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Abstract: Hybrid carbon nanotubes (CNTs) are grown on biomass powder-activated carbon (bio-PAC)
by loading iron nanoparticles (Fe) as catalyst templates using chemical vapor deposition (CVD) and
using acetylene as carbon source, under specific conditions as reaction temperature, time, and gas
ratio that are 550 ◦C, 47 min, and 1, respectively. Specifications of hybrid CNTs were analyzed and
characterized using field emission scanning electron microscope (FESEM) with energy-dispersive
X-ray spectroscopy (EDX), transmission electron microscopic (TEM), Fourier-transform infrared (FTIR),
X-ray diffraction (XRD), thermogravimetric analysis (TGA), surface area Brunauer–Emmett–Teller
(BET), and zeta potential. The results revealed the high quality and unique morphologies of hybrid
CNTs. Furthermore, removal and capacity of Al3+ were optimized by response surface methodology
(RSM). However, the results revealed that the pseudo-second-order model well represented adsorption
kinetic data, while the isotherm data were effectively fitted using a Freundlich model. The maximum
adsorption capacity was 347.88 mg/g. It could be concluded that synthesized hybrid CNTs are a new
cost-effective and promising adsorbent for removing Al3+ ion from wastewater.
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1. Introduction

The environmental quality has been deteriorating on a global scale every day because of the
rapid development of industrialization and increasing infrastructure. Industrial effluents, farm wastes,
and sewage add major contaminants to the environment as they contain several toxic metals and
organic and inorganic pollutants. Toxic metal pollution is caused by the industrial waste discharged in
the water ecosystems, which severely threaten humanity and all living creatures on earth. Aluminum
is known to be extremely reactive to oxygen and carbon, and a high level of aluminum can harm
human health because of its intoxication and result in severe diseases. Hence, it is recognized as the
main factor contributing to autism spectrum disorders, Alzheimer’s disease, and neurotoxicity of the
central nervous system [1–3].
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Consequently, drinking water should not contain more than 0.05–0.20 mg/L aluminum
concentration, as reported by the Environmental Protection Agency (EPA) [4]. It is thus crucial
to remove aluminum before it is discharged into aquatic environments.

To remove toxic metal pollution from wastewater, several conventional methods have been
implemented. Those metals can be chemically precipitated with hydroxides, chelating precipitation
sulfides, membrane filtration, coagulation and flocculation, bioadsorbents, adsorption by porous
carbon materials, electrodialysis, ion exchange, flotation, and electrochemical treatments, such
as electrochemical oxidation, electrocoagulation/electrocoagulation flotation, electrodialysis, and
photoelectrochemical, sonoelectrochemical, and electrochemical reduction [5–9].

Of those techniques, adsorption is considered to be the superior technique because of its flexibility
in design, operation, cost-effectiveness, and enabling large-scale applications. Thus, various types of
component of adsorbents have been utilized for removal of toxic metals, such as sawdust [10], rice
husks [11], maize cobs [12], granulated blast-furnace slag [13], kaolinitic and giru clay [14], aquatic
plant [15], powder-activated carbon (PAC) [16], and nanomaterials [17].

Today, there is increasing interest in nanomaterials because of their excellent mechanical
performance. One of the interesting nanomaterials is carbon nanotubes (CNTs), which are been
widely studied and evaluated for water treatment because of their exceptional properties, including
nanotubes’ structure, easy separation, catalytic potential, high reactivity, small size, and large surface
area, which can be effective adsorbents for several metals. CNTs are grown using several methods,
such as arc discharge, laser ablation, and chemical vapor deposition (CVD). CVD technique is more
effective as it is a cost-effective technique and provides high-purity material under controlled growth
conditions [18].

As PAC enjoys wide precursor accessibility with its low cost and chemical alterations potentials,
it is considered to be the ideal substrate for CVD. Typically, selective growth is easy to achieve by
implementing a synthesis technique that used pre-patterned catalyst nanoparticles, including iron,
nickel, molybdenum, aluminum, cobalt, and zirconium. Xiang et al. [19] and Mustafa et al. [20]
reported synthesized CNTs on PAC using CVD in which the acetylene was utilized as the source of
carbon along with several catalysts obtained from cobalt, iron, aluminum, and nickel. While Haiyam
et al. synthesized carbon nanomaterials (CNMs) on commercial PAC loaded with nickel nanoparticles
by using methane as a carbon source [21]. Arash et al. synthesized CNTs using CVD on silicon sheets
loaded with iron and using molybdenum methane utilized as a carbon source [22]. Moreover, Zaho et
al. synthesized a significant outcome concerning the CNTs by using CVD in water and implementing
iron and molybdenum catalyst supported by a magnesium oxide substrate [23]. There was a reversal
relationship between catalyst lifetime and CNT growth rate, as noted by Chen et al. [24]. Finally,
Mamtm et al. reported that PAC could be a good precursor to CNT’s growth [25]. It is believed that
PAC’s dose does not require any chemical or physical elimination from the functional bulk material,
contrary to other substrates. Hybrid CNTs can be effectively defined as combinations of two or more
materials, or of materials and space, assembled in such a way as to have attributes not offered by any
one material alone. Furthermore, it was found that iron nanoparticles as catalyst and acetylene as
carbon source could provide pure CNTs of high quality and density. The feature of this study was to
shed some light on the unique hybrid CNTs growth and their magnetic properties, making it easier to
separate it from the liquid.

The present study investigated the impact of synthesized hybrid CNTs on biomass (bio)-PAC
as biomass precursor was loaded by iron nanoparticles (Fe) followed by CVD. The morphology
and structure properties of hybrid CNTs were characterized and analyzed by energy-dispersive
X-ray spectroscopy (EDX), field-emission scanning electron microscopy (FESEM), transmission
electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR),
thermogravimetric analysis (TGA), Brunauer–Emmett–Teller (BET), and zeta potential. The results
showed that hybrid CNTs could easily separate from water because of hydrophobicity. This could
provide a scalable process for industrial applications because of its facile operation and high removal
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performance and would be used as CNTs’ new cost-effectiveness adsorbent. In addition, response
surface methodology (RSM) with central composite design (CCD) was used for optimizing Al3+

removal. Moreover, adsorption models’ kinetic and isotherms were also examined and discussed.

2. Experimental

2.1. Materials and Reagents

For this study, iron (III) nitrate nonahydrate Fe(NO3)3·9H2O and acetone were purchased
from Friendemann Schemicit (Selangor, Malaysia); aluminum standard solution Al(NO3)3·9H2O,
hydrochloric acid (HCl), and sodium hydroxide (NaOH) were obtained from Merck (Selangor,
Malaysia); and C2H2, H2, and N2 used for hybrid CNTs growth were purchased from Alpha Gas
Solution (AGS) (Shah alam, Malaysia). The biomass powder-activated carbon (bio-PAC), which was
fabricated and optimized by our group, was utilized for the rapid and cost-effective synthesis of hybrid
CNTs [1].

2.2. Synthesis of Hybrid CNTs

2.2.1. Catalyst Impregnation

The Fe was utilized as a catalyst and added in 5 mL acetone, then mixed with (2 g) bio-PAC.
However, the mixture was sonicated at 60 ◦C for 99 min until the evaporation of acetone. Subsequently,
the bio-PAC/Fe sample was dried at 105 ◦C for 24 h. Then, the bio-PAC/Fe was calcinated at 400 ◦C for
2 h under inert gas (purified N2, 200 mL/min) [26].

2.2.2. CVD Growth

CNTs’ growth was carried out by placing (300 mg) bio-PAC/Fe in a ceramic boat with a CVD
reaction tube. A typical growth was accomplished by reduction under H2 at 550 ◦C with the flow
(160 mL/min). Thereafter, C2H2 was used as a carbon source and mixed with H2 at a 1:4 ratio. The
reaction was passed through a heated reactor for 47 min. After the completion of the reaction, the CVD
reactor was cooled to room temperature under purified N2 flow rate (200 mL/min), and then the CNTs
growth sample was obtained. Figure 1 illustrates the preparation process of hybrid CNTs.
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2.3. Characterizations

For hybrid CNTs, the surface morphology was analyzed and characterized using field emission
scanning electron microscope (FESEM) with energy-dispersive X-ray spectroscopy (EDX), model ZEISS
(Merlin, Cambridge, UK), and transmission electron microscope (TEM), (Hitachi-HT7700, Hitachinaka,
Japan). The Fourier-transform infrared (FTIR) was utilized in order to analyze both surface functional
groups and chemical bonds (Perkin Elmer, San Francisco, CA, USA). The structural phase was analyzed,
relying on the powder X-ray diffraction (XRD) by a Burker AXS D8 advance (Karlsruhe, Germany).
Whereas the determination of thermal oxidation was obtained from the thermogravimetric analysis
(TGA) using the STA-6000 thermal analyzer (Perkin Elmer, Waltham, MA, USA). Moreover, pore
size and surface area were calculated by the Brunauer–Emmett–Teller (BET) method (TriStar II 3020,
Micromeritics, Norcross, GE, USA). Lastly, the zeta potential was utilized for the measurement of
surface charge (Zeta Sizer, Worcestershire, UK).

2.4. Adsorption Study

2.4.1. Experimental Design for Optimization of Al3+ Adsorption

RSM method was utilized to optimize the removal of Al3+. The current study comprehensively
examined the three parameters’ impact and interaction, especially on the adsorption of hybrid CNTs’
dosage of 5–20 mg, pH of 3–11, and contact time of 10–120 min. Table 1 displays the actual parameters
of each run using the design of expert software (DoE, Stat-Ease, Minneapolis, MN, USA). For this
optimization study, an initial aluminum concentration of 5 mg/L was used while agitating the flasks in
a shaker at 180 rpm [27].

Table 1. List of design of experiments runs and the actual values obtained from each response.

Run Dosage
(mg/g) pH Time

(min) Response Removal (%) Response Capacity (mg/g)

1 5 11 10 93.62 93.62
2 20 3 120 96.74 24.185
3 12.50 7 65 84.68 33.872
4 12.50 7 65 84.68 33.872
5 12.50 7 10 87.86 35.144
6 5 7 65 99.26 99.26
7 20 11 120 7.08 1.77
8 12.50 7 120 77.52 31.008
9 12.50 3 65 9.08 3.632

10 20 3 10 3.16 0.79
11 12.50 7 65 84.68 33.872
12 20 7 65 87.14 21.785
13 12.50 11 65 96.84 38.736
14 5 3 10 6.54 6.54
15 5 3 120 14.54 14.54
16 20 11 10 90.58 22.645
17 5 11 120 97.52 97.52

2.4.2. Kinetic and Isotherm Adsorption

The kinetic study specifies the crucial features of the ions transfer rate, from the solution to the
surface of adsorbents, and its associated aspects. To determine the potential adsorbent application,
the adsorption system kinetic is relied on to specify the adsorbent competence [28]. Establishing
the adsorbent dosage and the pH parameters provides the kinetic study. Meanwhile, the Al3+ ion
concentrations varied in their values (3 and 5 mg/L) when the kinetic behavior was being studied,
and they were managed at various contact times depending on the equilibrium state that was reached
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at 92 min. This study applied three known kinetic models: the pseudo-first-order, pseudo-second-order,
and the intraparticle diffusion model.

The optimum condition of pH, amount of adsorbent dosage, and contact time were also taken into
consideration when conducting the isotherm study along with the optimization study. The Freundlich
and Langmuir isotherm models are the most known in the isotherm study, with both models frequently
describing the Al3+ ions adsorption to the CNTs surface where the primary concentration of Al3+ varies
from 3 to 40 mg/L.

3. Results and Discussion

3.1. Characterization and Analysis

3.1.1. FESEM, EDX, and TEM of Hybrid CNTs

The morphologies of the hybrid CNTs were obtained using FESEM, as shown in Figure 2. Figure 2a
shows that bio-PAC/Fe had a rough surface before growth and that Fe catalyst was dispersed. After
C2H2 decomposition, the hybrid CNTs significantly showed network and agglomeration of CNTs
grown on bio-PAC, providing robust evidence of Fe catalyst in the CNTs’ growth, as shown in Figure 2c.
Interestingly, the hybrid CNTs’ diameter was between 23.02–27.93 nm. Moreover, the proposed reason
for the unique CNTs growth was the Fe bottom, and the entire Fe particle pushed off the bio-PAC,
indicating a “base or root” growth model. This was caused by the weak interaction between Fe and
PAC as the Fe catalyst was physically adsorbed on PAC [29,30].

Moreover, EDX analysis was used to determine elements of materials before and after growth.
Figure 2b,d shows EDX profile for bio-PAC/Fe and hybrid CNTs, respectively. Figure 2b shows that the
Fe catalyst was successfully impregnated on bio-PAC. Consequently, Fe catalyst contributed to 2.9%,
and other impurities were also present, including C at 76.7%, O at 10.5%, and Si, Ca, Al, and Mg at
<3%. Furthermore, hybrid CNTs were observed and successfully grown on the bio-PAC surface, with
98.4% of the surface containing carbon. On the other hand, other elements dissipated from the sample,
as shown in Figure 2d, because of the reaction process.

Furthermore, for more investigation and confirming the carbon nanotubes’ growth, TEM analysis
was conducted, as shown in Figure 3. TEM images revealed the internal structure of hybrid CNTs on the
bio-PAC surface, which indicated a good quality of CNTs. Thus, the dark spots in the images represented
the metallic catalyst clusters where the carbon atoms built up the CNTs’ surrounding structure.

3.1.2. X-ray Diffraction

XRD is a rapid investigation method, mainly, which is utilized for the identification of a crystalline
and molecular structure material and can provide information on unit cell dimensions [31,32]. Figure 4
shows the XRD pattern of hybrid CNTs; there was the strongest diffraction peak at 2θ = 24.31
corresponding to (002) reflection, which corresponded to the crystalline and cylinder structure [33].
However, there were the peaks at 2θ, 32.34◦, 40.57◦, 47.53◦, 54.33◦, and 62.77◦ corresponding to (100),
(101), (004), (110), and (112) orientation, respectively. All peaks were well matched with the hexagonal
graphite structure [34].
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Figure 4. XRD (X-ray diffraction) pattern for hybrid CNTs.

3.1.3. Fourier-Transform Infrared (FTIR) Analysis

FTIR spectroscopy was used to determine the surface chemistry, i.e., characteristic functional
groups of hybrid CNTs, as depicted in Figure 5. As seen in this figure, the weak peaks 3619 cm−1

and 3444 cm−1 were attributed to O−H stretching vibration, indicating the hydroxyl group on hybrid
CNTs surface [35]. The two broad peaks at 2897 and 2819 cm−1 could be assigned to C−H stretch
vibration. Moreover, the sharp peaks at 2345 and 2227 cm−1 indicated C≡C stretching vibrations,
and the same results were reported by Minakshi et al. [36,37]. A sharp peak at 1685 cm−1 might be
attributed to C=C with C=O conjugation or the interaction of the skeletal hybrid CNTs and carboxyl
or ketone groups [38,39]. A strong and sharp peak located at 1555 cm−1 was attributed to the C=O
starching mode of the functional groups on the hybrid CNTs surface, originating from the hybridized
carbon [40]. Obviously, peaks at 1392 and 1241 cm−1 might also be attributed to N−N and CH−CH3

bonds from the intercalated N atoms between the graphite layers of nanotube walls. The band at 1127
cm−1 indicated the C−O stretching vibrations in alcohols, phenols, or ether or ester groups [41]. A
sharp peak at 867 cm−1 was assigned to CH3 group vibration.
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3.1.4. Thermogravimetric Analysis (TGA)

TGA was employed to measure the thermal stability of hybrid CNTs. TGA curve, presented
in Figure 6, shows a small weight loss resulting from the water removal at approximately 200 ◦C.
The elimination of carbon, along with the oxidation of nanotubes, which occurred at 650–750 ◦C,
was the reason behind the prevailing weight loss steps. However, the weight loss was 18.75% in the
temperature range from 100 to 1000 ◦C, indicating the decomposition of formed carbonaceous material.
The results were confirmed with FTIR spectra, as previously illustrated in Figure 4. Moreover, the
activation energy of hybrid CNTs oxidation depended on several factors, such as the number of walls,
defects, and presence of impurities. Similarly, Misra et al. recounted certain parallel trends concerning
the thermogravimetric profiles [42]. Furthermore, when the temperature raised above 1000 ◦C, the
hybrid CNTs were believed to be thermally stable as there was no further decomposition detected.Polymers 2019, 11, x FOR PEER REVIEW 9 of 19 
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3.1.5. Brunauer–Emmett–Teller (BET)

N2 adsorption-desorption isotherms of hybrid CNTs are shown in Figure 7. According to the
classification by IUPAC, A-type IV isotherm was observed, which demonstrates the generation of
mesopores resulting from hybridization and hysteresis loop corresponding to type H3 [43]. This
phenomenon was observed for hybrid CNTs prepared using other substrates [44]. Grown hybrid
CNTs decreased in the surface area of 71.42 m2/g and pore-volume 0.230 m3/g than bio-PAC because of
some pores impregnated with Fe nanoparticles (catalyst) for CNTs’ growth. The pore size indicated
that mesopores, which were 12 nm, originated from the void spaces between nanotubes and were
dominant. Table 2 shows the comparison between surface area, pore-volume, and pore size of different
synthesis nanomaterials.

Table 2. BET (Brunauer–Emmett–Teller) surface area, pore-volume, and pore size of different adsorbents.

Materials BET Surface Area (m2/g) Pore-Volume (m3/g) Pore Size (nm) References

Hybrid CNTs 71.24 0.230 12 This work
Synthesized CNTs 57.35 0.01 10 [45]

CNT/ZnCo2O4 67.60 1.103 - [46]
CNMH 164.60 0.29 9 [47]

CNT/TiO2 51.44 0.67 9.33 [48]
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3.1.6. Zeta Potential

It is crucial to classify the surface behavior’s features in the provided aqueous solutions along
with the assessment of the suspension stability [49]. Thus, the zeta potential was used to measure the
electrical potential on hybrid CNTs’ surface. The numerous pH levels determined the various samples’
zeta potential and their differences. As 10 mg of hybrid CNTs in 20 mL were dispersed, the results
observed that zeta potential values varied from 0.111 to −23 (mV) in the pH range of 3–11, as shown in
Table 3. The surface charge of hybrid CNTs is positive in acidic medium (pH < pHpzc) [50]. There was
also a noticeable reduction in surface charge, which was more negative when pH > pHpzc, causing
easy interaction with the positive ions and hybrid CNTs’ surface, and thus, finally affecting the high
adsorption process caused by electrostatic interaction [51].

Table 3. Zeta potential results of hybrid CNTs with different pH values.

Sample pH Zeta Potential (MV)

1 3 0.111
2 5 −5.255
3 7 −7.602
4 9 −10.558
5 11 −23

3.2. Application Studies

3.2.1. Optimization Study

This study considered 17 experimental runs to evaluate optimum adsorption factors by applying
RSM. Thus, the CCD model was used to conduct the experiment. The interaction effect of factors
(hybrid CNTs dosage, pH, and contact time) was investigated by fixing 5 mg/L Al3+ concentration.
Adsorption processes (removal % and capacity mg/g) were adopted as responses, as shown in Table 1.
The highest removal was 84% under adsorbent dosage of 13.5 mg/g, pH of 7, and contact time of
22.22 min. However, the highest capacity was 19.95 mg/g at an adsorbent dosage of 5.50 mg/g, pH of 4,
and contact time of 18.56 min. The experimental and predicted values were noted to have a close
correlation (R2) of Al3+ removal and capacity to be 0.9367 and 0.9779, respectively.
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The analysis of variance (ANOVA) outcomes for two responses is presented in Tables 4 and 5,
indicating models F-values that were 3.99 and 14.14 in removal and capacity, respectively. This shows
that both models are considerable. In this study, the equations of removal (%) were transferred to
inverse sqrt (y = 1/

√
(y + k)) and applied according to Equation (1). Furthermore, the capacity of the

significant model was quadratic, which was measured according to Equation (2):

1.0/Sqrt (Removal)
= +0.10 + 0.029A− 0.086B− 0.031C + 0.033AB− 7.407E
− 003AC + 0.11BC + 9.708E− 003A2 + 0.12B2 + 0.016C2

(1)

Capacity = +37.10− 24.03 A + 20.46 B + 1.03C− 21.33AB− 1.17AC− 6.05BC
+ 21.00A2

− 18.34B2
− 6.45C2 (2)

where A is Dosage, B is pH, and C is contact time.
The comparison between theoretical and experimental values is revealed in Figure 8 for removal

(%) and capacity (mg/g). Meanwhile, both the experimental and the theoretical values that were
expected by the models established in this research were found to be very close. Therefore, we came
to the conclusion that both models had effectively accomplished the interconnection between the
process variables.
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Table 4. ANOVA for Al3+ removal of hybrid CNTs.

Source Sum of Squares df Mean Square F Value P−Value Prob > F

Model 0.27 9 0.030 3.99 0.0409
A-Dose 8.642 × 10−3 1 8.642 × 10−3 1.14 0.3209
B-pH 0.074 1 0.074 9.81 0.0165

C-Contact Time 9.866 × 10−3 1 9.866 × 10−3 1.30 0.2913
AB 8.801 × 10−3 1 8.801 × 10−3 1.16 0.3168
AC 4.389 × 10−4 1 4.389 × 10−4 0.058 0.8167
BC 0.092 1 0.092 12.16 0.0102
A2 2.525 × 10−4 1 2.525 × 10−4 0.033 0.8603
B2 0.040 1 0.040 5.32 0.0544
C2 6.937 × 10−4 1 6.937E × 10−4 0.092 0.7710

Table 5. ANOVA for Al3+ capacity of hybrid CNTs.

Source Sum of Squares df Mean Square F Value P − Value Prob > F

Model 15582.14 9 1731.35 14.14 0.0010
A-Dose 5774.65 1 5774.65 47.17 0.0002
B-pH 4186.28 1 4186.28 34.19 0.0006

C-Contact Time 10.58 1 10.58 0.086 0.7774
AB 3638.90 1 3638.90 29.72 0.0010
AC 11 1 11 0.090 0.7731
BC 292.46 1 292.46 2.39 0.1661
A2 1181.14 1 1181.14 9.65 0.0172
B2 901.39 1 901.39 7.36 0.0301
C2 111.47 1 111.47 0.91 0.3718

3.2.2. Effect of Factors on Optimization of Adsorption of Al3+ by Hybrid CNTs

The section examines the interaction effect of adsorbent dosage and pH on adsorption processes
considering removal % and capacity mg/g. Figure 9 illustrates the three-dimensional surface plot,
indicating that the effect was more significant between adsorbent dosage and pH on adsorption
processes. Thus, it might be related to the increase in the adsorbent amount, which in return increased
the active sites’ concentration. As a result, the adsorption solution electrostatic charge was regulated in
accordance with the desired adsorption level by eliminating the competitive H+ cations. The adsorbent
dosage directly increased with removal when the pH and contact time were established. In the
meantime, when the adsorbent dosage increased, the capacity declined. This might be associated with
the adsorption dosage’s increase and the active adsorption sites’ conglomeration or overlapping [52,53].

In contrast, the interaction impact of contact time and pH on adsorption processes is shown in
Figure 9. The system’s failure to reach equilibrium led to a direct correlation of time with removal (%)
and capacity (mg/g). Removal (%) increased with an increase of pH to 7, and then it decreased as pH
increased. Similarly, the capacity (mg/g) was detected to reach its maximum at a pH of 4, after which it
became steady [54].

Toxic metals are well-known precipitators when pH values are high [55]. Therefore, a section of Al
in the solution is precipitated in the form of Al3+ (NO3) because of the impact of OH− anions that are
found in the solution [56]. Thus, the initial concentration measurement was taken after adjusting the
pH. Consequently, there would be minimum precipitation effects on capacity and removal of hybrid
CNTs. Without considering the precipitation phenomena, the overall number of H+ cations decreased
because of the increase in pH, which was believed to be competing with the Al3+ cations of occupying
the active sites on the adsorbent. Furthermore, the surface charge of adsorbents could be enhanced
when the pH is high [47].
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3.2.3. Adsorption Studies

Kinetics Studies

The hybrid CNTs’ adsorbent reaction behavior could be examined through kinetic behavior. For this
experimental data, three kinetic models were used, including pseudo-first-order, pseudo-second-order,
and the intraparticle diffusion model [57,58]. To conduct the kinetic study, the Al3+ that was included
varied in concentrations from 3, 5, and 10 mg/L, while the absorption dosage value was fixed at
a 13.5 mg and pH of 7 at various time intervals awaiting for the equilibrium state to be attained.
According to the three models, it was revealed that the pseudo-second-order fitted better at various
Al3+ concentrations, which was expressed by a higher correlation coefficient R2. Figure 10 displays the
outcomes of the pseudo-second-order. Furthermore, the three applied models for kinetic results are
given in Table 6.
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Table 6. Adsorption kinetics and correlation coefficient.

Pseudo-First-Order
ln(qc − qt) vs time (t)

Pseudo-Second-Order
(t/qc vs t)

Intraparticle
(qc vs t0.5)

Dose mg pH C0 mg/L R2 R2 R2

13.5 7 3 0.9091 0.9583 0.8769
13.5 7 5 0.7084 0.999 0.522
13.5 7 10 0.8275 0.8736 0.874

Isotherm Studies

The isotherm study was used to perform the Al3+ ion adsorption into the hybrid CNTs adsorbent
surface through both the Freundlich and Langmuir isotherm models. To conduct the adsorption
isotherm study, Al3+ was used at multiple concentrations of 3, 5, 10, 20, 30, and 40 mg/L. Moreover,
the pH was of 7, while the hybrid CNTs’ dosage was 13.5 mg, and these values were indicated by an
optimization study [59]. Figure 11 presents the Freundlich and Langmuir isotherm outcomes. Based on
these results, it was discovered that Freundlich was a more suitable fit for Al3+ adsorption into hybrid
CNTs’ adsorbent surface. The coefficient of correlation (R2) attained from the Freundlich model was
0.9802, while the R2 from the Langmuir model was 0.9738, which indicated that the adsorption of Al3+

occurred on the heterogeneous surface with an interaction between the molecules of the adsorbent.
Furthermore, Table 7 illustrates a comparison between the maximum adsorption capacities of hybrid
CNTs with other nano absorbents materials.
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Table 7. Comparison between the maximum adsorption capacity of hybrid CNTs with other absorbents.

Absorbent Pollutant Capacity (mg/g) References

Hybrid CNTs Al3+ 347.88 This study
MWCNT RhB 568.181 [60]

mesoporous composite γ-Fe2O3/α-Fe2O3/CA RhB 165 [61]
Pn,n-CNTs MO 263.14 [62]

magnetic-modified multi-walled carbon nanotubes MB 48.1 [63]

4. Conclusions

This study demonstrated that hybrid CNTs could be successfully grown on bio-PAC impregnated
with Fe catalyst (bio-PAC/Fe) using acetylene as carbon source and implementing the CVD method
under 550 ◦C for 47 min. The synthesized hybrid CNTs were characterized by EDX, FESEM, and
TEM analyses, which confirmed the growth. Thus, results were arranged with FTIR, XRD, BET, TGA,
and zeta potential, all of which revealed graphitic structure formation of CNTs that was suggested to
be a good adsorbent. Optimum parameters for the Al3+ adsorption process were utilized by RSM,
and it was found that the hybrid CNTs’ dose was 13.5 mg/g, pH of 7, and contact time of 22.22 min.
The adsorption kinetics and isotherms models revealed that the adsorption process was best fitted in
the pseudo-second-order and Freundlich model, respectively. Moreover, the maximum adsorption
capacity was 347.88 mg/g. Thus, the results revealed that the quality structure of hybrid CNTs was
attributed to the supported catalyst (Fe) on the bio-PAC substrate. Moreover, the hybrid CNTs on
bio-PAC/Fe, which was originally synthesized from biomass, had a cost-effective adsorbent quality of
having the potential to be expanded to other pollutants in wastewater and other applications.
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