmenta-
tion results is termed transfer learning (Weiss, Khoshgoftaar and
Wang 2016). Here, CNN models that have previously been trained

https://forum.image.sc/
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Box 3:
Validation of automated image analysis results

When performing automated image analysis, it is important to be aware of the possibility of introducing artefacts and quan-
titative biases in several steps of the analysis. In the case of image analysis based on traditional segmentation methods, these
errors can stem from inappropriate parameter settings, for example regarding filter kernel sizes, image edge effects that are
unaccounted for, or an unsuitable choice of the thresholding method for the given image content or image quality. Regarding
neural networks, a common risk is the over-fitting of parameters, such that training data is perfectly captured, but performance
on unseen image content is poor. Uncaught, these segmentation errors propagate through the downstream analysis, skewing
any quantitative result and interpretation. It is therefore important to carefully check analysis results, especially when starting
to work with an unfamiliar tool or different type of data than before.
There are different approaches to validate image analysis results. Validation can be performed qualitatively, by picking examples
of raw images and visually comparing them side-by-side with the final segmentation result or different processing steps. This
approach will reveal if there are serious issues with the analysis. However, a systematic quantitative validation approach is
often better suited, as it can also determine the segmentation accuracy when the results appear qualitatively correct. For a
quantitative analysis of the segmentation accuracy, some example images need to be manually annotated to obtain a ground
truth segmentation, to which the automated image analysis results can be compared. This quantitative approach helps to find
the best segmentation method, or the most suitable tool for the analysis of a specific data set, and it provides unbiased guidance
towards optimal parameter settings for the analysis pipeline.
An annotated test data set should include the full variety of images that the pipeline is applied to, as explained in Box 2. Tools
can then be evaluated with the help of the intersection over union (IoU) measure (Fig. 4A). For two objects, their IoU is calculated
by dividing their overlapping area by their unified area, yielding 1 for perfect agreement and 0 for no overlap at all. An object
identified by the segmentation pipeline is considered matching if an annotated object exists, such that their IoU exceeds a certain
threshold. It is then called a true positive (TP). If no match is found, the object is considered to be a false positive (FP). Similarly,
each annotated object, which is not represented by a segmented object by the above measure, is a false negative (FN).
To quantify segmentation quality, several measures depending on the count of TP, FP and FN can be used, including
� precision: T P

T P+F P ,
� Jaccard index: T P

T P+F P+F N ,
� recall: T P

T P+F N ,
� Dice index: 2T P

2T P+F P+F N .

As the count of TP, FP and FN depends on the threshold set for the IoU, the performance of a segmentation method is often
plotted as a function of this threshold (Fig. 4B). Other quality measures do not rely on an IoU threshold, but instead use the
overall overlap between objects in the image. Denoting # as the count of pixels belonging to an object, examples are (Rubens
et al. 2020):

� Overlap-based Dice index: Calculated as 2#(A∩B)
#A+#B with A and B being the segmentation image and the annotated ground truth.

� Average Hausdorff distance: For each pixel belonging to an object in the segmentation, determine the distance to the closest
pixel belonging to an annotated object. Average over these distances.

� Fraction overlap: For each segmented object A, find the ground truth object with whom it has the largest overlap B. Calculate
#(A∩B)

max(#A,#B) for each of those pairs and determine the mean.
� Overlap-based Jaccard index: Calculated as #(A∩B)

#(A∪B) with A and B being the segmentation image and the annotated ground truth,
respectively.

with similar, but different, large data sets are re-trained with
system-specific training data (Moen et al. 2019a).

Another possibility for generating large training data sets
without the need for extensive manual annotation is to not
provide experimentally obtained images, but simulated training
data. With simulated training data, a perfect ground truth seg-
mentation is automatically available, as simulated data is free
from manual annotation uncertainties. This approach was suc-
cessfully used, e.g. for tracking microspheres (Helgadottir, Argun
and Volpe 2019) and bacterial cells (Zhang et al. 2020). It is worth
noting however, that developing software to produce accurate
and realistic training data resembling microscopy images is no
trivial task and may initially be at least as time consuming as a
manual annotation process.

Training a CNN is often computationally intensive, yet using
a trained CNN for generating a segmentation of new images is
typically quick and less computationally demanding (Fig. 2B).
Fast and highly accurate instance segmentation provided by
neural networks can be of tremendous use for microbiology. To

fully utilize the potential of neural networks however, it is now
necessary that user-friendly tools will be introduced allowing
for easy manipulation and training of neural networks on reg-
ular personal computers, without the need for substantial pro-
gramming expertise, access to high-performance computing, or
complex software environments. Recent steps in this direction
are already promising (Bannon et al. 2018; McQuin et al. 2018;
Berg et al. 2019; Gómez-de-Mariscal et al. 2019; Ouyang et al.
2019; Moen et al. 2019b; von Chamier et al. 2020). Integration of
CNN-based segmentation techniques into existing image anal-
ysis software tools for microbiology (Box 1) will be a major step
towards making this technology widely available.

Image analysis beyond object detection

The improvements in image segmentation accomplished by
neural networks will result in fast and accurate instance seg-
mentation of most types of objects in microscopy images within
the next few years. To obtain meaningful information from
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Box 4:
Glossary

Semantic segmentation: Objects are identified in images and distinguished by object type (e.g. bacterial cell vs. host cell vs.
image background). Each pixel in the resulting segmented image carries the information to which type of object it belongs with
the pixel value zero being assigned to background pixels (see Fig. 1). Objects of the same type (e.g. different bacterial cells) are
not necessarily separated.
Instance segmentation: Objects are identified in images and individually distinguished from each other (e.g. each bacterial cell is
distinguished from all other cells). The result is a label image (see Fig. 1), in which each pixel is assigned a number. This number
represents the unique identifier of the object that the pixel belongs to. Background pixels are assigned the number zero.
Traditional segmentation methods: Colloquial phrase used to describe segmentation approaches that do not rely on machine
learning. Traditional segmentation often includes filtering and thresholding of the raw image, followed by morphological oper-
ations.
Convolutional neural network (CNN): The basis of a neural network is a series of mathematical operations, termed layers, that
transform an input (image) into an output, also called a prediction. In a CNN, most of the mathematical operations that are
applied are convolutions, akin to filtering operations in traditional segmentation methods.
CNN architecture: The architecture of a neural network defines the specific arrangement and operations of layers that are applied
during the process of prediction. It contains a number of free parameters that are optimized to a specific (image analysis) problem
during a process called training, and it also includes several parameters that are fixed before the training (termed hyperparam-
eters).
CNN training: During CNN training, the free parameters contained in the CNN architecture are optimized based on a comparison
between the network’s prediction and ‘ground truth’ data, which can be an annotated data set. This process requires significant
computational resources, but ideally only needs to be performed once for a particular image analysis workflow. A trained network
can perform a prediction from an input image in a short time, typically seconds or less for 2D images.
Training data: Training data for a neural network consists of image/image or image/value pairs. The first element of a pair is
a raw image file, which is the same type of data that the CNN will later be applied to. The respective partner in the pair is the
desired prediction of the network. This can be, e.g. a label image representing instance segmentation or a classification value
(like bacterial cell/fungal cell/background). Generating training data often involves manual annotation of images, which can be
tedious.
Image augmentation: By applying different transformations to the training data images, such as mirroring, rotating, or skewing,
the total amount of data available for training can be dramatically increased. As a result, the CNN can make accurate predictions
for a wider range of input data.
Transfer learning: After training a CNN, an optimized parameter set has been determined for the specific CNN and the specific
training data. When wanting to apply the same CNN architecture to a different, but similar type of input image, it can be beneficial
to start the training from the already optimized parameters, potentially reducing the amount of new training data necessary to
achieve good results.
Image cytometry: Extracting a set of properties from a cell, based on an image. These features can, e.g. describe the size, shape,
fluorescence properties, or internal structure of the cell. In addition, image cytometry in communities enables the quantification
of each cell’s position with respect to other cells or the community as a whole.
Cube cytometry: When single-cell segmentation is not achievable due to insufficient image resolution or image contrast, it is
typically still possible to detect the biovolume via semantic segmentation. The detected biovolume can then be sliced into cubes
of a specific size, for example the typical cell size. For each cube, properties can be extracted analogous to single-cell image
cytometry (Hartmann et al. 2021). This approach enables the quantification of a variety of cellular properties and the spatial
context of the community, even if single-cell resolution is not available.
Dimensionality reduction: Quantitative phenotyping often relies on measuring many properties of a sample (e.g. cellular prop-
erties in image cytometry, or the expression levels in a transcriptome). When comparing phenotypes of multiple samples, each
property can be seen as an axis of a high-dimensional space, which is difficult to visualize. Each sample can then be visualized
by a single point in this high-dimensional property space. Dimensionality reduction refers to a set of techniques that repre-
sent structures of the high-dimensional space by counterparts in a space with lower dimensionality, to facilitate visualization
or interpretation. Depending on the method chosen for dimensionality reduction, different aspects of the point configuration
in the high-dimensional space may be preserved in the low-dimensional space, for example the structure of local neighbour-
hoods. Popular dimensionality reduction techniques are principal component analysis (PCA) and non-linear techniques such as
t-stochastic neighbourhood embedding (t-SNE) (van der Maaten and Hinton 2008 ), UMAP (McInnes et al. 2018), SPRING (Weinreb,
Wolock and Klein 2017), Isomap (Tenenbaum, Silva and Langford 2000) and Diffusion map (Coifman et al. 2005).
Principal component analysis: A popular linear dimensionality reduction algorithm, resulting in a number of principal compo-
nents, which represent the dimensions/axes of the lower-dimensional space. Principal components are linear combinations of
the original space dimensions and therefore they are readily interpretable.
High-dimensional cluster analysis: In a high-dimensional space, clusters of points may be identified using mathematical meth-
ods, such as k-means or hierarchical clustering. In a biological context, where high-dimensional data typically represents a
quantification of cellular properties or community properties, distinct clusters correspond to different phenotypes of cells or
communities.
Adaptive microscopy: A microscopy method that relies on a closed-loop feedback between image acquisition, live image analysis,
and motorised microscope control (see Fig. 3). The live image analysis can be used to adapt every component of the experimental
acquisition, including imaging interval and imaging region. This approach can ensure automatic optimization of the experiment
and tracking of rare events. One example of a useful application of adaptive microscopy is the imaging of a light-sensitive spec-
imen, where the time resolution is increased only during specific events such as cell division (detected by image analysis).



8 FEMS Microbiology Reviews, 2021, Vol. 45, No. 4

Figure 1. Typical segmentation workflow in traditional image analysis. A combination of filters, thresholding and morphological operations is applied to the original
image (showing Bacillus subtilis cells on agar) to first achieve a semantic segmentation, followed by an instance segmentation. Here, two blurred images are subtracted

to yield the image named ‘subtraction’. This modified image is thresholded to obtain the mask image, representing a semantic segmentation. A multitude of alternative
operations could also lead to an accurate semantic segmentation. In an instance segmentation, individual objects are distinguished, which is represented by a label
image. After segmentation, morphological operations such as a morphological dilation can help to improve the segmentation accuracy. The accuracy of segmentation
results can be quantified as described in Box 3.

Figure 2. Typical segmentation workflow using convolutional neural networks. (A), A set of training data consisting of pairs of raw images and annotated images is
used to train a convolutional neural network (CNN) indicated by a schematic icon of the network layers. The architecture of a CNN typically consists of several up-

and downscaling layers as well as convolutions between layers. (B), After training, the resulting CNN can be used to obtain segmentation predictions for unseen raw
images, which should be of the same type as the training data. Approaches for quantifying the accuracy of segmentation results are described in Box 3.

images, cells do not only have to be detected, but also queried
for their quantitative properties, such as fluorescence intensity,
intracellular structure, or morphology. Moreover, resolving the
spatial arrangements of cells with respect to each other, nutrient
sources or eukaryotic hosts, provides fruitful opportunities for
understanding the cellular interactions within microbial com-
munities, and for understanding the functions of communities.

Based on the progress in segmentation accuracy, micro-
bial image analysis can now focus more strongly on new
opportunities in cytometry, data analysis, and adaptive
microscopy approaches that are enabled by highly accurate
instantaneous object detection. Motivated by this shift in
focus, we discuss recent progress in image-based micro-
bial data analysis beyond object detection in the following
sections.
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Figure 3. Integration of single-cell image analysis with adaptive microscopy enables highly specific imaging of communities. After capturing the raw image (panel
A), cells are distinguished from background to provide a semantic segmentation as shown in panel B. These images are then further processed to identify individual
cells, providing an instance segmentation (C). For each cell, a list of properties can be quantified from the imaging data (D). These properties can be interpreted as
the dimensions of a high-dimensional space where each cell is represented by one point. (E), A dimensionality reduction, such as principal component analysis, may

uncover distinct clusters in this image cytometry parameter space, which correspond to phenotypically different sub-populations. (F), Based on the high-dimensional
cytometry analysis, the next experimental steps can be determined, for example zooming in on only those parts of the community with particular phenotypes, to
increase the specificity and resolution of the experimental procedure. This concept of live image analysis and adaptation of the microscopy acquisition parameters
may be repeated in a feedback loop to optimize and automate experiments.

Figure 4. Schematic figure of the intersection over union (IoU) and the segmentation accuracy for different image analysis methods, measured as a function of the
IoU threshold. (A), Visualization of the IoU, which is defined as the fraction between the size of the intersecting area between two regions and the size of their union.
(B), In this schematic plot, different colors represent different segmentation methods, with different segmentation performance. High Jaccard index values indicate a
high segmentation accuracy. Note that the best method for a particular choice of IoU threshold does not need to be the best method for all threshold values.

Image cytometry of individual microbial cells

The increasing interest in bacterial cell biology, phenotypic het-
erogeneity and stochastic gene expression has generated the
need for image-based analysis of single cells and sub-cellular
structures (Kentner and Sourjik 2010; van Teeffelen, Shaevitz
and Gitai 2012). A range of image analysis software tools have
been made available that have increased in segmentation accu-
racy and functionality over the years (Guberman et al. 2008;
Jones et al. 2008; Sliusarenko et al. 2011; Young et al. 2012;

Mekterović, Mekterović and Maglica 2014; Vischer et al. 2015;
Ducret, Quardokus and Brun 2016; Paintdakhi et al. 2016; Stylian-
idou et al. 2016; Balomenos et al. 2017; Goñi-Moreno, Kim and
de Lorenzo 2017; Kaiser et al. 2018; Sauls et al. 2019; Smith, Metz
and Pagliara 2019; Lugagne, Lin and Dunlop 2020; van Raaphorst,
Kjos and Veening 2020; Hartmann et al. 2020b).

Recent software tools for microbial cell biology are high-
lighted in Box 1, and we provide suggestions for how to get
started with using image analysis tools in Box 2. These tools are
mostly designed for 2D images containing just a single layer of
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cells, acquired with high resolution microscope objectives. Such
images can be obtained with cells growing between a glass cover
slip and an agar pad (Young et al. 2012), in microfluidic chemo-
stat chambers that are only one cell diameter high, such as the
‘mother machine’ (Wang et al. 2010; Kaiser et al. 2018) or simi-
larly shallow but larger bioreactors (Dal Co, van Vliet and Ack-
ermann 2019; Leygeber et al. 2019). Software tools designed for
bacterial cell biology typically employ traditional image analy-
sis approaches for instance segmentation, followed by the cal-
culation of an intracellular coordinate system along the cell cen-
terline, which ultimately provides various options for cytomet-
ric quantifications (based on fluorescence, absorbance, cell mor-
phology, cell size, sub-cellular protein localization). These tools
can include specific functionality for the analysis of stalks, flag-
ella, and pili emerging from single cells (Hartmann et al. 2020b),
or for particularities of the mother machine growth geometry
(Kaiser et al. 2018; Sauls et al. 2019; Smith, Metz and Pagliara
2019; Lugagne, Lin and Dunlop 2020). The most recent tools also
include cell tracking and lineage tracking functionality (Box 1).
Generally, the existing software packages are a powerful toolset
for microbiologists that are widely used for image cytometry in
2D, and are robust enough for screening large mutant libraries
(Campos et al. 2018; Werner et al. 2009).

Image cytometry in communities

Image analysis of microbial communities, most notably biofilms,
has typically not relied on the separate detection of individ-
ual cells. Instead, the focus has been on analyzing global com-
munity properties, such as volume, morphology, surface char-
acterizations (Heydorn et al. 2000; Beyenal et al. 2004; Mueller
et al. 2006; Vorregaard 2008; Klinger-Strobel et al. 2016; Kritikos
et al. 2017), which can enable rapid screening of mutant libraries
or environmental conditions (Kritikos et al. 2017; Canette,
Deschamps and Briandet 2019), based on confocal microscopy
(Schlafer and Meyer 2017; Jonkman et al. 2020). Tools devel-
oped for microbial ecology provide additional features including
cell morphology analysis and fluorescence correlation functions
(Liu et al. 2001; Daims, Lücker and Wagner 2006). Provided that
images of communities with single-cell resolution are available,
it is possible to compute an accurate instance segmentation and
track cells during bacterial community growth in 3D using tradi-
tional image segmentation techniques (Drescher et al. 2016; Yan
et al. 2016; Wang et al. 2017; Hartmann et al. 2019; Paula, Hwang
and Koo 2020). CNNs will further improve the instance segmen-
tation accuracy in biofilms in the future. Single-cell imaging
of bacterial biofilm dynamics was recently used to understand
the response of biofilms to antibiotics (Stewart et al. 2013; Dı́az-
Pascual et al. 2019), and phages (Vidakovic et al. 2017), as well as
characterize biofilm dispersal (Singh et al. 2017) and mechanical
interactions between cells in connection with individual based
modeling (Beroz et al. 2018; Hartmann et al. 2019; Pearce et al.
2019).

For systems where single-cell resolution cannot be optically
achieved, or where single-cell resolution is not necessary, a large
number of community properties can still be measured spa-
tially using cube cytometry (Hartmann et al. 2021). In this concept,
after semantic segmentation, the image volume of the commu-
nity is segmented into cubes (which can have the same size as
single cells) to obtain a spatial context for measurements that
are then performed on each cube analogous to the single-cell
case. A potential drawback of the cube segmentation is that
for communities with heterogeneity in cell size, the number of
cells in a cube can vary. However, cube-based cytometry can

enable spatially-resolved quantifications of microbial commu-
nities even when optical resolution does not permit single-cell
segmentation, for example in microcolonies on agar, inside host
intestines, or for other samples that are difficult to image with
high-resolution microscope objectives.

The progress in single-cell segmentation and cube segmen-
tation enables cytometry for cellular phenotyping in the con-
text of communities. Precise phenotyping of cells in communi-
ties is important in order to characterize the species composi-
tion, phenotypic heterogeneity, and development of microbial
communities from images. Phenotyping of cells within commu-
nities could be used, e.g. to reliably distinguish cells from dif-
ferent species and to identify cell cycle states, phenotypic sub-
populations, or cellular differentiation states, which are com-
mon in spatially structured bacterial communities (Stewart and
Franklin 2008).

Generally, it is desirable to be able to quantify as many
different properties as possible for each cell in the commu-
nity to increase the phenotyping precision of cells from images
(Medyukhina et al. 2015; Hatzenpichler et al. 2020; Hartmann et al.
2021). The longer this list of distinct cytometric properties that
can be accurately measured, the higher the precision with which
phenotypic differences can be resolved for each cell. Therefore,
it is advantageous to expand the list of different cellular prop-
erties that can be measured from images to the absolute maxi-
mum. The excellent current software tools for 2D image analy-
sis for microbial cell biology are able to quantify several impor-
tant properties per cell, such as the average fluorescence, prop-
erties of fluorescent spots, and also the location, area, and mor-
phology of each cell (Ducret, Quardokus and Brun 2016; Paint-
dakhi et al. 2016; Hartmann et al. 2020b). Similar cellular fluores-
cence characterizations are also possible in 3D bacterial biofilms
(Daims, Lücker and Wagner 2006; Hartmann et al. 2021). Yet
the number of different fluorescence intensity-based measure-
ments is ultimately limited, because only a few different fluores-
cent reporters can be used simultaneously, due to their overlap-
ping fluorescence excitation and emission spectra. Even when
pushed to the limit (Valm et al. 2017), cellular fluorescence mea-
surements therefore result in only a limited number of distinct
quantitative cytometric parameters per cell.

The spatial resolution that microscopy offers could be used
to quantify numerous additional cytometric properties, which
can be a little bit more abstract than the properties that are typ-
ically used for cytometry. Fluorescence distributions and corre-
lations can be measured cell-internally or in the spatial context
of a cell’s neighborhood. Similarly, cellular orientations, density
and texture can be determined for the neighbourhood of a cell
and put into context with its spatial position (e.g. deep inside a
microbial community vs. close to its exterior, or the relative posi-
tioning to eukaryotic host cells). Including such spatial measure-
ments in the list of properties determined for each cell, as imple-
mented for example in BiofilmQ (Hartmann et al. 2021), allows
for a more precise characterization of single-cell and commu-
nity phenotypes, to improve the resolution at which different
behaviors and states can be distinguished.

Towards high-dimensional data analysis with spatial
information

Once a sufficient number of cytometric properties has been
extracted from the images for each cell, cell-neighbourhood, or
entire community, each of these properties can be considered
as a different dimension in a high-dimensional space. Each cell,
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neighbourhood, or entire community can then be represented by
a point in this high-dimensional space. The proximity of points
in this space represents how phenotypically similar particular
cells, neighborhoods, or communities are to each other.

The high-dimensional data sets resulting from image cytom-
etry therefore have a structure that is analogous to data sets
generated by flow cytometry or single-cell RNA sequencing
(Aghaeepour et al. 2013; Weinreb, Wolock and Klein 2017), even
though the measured cellular properties are different. There-
fore, similar data analysis strategies can be employed. For exam-
ple, dimensionality reduction using principal component analysis
(Box 4), or approaches that preserve local neighborhood struc-
tures during dimensionality reduction, such as t-SNE (van der
Maaten and Hinton 2008), UMAP (Becht et al. 2019), or SPRING
(Weinreb, Wolock and Klein 2017), provide a simplified visu-
alization of the data and give an overview of the results that
can sometimes directly be used for interpretation, e.g. for phe-
notyping cells or communities. Since distinct clusters in the
high-dimensional property space typically correspond to differ-
ent phenotypic states or behaviors, the application of a high-
dimensional cluster-analysis enables a quantitative identification
of these phenotypes, which could otherwise stay hidden. Such
quantitative approaches for phenotyping avoid any biases that
are inherent in manual phenotyping. A visualization of this clas-
sification in a low-dimensional representation may then further
reveal transitions between cell states or community phenotypes
(Haghverdi, Buettner and Theis 2015).

An important qualitative advantage of image cytometry com-
pared with other single cell cytometry techniques is that image-
based approaches can quantify the spatial context of each cell
in situ within the community. The spatial location of a cell in the
community, or the spatial location relative to a host cell, and
perhaps the timepoint in a time series are therefore dimensions
in the high-dimensional space resulting from image cytome-
try. These spatial and temporal dimensions, however, are quali-
tatively different from cellular phenotypic parameters such as
fluorescence intensity or cell shape. More analysis strategies
for single-cell phenotypic data in a spatiotemporal context are
needed, not just for image cytometry of bacterial communities,
but also for spatial RNA sequencing (Burgess 2019; Moncada et
al. 2020).

Towards image analysis-driven microscopy

The major improvements in segmentation, image cytometry,
and high-dimensional data analysis described above also open
up new possibilities for how microscopy and image acquisition
can be performed.

By applying CNNs trained to restore high-quality microscopy
images from low signal-to-noise data (Weigert et al. 2018),
images can be acquired using much lower laser power, to reduce
phototoxicity of the excitation illumination. In some cases, the
use of fluorescence microscopy can even be completely avoided
by training a neural network to predict fluorescence images
from brightfield images, which dramatically reduces phototox-
icity to the sample (Christiansen et al. 2018). These microscopy
approaches are driven by image processing and do not rely on
new optical techniques, yet they allow for faster and longer
imaging of a living specimen, enabling previously unobtainable
insight into developmental processes.

The possibility to detect and classify objects in real time
during time lapse image acquisition routines also opens up a
powerful new approach to a ‘smart’ adaptive microscopy: Specific
objects, events, or developmental processes can be live-tracked

by constantly monitoring and modifying the microscope imag-
ing conditions based on live-acquired data (Fig. 3). This approach
dramatically decreases the need for manual input and observa-
tion during an experiment and enables more specific imaging,
reducing phototoxicity, and reducing the amount of unusable
data, to increase the speed at which meaningful data can be
acquired. Particularly the tracking of rare events could benefit
tremendously from an adaptive microscopy approach. By mea-
suring cytometric properties as described above, cells whose
phenotypes differ from their ancestors or neighbors may be
tracked automatically with this adaptive microscopy approach.
The faster speed at which the computer can detect events com-
pared to a human allows users to track processes that were pre-
viously impossible to follow, using such an integration of image
analysis and microscope control. This concept of live-adapted
microscopy was used in pioneering work on bacterial motility
(Berg 1971), and more modern versions based on live image anal-
ysis were used for the imaging of a developing zebrafish (Royer
et al. 2016), the expansion of a bacterial swarm (Jeckel et al. 2019),
the growth of a bacterial biofilm (Hartmann et al. 2019), and can
be expected to find more applications in the future.

Concluding remarks

Image-based analysis of single-cell properties has been increas-
ingly used in bacterial cell biology, following the release of sev-
eral powerful image analysis tools. Similarly, software tools for
image cytometry within microbial communities have become
available, enabling the spatial and temporal characterization of
cells inside their community niches.

The precision of cellular phenotyping from images can be
improved by increasing the number of distinct properties that
are quantified for each cell, and it will be important to theoreti-
cally analyze the maximum number of meaningful quantifiable
properties, to explore the limits of cellular phenotyping preci-
sion from images. Image cytometry can result in a large amount
of data for each cell, even without a microbial community con-
text, so that an analysis framework that provides a general
path from data to interpretation, with quantification of statisti-
cal uncertainties for hypotheses testing would be an important
future development for users. Ultimately, wide-spread adoption
of quantitative image analysis techniques critically relies on
user-friendly software tools that require no (or minimal) low-
level coding. Further tools, particularly those for machine learn-
ing based instance segmentation, spatial high-dimensional data
analysis, and adaptive microscopy need to be developed, in order
to harness the full potential of these emerging techniques in
microbiology.
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