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Nano-petal nickel hydroxide was prepared on multilayered modified montmorillonite
(M-MMT) using one-step hydrothermal method for the first time. This nano-petal
multilayered nanostructure dominated the ion diffusion path to be shorted and the
higher charge transport ability, which caused the higher specific capacitance. The
results showed that in the three-electrode system, the specific capacitance of the
nanocomposite with 4% M-MMT reached 1068 F/g at 1 A/g and the capacity retention
rate was 70.2% after 1,000 cycles at 10 A/g, which was much higher than that of pure
Ni(OH)2 (824 F/g at 1 A/g), indicating that the Ni(OH)2/M-MMT nanocomposite would be a
new type of environmentally friendly energy storage supercapacitor.
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INTRODUCTION

With the vigorous development of science and technology, there appear many problems, such as:
energy crisis, environmental pollution, greenhouse effect, etc., (Shi et al., 2020; Delbari et al.,
2021). It is now crucial to find new, low-cost and environmentally friendly energy conversion
and storage systems (Liu et al., 2020). Until now, a great deal of research had been done on
energy storage materials and systems (Duraković and Mešetović, 2019; Fleischmann et al., 2020;
Dou et al., 2021; Yang et al., 2021; Caturwati et al., 2022; Lv et al., 2022).

Supercapacitors had been widely used in modern energy storage devices due to their higher
power density, fast charging and discharging speed, and low impact on the ecological
environment, which have become a hot research issue for many researchers (Wiston and
Ashok, 2019; Ovhal et al., 2020; Wang et al., 2021a; Zhang et al., 2021). Supercapacitors can be
classified into pseudocapacitor (PCs), electric double layer supercapacitors (EDLCs), and hybrid
supercapacitors (HCs) according to different storage mechanisms. Carbon-based materials such
as activated carbon (Wang et al., 2021b), graphene (Wan et al., 2020), carbon nanotubes (Saikia
et al., 2020), etc., had been used for EDLC. On the other hand, transition metal oxides/
hydroxides and conducting polymers were widely used in pseudocapacitors, which had
higher power densities than EDLCs. Several metal oxides are used as electrode materials,
such as RuO2, NiO, CuO, MnO2, TiO2, etc., (Zheng et al., 2018). Metal hydroxides were an
attractive alternative as electrode materials for higher-energy and higher-power supercapacitors
because of the higher specific capacitance and the higher charge transport ability, which may
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make the construction of higher-energy, higher-power
supercapacitors more feasible (Soserov et al., 2018a).

Nickel hydroxide had the characteristics of being the cheapest,
high specific capacity and good stability among electrode
materials, and had become an important supercapacitor
electrode material. The preparation and performance have
become one of the current research hotspots (Xing et al., 2012;
Liu et al., 2017; Wu et al., 2020; Yang et al., 2020). Due to its low
specific surface area and poor electrical conductivity, the diffusion
distance of the electrolyte during charging is very short, and often
only the surface part of the active material exchanges charges, and
a large amount of internal space does not participate in the
electrochemical energy storage process (Singh et al., 2017). There
appears Ni(OH)2 aggregation formation during the preparation
process, causing poor electrochemical performance (Soserov
et al., 2018b). To solve the above problems, many scholars
have loaded metal hydroxides on carbon materials with high
specific surface area and high electrical conductivity or
composited with metal oxides to improve the capacitance
performance and cycle stability (Li et al., 2017; Liang et al.,
2017; Chen et al., 2020; Li et al., 2020; Rawat et al., 2022).
MMT was a layered substance composed of three parts, that
is, two silicon-oxygen tetrahedra are located on the upper and
lower sides of symmetry, and an aluminum-oxygen octahedron is
sandwiched in the middle. These three parts constitute the 2:1
structural configuration of the entire montmorillonite crystal.
MMT had a broad interlayer domain, which was very effective in
storing and adsorbing water and organic matter, and also
facilitated charge transport, so it was feasible to apply it in
supercapacitors (Li et al., 2021a).

Many researchers on the utilization of montmorillonite
were in the fields of environment, catalysis and biology, but
very little in the field of supercapacitors (Numan et al., 2017).
Therefore, in this paper, we designed of Ni(OH)2/M-MMT
nanocomposite with higher charge transport as a high capacity
supercapacitor for the first time, and it is also the first time that
the experiment and computational simulation of
montmorillonite were combined. The electrode material was
prepared by a simple hydrothermal process without using
alkalis, organic solvents and chemical binders. Compared
with pure Ni(OH)2 nanomaterials, the prepared Ni(OH)2/
M-MMT nanocomposite would have higher capacitance and
specific surface area and have great potential in the field of
supercapacitors.

EXPERIMENT

Preparation of Modified Montmorillonite
5 g montmorillonite was dissolved in 50 ml deionized water
and stirred for 30 min Na2CO3 powder was added, and then
stirred to full reaction, the PH value of the solution was
reached a weak alkaline with NaOH and HCl, continue to
stir for 2 h, after the stirring is over, use deionized water for
suction filtration, wash three times, put it in a drying box for
6 h, and finally grind the dried sample through a 300-mesh fine
sieve. So far, the modified montmorillonite has been prepared.

Preparation of Ni(OH)2/M-MMT
Nanocomposite
8 mmoL NiCl2_6H2O was dissolved in 30 ml deionized water.
After NiCl2_6H2O is completely dissolved in deionized water,
modified montmorillonite with different contents (2, 4, 6, 8%)
was added and stirred. After 1 h, 3 mmoL of
hexamethylenetetramine was added, mixed and stirred for
30 min. The solution was added to the reaction kettle and
reacted at 160°C for 1 h. After suction filtration, washing,
drying, and finally grinding into powder. The whole
experimental process was shown in Figure 1.

Material Characterization
The micro-morphology of the composite material was observed
by SEM(JSM-7500F). The phase analysis and structural
characterization of the Ni(OH)2/M-MMT were carried out by
XRD (SHIMADZU XRD-6100). The bonding condition of the
nanocomposite was analyzed by XPS (SHIMADZU/KRATOS
AXIS Ultra DLD). The specific surface area and pore distribution
of the sample were measured by ASAP 2460 BET surface
analyzer.

Electrochemical Properties Measurement
The electrochemical performance of the three-electrode system
was tested in 1 mol/L KOH electrolyte with sample electrode as
working electrode, mercuric oxide electrode as reference
electrode and platinum sheet as counter electrode, using
Shanghai Chenhua CHI660E electrochemical workstation.

Computational Method
First-principle calculation of Ni(OH)2/MMT nanocomposite
microstructure model was carried out by CASTEP module of
Materials Studio calculation software. The interaction between
adsorbates and different surfaces was accurately described
using Perdew-Burke-Ernzerhof (PBE) function under
generalized gradient approximation (GGA). During the
whole calculation process, the number of plane wave basis
functions was determined by the kinetic energy cut-off point
Ecut, which was selected as 400 eV. The effects of various
nuclei and inner electrons on outer electrons were described by
ultra-soft pseudopotentials. 3 × 3 × 1 k-point grid was used for
Brillouin zone integration. A single cell material model with
8 H atoms, 32 O atoms, 4 Al atoms, 8 Si atoms and 4 Ni atoms
were constructed.

RESULTS AND DISCUSSION

The SEM images of the Ni(OH)2/M-MMT nanocomposite
with different content was shown in Figure 2, the inset
image was locally enlarged. EDS pattern was showed in the
(Supplementary Figure S1). From EDS analysis and the
content of each element of the Ni(OH)2/M-MMT
nanocomposite, it can be seen that the contents of O, Ni, Al
and Si were 65.4%, 34.4%, 0.05% and 0.15%, respectively. With
the increase of M-MMT content, the nano-petal morphology
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of the Ni(OH)2/M-MMT nanocomposite persisted and was
not destroyed due to the influence of the reaction conditions.
At high magnification, it was obvious that the ultrathin
nanoplates grown vertically or attached obliquely on
M-MMT and were interlaced with each other to form a
highly open nano-petals structure, in which the layered-
space of nano-petals became wider as M-MMT content

increased from 2 to 4% (see inset of Figures 2A,B), and the
layer thickness and layer spacing of the nanocomposite with
4% M-MMT was about 23.0 and 68.30 nm respectively. The
nano-petals of Ni(OH)2/M-MMT nanocomposite appeared
larger and became looser at the addition of 4%, which can
increase specific surface area, provide more electroactive
surface sites, and the more charge transport. The spacing of

FIGURE 1 | The flow chart of the preparation of Ni(OH)2/M-MMT nanocomposite.

FIGURE 2 | SEM morphology of Ni(OH)2/M-MMT nanocomposite with different M-MMT content. (A) M-MMT~2%, (B) M-MMT~4%, (C) M-MMT~6%, (D)
M-MMT~8% (inset: locally enlarged image).
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the flowers is gradually reduced, and the vertically oriented
nano-petals tend to cluster together to form micro-flowers.
With increasing, the spacing of nano-petals of 4–8%
nanocomposite gradually decreased. This was because when
the Ni(OH)2 entered the interlayer of the montmorillonite,
with the increase of the M-MMT content, the nanoflowers
“blooming” was inhibited, resulting in a decrease in the
interlayer spacing of the Ni(OH)2 nano-petals.

XRD patterns of Ni(OH)2/M-MMT nanocomposite with
different ratios was shown in Figure 3A. It was found that the
diffraction peaks of M-MMT were located at 7.15°, 19.83°, 28.43°,
35.16°, and 61.76°, corresponding to (001) (100) (005) (110) and
(300), respectively, which was consistent with the standard card of
montmorillonite (JCPDS#12-0,204) (Ge et al., 2021). The
diffraction peaks of Ni(OH)2 located at 11.2°, 22.6°, 33.44°, 38°,
59.56°, and 61°. The peaks correspond to (003) (006) (101) (015)
(110) and (113), respectively, which the XRD pattern matched the
α-nickel hydroxide of JCPDS card number 38–0,715 (Zuo et al.,
2020). The characteristic diffraction peaks of MMT and Ni(OH)2
appeared in Ni(OH)2/M-MMT, the diffraction peak of MMT was
weaker than that of Ni(OH)2. The broad and weak diffraction peaks
of Ni(OH)2/M-MMT nanocomposite indicate that the material was
lower in crystallinity. However, the (003) diffraction peak of the
Ni(OH)2/M-MMT nanocomposite was slightly shifted to the high-
angle direction. This may be because the atomic radius of Si element
in MMT was smaller than that of Ni. Therefore, the lattice of α-
Ni(OH)2 shrank slightly after recombination. No peaks of other
impurity phases could be found, indicating that the synthesized
Ni(OH)2/M-MMT had high purity.

The X-ray photoelectron spectroscopy (XPS) full survey
spectra of the Ni(OH)2/M-MMT nanocomposite was shown in
Figure 3B and the corresponding deconvolution spectra of Si 2p,
Ni 2p, Al 2p, O 1s was shown in Figures 3C–F, respectively. The

peak at 102.8 eV in the energy spectrum of Si 2p in Figure 3Cwas
characteristic of Si-O bonds in the montmorillonite structure
(Payne et al., 2012; Biesinger et al., 2012; Cao et al., 2019). From
Figure 3D Ni 2p scans depict spin-orbit peaks at 872.9 and
855.6 eV at chiral separation energy of 17.3 eV and two adjacent
satellite vibrational peaks, assigned to Ni 2p1/2 and Ni 2p3/2 (He
et al., 2022), indicating that Ni2+ existed in Ni(OH)2/M-MMT
nanocomposite (Jiang et al., 2019). It can be seen that the energy
spectrum of the Al 2p in Figure 3E element exhibits a
characteristic peak with a binding energy of 74.6 eV. The
exfoliated structure can be attributed to Al2O3 or AlO(OH)
(Qin et al., 2015; Zhou et al., 2019). The peak located at
531.7 eV was usually associated with the hydroxide species
(Bai et al., 2015). The lattice oxygen in silicon/aluminum
oxides (Si/Al-O) was found with a binding energy of 532.5 eV
(Yao et al., 2020). The contribution at 532.9 eV corresponded to
physically adsorbed and chemically ad-sorbed water on or near
the surface (Tong et al., 2016).

In order to determine the specific surface area and pore size
distribution of the prepared specimen, N2 adsorption/
desorption isotherms BET analysis of Ni(OH)2 and
Ni(OH)2/MMT nanocomposite was shown in Figure 4A. It
was seen that the specific surface area of Ni(OH)2/M-MMT
nanocomposite was 60 m2/g, which was higher compared with
pure Ni(OH)2 (50 m2/g). All samples exhibited type IV
isotherms, which were typical features of mesoporous
materials (Yin et al., 2016). According to the pore size
distribution (Figure 3B), the mean pore sizes of pure
Ni(OH)2 and Ni(OH)2/M-MMT was 12.18 and 15.06 nm,
respectively. The large specific surface area and moderate
pore size of Ni(OH)2/M-MMT can expose more
electroactive sites, provide more electroactive surface sites
and the more charge transport.

FIGURE 3 | (A) XRD patterns of pure Ni(OH)2 and Ni(OH)2/M-MMT nanocomposite with different content, (B) XPS full survey spectra of the Ni(OH)2/M-MMT
nanocomposite, XPS spectra of (C) Si 2p, (D) Ni 2p, (E) Al 2p and (F) O 1s for Ni(OH)2/M-MMT nanocomposite.
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The electrochemical performance of the Ni(OH)2 and
Ni(OH)2/M-MMT nanocomposite with different M-MMT
content was shown in Figure 5. Figure 5A showed the CV
curves of Ni(OH)2 and Ni(OH)2/M-MMT nanocomposite
with different M-MMT content. It can be seen that a pair
of redox peaks caused by the redox reaction of Ni was
generated and the pseudocapacitance characteristics was
exhibited (Li et al., 2021b). The CV curve area of the
Ni(OH)2/M-MMT nanocomposite with the M-MMT
content of 4% was the largest, which indicated the
capacitance of Ni(OH)2/M-MMT nanocomposite with the
M-MMT content of 4% was larger than that of other

M-MMT content, because the capacitance of the electrode
was related to the integral CV curve area (Zheng et al., 2021).

The GCD curve of Ni(OH)2 and Ni(OH)2/M-MMT
nanocomposite at 1 A/g was shown in Figure 5B. The
platform indicated that this was a Faradaic reaction, in which
the specific capacitance of pure Ni(OH)2 was 824 F/g, the specific
capacitance of pure M-MMT was only 1.4 F/g (Supplementary
Figure S2), but the specific capacitance of Ni(OH)2/M-MMT
nanocomposite with different M-MMT content was 1000 F/g
(2%), 1068 F/g (4%), 848 F/g (6%), 827.2 F/g (8%), respectively.
It can be found that the specific capacitance of Ni(OH)2/M-MMT
with 4% Ni(OH)2 had been improved with the addition of

FIGURE 4 | (A) N2 adsorption/desorption isotherms curves of pure Ni(OH)2 and Ni(OH)2/M-MMT nanocomposite, (B) Pore size distribution of pure Ni(OH)2 and
Ni(OH)2/M-MMT nanocomposite.

FIGURE 5 | Electrochemical performance curves of pure Ni(OH)2 and Ni(OH)2/M-MMT, (A) Cyclic voltammetry curve, (B) Galvanostatic discharge curve, (C) The
EIS (AC impedance) diagram of Ni(OH)2/M-MMT, (D) Long cycle curves of nanocomposite with M-MMT 4%.

Frontiers in Chemistry | www.frontiersin.org May 2022 | Volume 10 | Article 9168605

Xu et al. Ni(OH)2/M-MMT Charge Transport High Capacity

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


M-MMT. The specific capacitance of Ni(OH)2/M-MMT
nanocomposite with 4% was increased to 130% compared with
that of pure Ni(OH)2. This was because M-MMT had a
multilayered “hamburger” structure, which provided greater
ion exchange space, promoted ion diffusion path and
increased the rate of charge transport. The nano-petals
Ni(OH)2 entered the M-MMT interlayer during hydrothermal
synthesis. The nano-petals surface had grooves and gap, which
improved the movement of electrolyte ions. The gap between the
petals facilitated the insertion of electrolyte ions into the electrode
surface (Jiang et al., 2021). This enhanced the electrochemical
activity of Ni(OH)2/M-MMT nanocomposite, resulting in a
significant increase in the specific capacitance of the
nanocomposite.

Figure 5C showed AC impedance curves of pure Ni(OH)2 and
Ni(OH)2/M-MMT nanocomposite with different M-MMT content
and the inset image was equivalent circuit diagram. The EIS data
further validated the ion diffusion and conductance kinetics. The
charge transfer resistance of the electrode material corresponds to
the diameter of the semicircle in the high frequency range and lower
resistance availed charge faster transport. The linear characteristic in

the low frequency range represents the diffusion resistance of
electrolyte ions on the surface. The smaller particle size and
many interfaces of electrode material were beneficial to the
diffusion of electrolytes (Ramesh et al., 2021). When the slope
was closer to 90, the ion diffusion effect was stronger (Zou et al.,
2020). From Figure 5C, the slope of Ni(OH)2/M-MMT
nanocomposite in the low frequency range was larger than that
of pure Ni(OH)2, and the slope of Ni(OH)2/M-MMT
nanocomposite with 4% M-MMT was the highest in the low
frequency range. This was because the layer spacing of M-MMT
was larger, which increased the space of ion transmission and
enhanced the conductivity.

The long cycle performance of the Ni(OH)2/M-MMT
nanocomposite with 4% M-MMT at 10 A/g for 1,000 cycles
was shown in Figure 5D. The specific capacitance was 175 F/g
at 10 A/g after 1,000 cycles, and the capacitance retention rate
reached 70.2%.

The structural model of MMT, Ni(OH)2, and Ni(OH)2/MMT
was optimized based on the density functional theory (DFT) by
Materials Studio (Boek et al., 1995; Tao et al., 2020; Han et al., 2021),
as shown in Figure 6. Figure 7 showed the energy bands and density

FIGURE 6 | The structural optimization diagrams of (A) MMT, (B) Ni(OH)2 and (C) Ni(OH)2/MMT.

FIGURE 7 | (A) The energy band diagram of Ni(OH)2/MMT; (B) The density of states of MMT, Ni(OH)2 and Ni(OH)2/MMT.
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of states of Ni(OH)2/MMT nanocomposite. From Figure 7A, Ef = 0
was considered as the Fermi level, and the integration path was Γ-M-
Z-A-P-X-Γ. The top of the valence band was close to the Fermi level,
and its band gap value was 0.335 eV, which was a typical
semiconductor feature (Kong et al., 2021).

To obtain a further understanding of the interaction between
Ni(OH)2/MMT nanocomposite, the partial density of states
(PDOS) and total density of states (TDOS) of Ni(OH)2/
MMT nanocomposite were calculated and compared with
that of Ni(OH)2 and MMT as shown in Figure 7B. In the
Ni(OH)2/MMT system, the atoms of the Ni(OH)2/MMT
nanocomposite material can gain more charges from
Ni(OH)2. Based on the above calculation results, it was
shown that the addition of MMT leaded to the obvious
charge transfer of Ni2+, which increased the charge transport
rate. At the Fermi level, the energy of the Ni(OH)2/MMT
nanocomposite was higher than that of pure Ni(OH)2 and
MMT, and the energy of Ni(OH)2 was higher than that of
MMT, indicating that the energy of the nanocomposite mainly
from Ni(OH)2 (Zhao et al., 2019). The state at the Fermi level
was almost flat, indicating that the Ni(OH)2/MMT
nanocomposite was in a stable state, which was consistent
with the previous experiments and achieved the expected effect.

CONCLUSION

1) The Ni(OH)2 nano-petal was grown on the modified
montmorillonite, and the nano-petal was uniformly
distributed and had a large specific surface area.

2) The specific capacitance of Ni(OH)2/M-MMT nanocomposite
was 1086 F/g at 1 A/g under three electrodes, the capacitance
retention rate of Ni(OH)2/M-MMT nanocomposite can reach
70.2% at 10 A/g after 1,000 cycles.

3) According to the first-principles calculation, the band gap
value of the Ni(OH)2/MMT nanocomposite was 0.335 eV, and
the state at the Fermi level was almost flat, indicating that the
Ni(OH)2/MMT nanocomposite was in a stable state and
presented a semiconductor structure. The Ni(OH)2/MMT

nanocomposite could short the path of ion diffusion and
improve the speed of charge transport.
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