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Serine-threonine kinase11 (STK11) is a tumor suppressor gene which plays a key role in regulating 
cell growth and apoptosis. It is widely known as a multitasking kinase and engaged in cell polarity, 
cell cycle arrest, chromatin remodeling, energy metabolism, and Wnt signaling. the substitutions 
of single amino acids in highly conserved regions of the STK11 protein are associated with Peutz–
Jeghers syndrome (PJS), which is an autosomal dominant inherited disorder. The abnormal function 
of the STK11 protein is still not well understood. In this study, we classified disease susceptible single 
nucleotide polymorphisms (SNPs) in STK11 by using different computational algorithms. We identified 
the deleterious nsSNPs, constructed mutant protein structures, and evaluated the impact of mutation 
by employing molecular docking and molecular dynamics analysis. Our results show that W239R and 
W308C variants are likely to be highly deleterious mutations found in the catalytic kinase domain, 
which may destabilize structure and disrupt the activation of the STK11 protein as well as reduce its 
catalytic efficiency. The W239R mutant is likely to have a greater impact on destabilizing the protein 
structure compared to the W308C mutant. In conclusion, these mutants can help to further realize the 
large pool of disease susceptibilities linked with catalytic kinase domain activation of STK11 and assist 
to develop an effective drug for associated diseases.

Single nucleotide polymorphisms (SNPs) are found in every 200–300 base pairs of the human genome and serve 
as genetic markers1. About 0.5 million SNPs are present in the coding region of human genome2. Substitution of 
amino acids in conserved regions of the protein may exert an effect on protein structure, stability, and function. 
High-risk nonsynonymous SNPs (nsSNPs) are responsible for altering protein function, which cause various 
diseases in humans3–5. Indeed, many studies have reported that ≥50% of the variations linked with hereditary 
genetic disorders are due to nsSNPs6–8. In recent years, nsSNPs in cancer-causing genes have received consider-
able attention. In various studies, multiple nsSNPs have been identified which influence the probability of infec-
tions, and the extension of inflammatory disorders and autoimmune diseases9–11. Immunity-related genes are 
highly polymorphic and many nsSNPs have remained uncharacterized in these genes.

Human STK11 (serine/threonine kinase 11) protein, also known as LKB1 (liver kinase B1), is found at 
chromosome 19p13.3. STK11 protein is composed of 9 coding exons along with a 433 amino acid long coding 
sequence and one non-coding exon. The catalytic kinase domain is highly conserved in STK11 protein, which is 
comprised of residues in 49–309 positions12. The STK11 gene acts as a tumor suppressor gene having significant 
influence in controlling cell growth as well as apoptosis.

A cellular function of STK11 has been regulated through a number of protein-protein interactions. Cell 
cycle arrest mediated through STK11 is involved in p53-dependent apoptosis pathways as well as in VEGF and 
Brg1-dependent growth arrest13–15. STK11 also has an impact on polarity, metabolism, proliferation in cancer 
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cells through phosphorylation, and activation of AMPK and its related kinases. STK11 forms a heterotrimeric 
complex in vivo with STRADα and MO25α. Both STRADα and MO25α have been involved in relocalization of 
STK11 from the nucleus to cytoplasm16. Cytoplasmic localization is critical for the growth suppressive function 
of STK1115.

Germline mutations in the STK11 gene are responsible for Peutz–Jeghers syndrome (PJS), which is an inher-
ited autosomal dominant disorder and is distinguished by gastrointestinal hamartomatous polyps and mucocu-
taneous pigmentations. The occurrence of PJS is estimated between 1 in 8300 to 1 in 280000 individuals17. The 
most common malignancy associated with PJS is colorectal cancer, followed by breast, small bowel, gastric, and 
pancreatic cancers18,19. The cumulative lifetime risk of developing cancers in individuals with PJS at ages 20, 30, 
40, 50, 60 and 70 years are 2%, 5%, 17%, 31%, 60% and 85%, respectively17. Recently, studies have shown that 
about 57–88% of PJS cases concurrently occur with one or more mutations in STK11 protein, including point 
mutations and large genomic deletions, duplications, or insertions20–23.

Over the past few years, several in silico approaches have been developed particularly for screening func-
tional SNPs and detecting the effect of deleterious nsSNPs in the candidate protein. Many tools can also predict 
the structural changes based on single amino acid substitution in the protein24,25. Based on in silico algorithms, 
the functional SNPs in BRAF (B-Raf proto-oncogene), BRCA1(Breast cancer type 1 susceptibility protein)26, 
and ATM (Ataxia-Telangiectasia Mutated) genes27 have been classified successfully from a wide range of disease 
susceptible SNPs based on their functional and structural consequences. Recent computational approaches are 
focused on cancer studies by involving either in the prediction of the most damaging SNPs from large databases 
or in population-based data analysis28–30.

In this study, detailed investigations have been carried out to postulate 63 nsSNPs in the STK11 protein and 
to evaluate their deleterious or pathogenic effects on the protein. Employing different prediction algorithms, we 
classify high-risk nsSNPs and identify their structural and functional impact on the STK11 protein. Moreover, 
molecular dynamics (MD) and docking calculations are performed to better understand the impact of mutation 
on protein structure at the secondary and tertiary level.

Results
The complete workflow, tools, and databases applied to identify the damaging SNPs in human STK11 and their 
structural/functional consequences due to mutation, are summarized in Fig. 1.

Snp annotation. The polymorphism information of the STK11 gene was collected from the NCBI dbSNP 
database, which contains a total of 2283 SNPs for STK11 protein. Out of 2283 SNPs, 1535 are in intron region, 
308 are nsSNPs (missense), 257 are coding synonymous, 146 are in 5′ UTR region, and 81 are in 3′ UTR region. It 
can be noticed from Fig. 2a that most of the SNPs are found in the intron region (67.24%), followed by missense 
(13.31%), coding synonymous (11.26%), 5′UTR (6.40%), and 3′UTR (3.55%) SNPs, respectively. The interest of 
the current study is subject to nsSNPs, as they alter the encoded amino acid. Only nsSNPs of STK11 were consid-
ered for further analysis.

Figure 1. Flowchart for methodology.
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Determination of functional Snps in coding regions. The various computational prediction tools that 
were used in this study, are illustrated in Fig. 2b to identify significant nsSNPs in STK11. In the SIFT algorithm, 63 
nsSNPs are found as deleterious out of 304 missense SNPs that may have a functional effect on the protein. The con-
sequences of SIFT were further evaluated by investigating the impact of nsSNPs in the structure and function of the 
protein, using PolyPhen2, I-Mutant3.0, and PROVEAN algorithms. In PolyPhen2, 51 nsSNPs are predicted as delete-
rious. I-Mutant3.0 algorithm predicted 52 nsSNPs that could alter the protein stability due to mutation. PROVEAN 
predicted 48 nsSNPs as deleterious that could have a functional effect on the protein (Supplementary Table S1). To 
confirm these results, we further investigated nsSNPs through the in-silico prediction pipeline: P-Mut, SNAP2, PON-P, 
and Mutation Assessor. We noticed 37 nsSNPs to be pathological in P-Mut, 51 nsSNPs as affected in SNAP2, 37 
nsSNPs as pathological in PON-P, and 57 nsSNPs to be predicted as disease-associated in Mutation Assessor algo-
rithms (Supplementary Table S2). In this study, a total of eight different computational algorithms were used for the 
identification of high-risk nsSNPs. By combining the results of all the algorithms, three nsSNPs (W239C, W239R, 
and W308C) are found to be highly deleterious based on their compared prediction scores. As W239C mutant was 
reported previously at the 239th position31, in this study W239R and W308C mutants were selected for further analysis.

Identification of domains in STK11. InterPro tool was used to locate domain regions in STK11 and to 
identify the location of nsSNPs in different domains. This tool provides a functional analysis of proteins by clas-
sifying them into families. It also predicts the presence of domains and active sites. It has been reported that 
three domains: such as the N-terminal domain (1–48), catalytic kinase domain (49–309), and C-terminal domain 
(310–433) are found in STK11. The two nsSNPs (W239R and W308C) that we have selected are located in the 
catalytic kinase domain (Supplementary Fig. S1(b)).

Conservation profile of nsSNPs and evolutionary relationship analysis of STK11 protein. ConSurf 
web browser was used to measure the intensity of evolutionary conservation at each residue position in STK11 pro-
tein. By using the Bayesian method, the ConSurf server recognizes putative functional and structural amino acids 
and identifies their evolutionary conservation profile32. The ConSurf analysis predicted that both mutants, W239 
and W308, are buried and conserved residues, i.e. structural residues (Fig. 3). W239 and W308 residues are involved 
in the formation of helix-8 and helix-12. Substitution in any of these residues can lead to a decrease in the stability 
of helix-8 and helix-1233. Moreover, this finding is also supported by multiple sequence alignment (MSA) analysis. 
We performed MSA among the nine different species through use of the MEGA 6 program. It was revealed that 
conserved regions are homologous in nine species, represented as asterisk signs (“*”) in Fig. S1(b).

The maximal conserved residues are found in the kinase domain, which are essential for stabilizing the sec-
ondary structure and activating the STK11 protein. Moreover, phylogenetic analysis was performed using the 
MEGA 6 package, for understanding the evolutionary relationship among the nine different species. The phyloge-
netic tree reveals that human (Homo sapiens) and chimpanzee (Pan troglodytes) are close neighbors (Fig. S1(a)). 
Dilmeç et al. reported that 99% sequence homology is found between human and chimpanzee STK11 proteins34. 
According to the phylogenetic tree analysis, STK11 protein is more conserved in primates, including humans.

Identification of functional SNPs in the UTR region by UTRscan. Gene expression is inhibited by 
the SNPs in the 3′ UTR region because of faulty rRNA translation or by affecting RNA half-life35. The UTRscan 
server identifies patterns for regulatory region motifs in the UTR database36. This server predicts two UTRsite 
motifs in the STK11 protein. Three total matches were found for two motifs, as shown in Supplementary Table S3. 
Here, the W308C mutant was found in upstream open reading frames (uORF) of the 5′UTR region. Mutation at 
the 308th position in the 5′UTR region of STK11 protein is associated with PJS37.

Structural analysis of native and mutant models. The native structure and two high-risk deleterious 
variants were modeled by Swiss-Model38. Model quality was also validated by generation of a Ramachandran plot 
using the RAMPAGE server. The Ramachandran plot for both native and mutant models showed 278 residues 
(94.6%) in the favored region, 11 residues (3.7%) in the allowed region, and only 5 residues (1.7%) in the outer 
region (Supplementary Figure S2 and Table S4).

Figure 2. (a) Distribution of STK11 missense, coding synonymous, intron, 3′UTR, and 5′UTR SNPs. (b) 
Prediction results of the 63 nsSNPs in the STK11 gene analyzed by the eight computational tools.
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Analysis of structural effects of high-risk nsSNPs in STK11. The impact of amino acid substitutions 
on the domain structure of STK11 were investigated using the Project Hope server. The W239R variant results 
in an arginine residue in place of tryptophan at the 239th position located in the kinase domain. This domain is 
important for protein binding and replacement of the buried neutral tryptophan residue with positively charged 
arginine that may cause an empty space in the core structure of the domain and can lead to protein folding 
problems. A graphical view of the variant is shown in Fig. 4a. A similar destabilizing condition is formed by the 
W308C mutant. Replacing a buried structural tryptophan with a smaller cysteine residue can create an empty 
space in the core structure of the kinase domain that may affect the signal transduction between the domains, 
as shown in Fig. 4a. Mutation in the kinase domain is hypothesized to be responsible for disrupting the binding 
activity of STK11 because both N and C-terminal lobes of the STK11 kinase domain interact with the C-terminal 
lobe of STRADα33.

Docking Analysis. Protein-protein docking analysis demonstrated that the mutant STK11 structures bind 
to the STRADα-MO25α complex in a slightly deviated orientation compared to the native STK11 structure. 
The W239R mutant shows higher deviation compared with the W308C mutant Fig. 4b. The C-terminal flanking 
tail, β2-β3 loop, β3-β4 loop, and β7-β8 loop of the W239R mutant showed significant deviation in orientation. 

Figure 3. ConSurf analysis of human STK11 residues.
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Molecular docking of ATP with native and mutant modeled structures also showed a difference in binding affin-
ity. The binding affinity of ATP with native STK11 is −7.7 kcal/mol, while for mutant W239R and W308C are 
−7.1 kcal/mol and −7.2 kcal/mol respectively. ATP binds at the same binding pocket when compared in native 
and mutant proteins; however, from the analysis of the binding pose of ATP, a significant deviation in terminal 
phosphate of ATP is observed between native and mutant protein complexes Fig. 5. Interaction analysis of ATP 
with native and mutant protein showed a reduction in the number of hydrogen bonds and attractive electrostatic 
charge interactions of ATP with residues in mutant proteins (Table 1). Many residues such as L55, S59, Y60, E130, 
and S193 have interactions with ATP in native STK11 but were absent in mutant proteins.

Molecular dynamics simulation of native and mutant STK11 proteins. 150 ns MD simulations 
were performed to study the deviation of native and mutant proteins in physiological environments. Native 
STK11 and mutant W308C have similar root mean squared deviation (RMSD) values with significant deviation 
observed for the W239R mutant, as shown in Fig. 6a. Mutant W239R presented an increasing trend in RMSD 
value throughout 36.9 ns (RMSD ~3.611 Å) and 140 ns (RMSD ~3.76 Å) of MD simulation. Average RMSD values 
of native, W239R, and W308C mutants are 2.67 Å, 2.80 Å and 2.47 Å, respectively. In addition, RMSF (root-mean 
square fluctuation) value analysis also shows residues in C terminal region have a significant difference in fluc-
tuation between native and mutant structures after 150 ns MD simulation (Fig. 6b) with RMSF values reaching 
as much as 7 Å for mutant W239R. From the RMSF plot, it can be observed that residues in 204–228 positions 
constitute a comparatively flexible region than other residues in the W239R mutant. On the other hand, the 
highest residual fluctuation can be observed at positions 327 (10.21 Å) and 328 (10.77 Å) in mutant W308C when 
compared to the native structure (Fig. 6b). Furthermore, it can be noticed that in the mutant W308C, fluctua-
tion of residues (322–334) in C-terminal flanking tail is greater, with values ranging from 2.13 to 10.71 Å when 
compared to that in the native type (from 1.25–3.80 Å). Deviation in the position and conformation of the bound 
ATP molecule can be observed when compared between the native and mutant protein complexes (Fig. 5) with a 
significant deviation observed between the native and mutant W308C.

Figure 4. (a) Superimposed structures of STK11 native (green color) and mutant (red color) models to 
visualize the stereochemical conformation of wild type and mutant residues at 239 and 308 positions (b) 
Superimposed image of native and mutant STK11 proteins docked against STRADα-MO25α protein complex.
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From Rg (radius of gyration) analysis of native and mutant structures (Fig. 6c), it can be observed that the 
W239R mutant revealed a higher average Rg value (20.73 Å) over the simulation time scale when compared to 
those of native STK11 (20.56 Å) and mutant W308C (20.38 Å). As a result, the flexibility of mutant W239R may 
be increased. On the other hand, mutant W308C seemed to deviate its Rg value after 60 ns, which could be the 
reason for its partial protein folding.

Solvent accessible surface area (SASA) analysis indicated that mutant W239R has a higher average SASA value 
(15498.11 Å2) than mutant W308C (15121.88 Å2) and native STK11 (15129.68 Å2), as shown in Fig. 6d. Since a 
higher SASA value denotes protein expansion, it can be suggested that mutant W308C and native STK11 are more 
stable than the mutant W239R. The reason for a greater change observed in the SASA value of W239R compared 
to native STK11 could be the effect of amino acid substitution by altering the size of the protein surface and other 
characteristics39,40.

The total number of H-bonds within the proteins were also calculated during the MD simulation as depicted 
in Fig. 6e. From the analysis, it can be noted that the native structure forms a greater number of H-bonds with 
an average of ∼212, while W239R and W308C mutants exhibit a fewer number of H-bonds with an average of 
for each mutant of ∼209. Since the number of H-bonds was less in the mutant structures, protein stability may 
be effected.

Figure 5. (a) Superimposed image of ATP docked against native and mutant STK11 protein and interaction of 
ATP with (b) native, (c) W239R mutant, and (d) W308C mutant STK11 protein residues.
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To further understand the interaction of native and substituted residues with surrounding residues, we ana-
lyzed non-bonding interactions after MD simulation. Mutant W239R showed a number of interactions with 
the surrounding residues which are significantly decreased due to the substitution of Trp with Arg at the 239th 
position, as shown in Table 2 and Fig. 7a. This decrease is largely due to the failure to form any hydrophobic inter-
actions such as pi-alkyl interaction by R239 in the mutant structure. H-bond interaction with V236 is absent in 
the mutant type but forms new H-bond interactions with Q220 and K235. R239 also forms a pi-cation interaction 
with F255, whereas W239 in the native structure does not form any interaction with this residue. On the other 
hand, a number of hydrophobic interactions such as pi-pi stacked, pi-pi T-shaped, and pi-alkyl are significantly 
decreased due to the substitution of Trp with Cys at position 308 (Table 2 and Fig. 7b). Moreover, a pi-sulfur and 
an alkyl interaction with H306 and P28, respectively are present in the W308C mutant, but absent in native type.

Additional information on the flexibility of STK11 mutation was acquired by the analysis of secondary structures 
of native, W239R and W308C variants during 150 ns MD simulation as presented in Fig. S3. The average percent-
age values of secondary structures of native and mutant proteins are close in approximation. In Fig. 8, the average 
alpha helix values of native, W239R, and W308C mutants are 34.23%, 33.22%, and 33.78%, respectively. Although, 
alpha helix showed a decreasing trend in W239R mutant between 35–85 ns, after that it was stable (Fig. S3a).  
The average sheet and turn percentage values were found to be similar for native (20.29% and 13.97%) and 
W308C (20.34% and 13.27%), but in W239R, slightly different values were found (19.67% and 14.24%) (Fig. S3b). 

Interacting
Residue

Distance
(Å)

Bond
Type

Interacting
Residue

Distance
(Å)

Bond
Type

Interacting
Residue

Distance
(Å)

Bond
Type

Native STK11 Mutant W239R Mutant W308C

Asp194 3.806 AC Asp194 4.100 AC Glu98 5.583 AC

Asp194 4.629 AC Lys78 2.949 H Asp194 4.137 AC

Asp194 4.039 AC Glu138 2.600 H Lys78 2.918 H

Ser59 2.431 H Glu138 2.556 H Glu138 2.035 H

Tyr60 2.196 H Cys132 2.705 C Gly180 2.242 H

Lys78 3.006 H Cys132 2.372 UDD Asn181 2.907 H

Ser193 2.379 H Gly56 2.374 C

Glu130 2.573 H Asp194 3.001 C

Glu130 2.812 H Cys132 2.660 C

Leu55 2.131 H Cys132 3.062 C

Asn181 2.124 H

Ser193 2.848 C

Cys132 2.646 UDD

Table 1. Interactions of ATP with native and mutant STK11 proteins. (AC = Attactive electrostatic Charge 
interaction; H = Hydrogen bond; C = Carbon Hydrogen bond; UDD = Unfavorable Donor-Donor clash).

Figure 6. Analysis of RMSD, RMSF, Rg, and SASA of native and mutant STK11 structures at 150 ns. (a) RMSD 
values of Cα atoms of native and mutant structures. (b) RMSF values of the carbon alpha over the entire 
simulation. The ordinate is RMSF (Å), and the abscissa is residue. (c) Rg of the protein backbone over the entire 
simulation. The ordinate is Rg (Å), and the abscissa is time (ns). (d) The ordinate is SASA (Å2), and the abscissa 
is time (ns). (e) Total number of H-bond count throughout the simulation of native and mutant structures. The 
symbol coding scheme is as follows: native (green colour), mutant W239R (red colour), and W308C (black 
colour).
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In Fig. S3c, the β turn exhibited an increasing trend in the W239C mutant between 45–87 ns when compared to 
the native protein and W308C mutant. Average coil percentage values of native, W239R and W308C structures 
were determined to be 30.40%, 31.97%, and 31.76%, respectively (Fig. S3d). Secondary structure analysis also 
showed that residues in the coil region have a significant difference in fluctuation between the native and mutant 
structures after 90 ns MD simulation. The average 310-helix percentage values for native STK11, W239R, and 
W308C are 1.08%, 0.88%, and 0.81%, respectively (Fig. S3e).

Energy and structural information of three protein structures (native STK11, mutant W239R, and mutant 
W308C) were analyzed using principal component analysis (PCA) to understand the structural quality of pro-
teins during MD simulation. The energy and structural information are the composition of the following varia-
bles; bond energies, bond angle energies, dihedral angle energies, planarity energies, Van der Waals energies, and 
electrostatic energies. The exploratory PCA analysis of these variables revealed the similarity and dissimilarity 
between native and mutant proteins in the scores plot (Fig. 9a). The scores plot showed that the distance between 
native STK11 and mutant W239R was further whereas native STK11 and mutant W308C was overlapped. 
Dihedral angle energies and bond energies loaded significantly into the second PC resulting in the dissimilarity 
of mutant W239R with respect to native STK11 and mutant W308C (Fig. 9b).

We analyzed position level variations in secondary structure elements of native and mutants using the STRIDE 
program. In the native complex, helix regions (residues 222–226 and 307–310) are disrupted and formation of 
310-helix was observed in mutant W239R (Fig. 8). Furthermore, the most prominent alteration was observed 
in residues 195–197 and 276–278 positions due to an acquisition of 310-helix conformation in mutant W239R. 
Moreover, two strands (residues 209–210 and 231–232) are present in native STK11, whereas these strands have 
converted to coils in mutant W239R. On the other hand, W308C mutant showed variation at positions 217–219 
and 338–340, which transformed from 310-helixes to turns, and also showed variation by converting to a 310-helix 
from a turn at position 294–296 (Fig. 8). Furthermore, an alpha helix (residues 235–250) is found slightly reduced 
in the W308C mutant structure.

Discussion
All in silico prediction algorithms disclose two nsSNPs, W239R and W308C, that are highly deleterious based 
on their compared prediction scores. Typically, conserved residues are involved to control the biological system 
in proteins like stability and/or folding41. Functional amino acids are located at enzymatic sites and show sub-
stantial protein-protein interaction. These residues are more highly conserved compared to other residues in the 
protein42. For assessing the deleterious impact of two nsSNPs (W239R and W308C) in the STK11 protein, we 
estimated the evolutionary conservation profile of all amino acids position in STK11 protein via ConSurf web 
server. This server predicted that tryptophans at the 239th and 308th positions are buried structural residues with 
a conservation score of 9. For evaluating ConSurf result, we executed the multiple sequence alignment (MSA) 
among the nine different species through the MEGA 6 program, which revealed that the conserved regions were 
homologous in nine species. Maximum conserved residues are found in the kinase domain, which is essential for 
stabilizing the secondary structure and in activating the STK11 protein. Moreover, the phylogenetic tree reveals 
that human and chimpanzee are close neighbors. One study reported that 99% sequence homology is found 
between the human and chimpanzee STK11 proteins34. This result indicated that the catalytic kinase domain is 
evolutionarily conserved in STK11 protein.

Interacting
Residue

Distance
(Å)

Bond
Type

Interacting
Residue

Distance
(Å)

Bond
Type

Native Trp239 Mutant Arg239

VAL236 2.52057 H LYS235 2.5719 H

VAL243 1.89825 H GLN220 2.66571 H

GLY242 3.09067 CH GLY242 2.23827 H

GLN220:PRO221 3.57802 Amide-Pi Stacked VAL243 2.05125 H

PRO221 4.69626 Pi-Alkyl MET289 2.31749 CH

LEU290 4.94724 Pi-Alkyl PHE255 3.93234 Pi-Cation

PRO221 5.33427 Pi-Alkyl PRO221 4.78627 Alkyl

PRO222 4.58115 Pi-Alkyl

LEU290 4.52331 Pi-Alkyl

Native Trp308 Mutant Cys308

HIS154 2.68372 CH HIS306 5.59859 Pi-Sulfur

HIS154 2.78251 Pi-Donor Hydrogen 
Bond PRO281 4.70969 Alkyl

HIS313 5.38136 Pi-Pi Stacked

HIS313 5.61516 Pi-Pi Stacked

HIS154 4.69812 Pi-Pi T-shaped

LEU282 4.80756 Pi-Alkyl

LEU282 4.34223 Pi-Alkyl

Table 2. Non-bonding interaction analysis.
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In the catalytical kinase domain, the W239R mutant leads to substitution of tryptophan (a nonpolar aro-
matic amino acid) by arginine (a basic amino acid). Although the mutated residue is smaller in size than the 
wild-type residue, it is likely to disturb the interaction between other domains that are important for the protein 

Figure 7. Non-bonding interactions of native type STK11 and mutant STK11 proteins at 239 and 308 positions 
with other residues.

Figure 8. Average Secondary structure of native and mutants (a). Secondary structural elements of native 
STK11 (b) and mutant STK11 (c,d) proteins are analysed.
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activity as predicted by Project HOPE. Mass and charge difference in the protein affect spatiotemporal dynamics 
of protein-protein interactions43,44. The mutation introduces a charge which may lead to repulsion between the 
mutant residues and neighboring residues44. Hence, this variant altered the binding interaction with surrounding 
residues, thereby disturbing normal biological processes. The mutant W308C involves the substitution of tryp-
tophan to cysteine, where tryptophan is larger in size than cysteine. Moreover, a buried structural tryptophan 
residue is more hydrophobic than the cysteine residue, which probably will not fit at the 308th position. As a result, 
this variant will cause a loss of hydrophobic interactions in the core of the protein, as predicted by ProjectHOPE. 
Structural mutations affect buried residues in the protein core, causing changes in amino acid size and charge, 
hydrogen bonds, salt bridges, and S–S bridges. These changes cause loss of thermodynamic stability as well as 
aberrant folding and aggregation of the proteins45.

To further evaluate our hypothesis as to whether W239R and W308C mutants have a deleterious effect on 
STK11 protein, we performed molecular docking and MD simulation analysis. From docking analysis of STK11 
with ATP, it is well revealed that both mutants perturbed the binding pocket quite significantly. The most prom-
inent change was noticed in W239R where a significant loss of H-bond interactions within the binding pocket 
residues can be observed when compared to that in the native protein. In the STK11-ATP complex, ATP binds 
to a cleft between N- and C-lobes of the protein kinases through formation of H-bonds with the glycine-rich 
loop (G58-K62), β3 strand (K78), the hinge regions (E130-C132), αD-helix (E130-M136), the catalytic loop 
(H174-N181), and the activation loop (S193-A198)46,47. ATP is strongly bound to the binding cleft of STK11, so 
these mutants disrupt the favorable contacts which are essential for the functional activity of STK11. Moreover, 
the deviation observed in the bound ATP molecule can lead to a reduction in catalytic efficiency of STK11.

Proteins are dynamic entities in an aqueous environment. We performed 150 ns MD simulations to observe 
the effect of mutation on the structural dynamics of the STK11 protein. RMSD values remained relatively con-
stant for both native STK11 and W308C mutant, indicating that the W308C mutant is likely to form a stable 
structure in physiological conditions; however, consistently higher RMSD values throughout the MD simulation 
for the W239R mutant indicate that this mutation is likely to make the protein structure less stable. Furthermore, 
higher fluctuation and a loss of stability were observed for the W239R mutant in RMSF, Rg, SASA, and H-bond 
analysis. This feature was also confirmed by the principal component analysis (Fig. 9a). The deviation observed 
after MD simulation in the F204-L228 residue loop region supports our earlier hypothesis that the positively 
charged R239 residue is likely to disrupt the interactions with surrounding residues. Non-bonding interaction 
analysis revealed that the residues Q220, P221, and P222 are directly in contact with native W239. Furthermore, 
L201-A206 (β9-β9′ loop) from the STK11 activation loop have strong interactions with a hydrophobic pocket 
on the concave surface of MO25α33,46. The disruption in the activation loop regions (D194-E223) may cause 
inhibition in activation of the STK11-MO25α complex. On the other hand, the W308C mutant showed a stable 
structure like the native type, but higher residual fluctuation can be observed in the residues (I322-S334) of the 
C-terminal flanking tail. The W308C mutant lost five polar contacts with H154 and H313 and one hydrophobic 
contact with L282 (Table 2). Polar contacts are important, as they are involved in the formation of H-bonds and 
these H-bonds and hydrophobic interactions help in maintaining the stability of the protein48,49. A Cys residue 
inside the polypeptide chain has the possibility to form a disulfide bond with another Cys residue and can alter 
the tertiary structure of the protein. Mehenni et al. have reported that C308 is likely to form a disulfide bond 
with C158. During the folding of STK11, this interaction may result in divergence of the tertiary structure with 
slight or no kinase activity37. We executed secondary structure analysis for a definitive understanding of the 
disruption in the native and mutant secondary structures over time. As shown in Fig. 8 and S3, a significant 
difference is observed in alpha helix, beta sheet, beta turn, and coil regions for both mutants when compared 
to the native structure. We analyzed the position level variations in secondary structure elements of native and 
mutants through use of the STRIDE program. The most significant difference is observed in mutant W239R, from 
the amino acid residue positions of L195-V197 (from β8-β9 loop), P217-F219 (from β9΄-αEF loop), P221-I224 
(from αEF-helix), G276-C278 (from αG-αH loop), and S307-F309 (from αI-helix), as shown in Fig. 8c and 

Figure 9. (a) The scores plot presented three data clusters in different color, where each dot represented 
one time point. The clustering is attributable to the three different proteins: native STK11(red), mutant 
W239R(green), and mutant W308C(blue) proteins. (b) Loadings plot from Principal Components Analysis of 
the energy and structural data.
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Fig. 10a. Furthermore, T209-C210 (β9΄strand) is totally disrupted in the mutant W239R structure. In the native 
structure, the αEF-helix is comprised by P222-N226 residues and the αI-helix is comprised by I300-R310 resi-
dues, whereas P221-I224 (from αEF-helix) and S307-F309 (from αI-helix) are converted to 310-helix in mutant 
W239R structure, as shown in Fig. 8d. The conformational changes support our previous results obtained from 
RMSF analysis that major changes occurred at residues 204–228 in the W239R mutant (Fig. 6b). The co-activator 
protein, MO25α express strong interactions with E165, S169, Q170, G171 (from αE-helix), L201-A206 (β9-β9′ 
loop), R301, S307, and R310-K312 (from αI-helix) of STK1133,46. Furthermore, H174-D176 motif, β7, and β8 
sheets are essential for forming the catalytic region. The activation loop segment is formed by D194-G196 motif, 
β9, β9′, and β9′′ and ends at P221-E223 motif, in which H174 from H174-D176 motif and D199 from D194-G196 
motif are coordinated to Mg2+ along with PO4

− ions of ATP46. Consequently, the W239R mutant changed the 
conformation of the C-lobe in the kinase domain (Fig. 10a) and could disrupt the STK11-MO25α interaction, 
which might have an impact on complex assembly as well as could suppress the STK11 activation33.

In the W308C mutant structure, the most prominent alteration was observed from the amino acid residue 
positions of P294-A295 (from αH-αI loop) and V338-Y340 (from the C-terminal tail) acquiring a 310-helix 
conformation (Figs 8d and 10b). Interestingly, these 310-helix conformations are only observed in the W308C 
mutant structure, but are not present in the native type. Furthermore, C134-G135 (from β5-αD loop) is con-
verted to a β-strand in the mutant structure. The proportion of αC-helix (94–104), αF-helix (234–250), and 
αI-helix (300–310) are slightly reduced in the W308C mutant structure when compared to those in the native 
structure (Fig. 10b). Binding of both STRADα and MO25α reorients the αC-helix of STK11 in such a way that a 
salt bridge is formed between K78 of the VAIK motif and E98 of the αC-helix33. The regulatory spine is comprised 
of four hydrophobic residues such as L113, L102, H174, and L195, which are anchored to D237 of the αF-helix46. 
R301, S307, and R310-K312 (from the αI-helix) of STK11 interact with MO25α33,46. Boudeau et al. reported that 
mutations located at positions L67, F157, K175-L182, W239-G242, and R297-W308 residues of STK11 abolished 
binding to STRADα and MO25α16. Scott et al. were first to identify the W308C mutant in a 42-year old patient 
with PJS31.

From PCA analysis, mutant W239R showed a significant difference in flexibility than native and W308C 
mutant. This deviation might be due to disruption of secondary structure elements, which in turn affect the 
protein folding, thereby decreasing the stability of protein. Therefore, we suggest that the W239R mutant might 
have a great impact on protein function. This hypothesis is in good concordance with the results obtained by 
Rungsung et al.50.

conclusion
This study reports two nsSNPs (W239R and W308C) that were found to be deleterious and have a mutational 
impact on structure and function of the STK11 protein. These mutations may lead to disruption of the original 
conformation of the native protein. The mutant W239R structure displays a significant difference in binding with 
the STRADα-MO25α complex, which could lead to disruption in activation and reduction in catalytic efficiency 
of the STK11 protein. Our molecular dynamics approach presented a change of deviation in important regions 
of the mutant structures when compared to the native protein structure. These deviations can interrupt the con-
firmation of the secondary structure, and thereby, the stability of protein may be disrupted. We also noticed that 
the ATP binding capability of the mutant proteins was less than that of the native protein. Although the W308C 
mutant has been previously associated with Peutz-Jeghers Syndrome (PJS) according to the literature, no one has 
predicted the W239R mutant to be linked with any diseases. Therefore, it is likely that predisposition of the unre-
ported nsSNP can induce disease by altering protein activation or efficiency. The findings of this study will help 
in future genome association studies to distinguish deleterious SNPs associated with different individual patients 
with PJS. Hence, comprehensive clinical-trial-based studies are required on a large population to characterize this 
data on SNPs and also experimental mutational studies are required for the validation of the findings.

Figure 10. Superimposed structures of (a) native STK11 and mutant W239R and (b) native STK11 and mutant 
W308C proteins after 150 ns MD simulation. (Light violet: native STK11; Cyan: Mutants) The symbol coding 
scheme is as follows: native (light violet colour) interaction with ligand (green colour), mutants (cyan colour) 
interaction with ligand (red colour).
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Materials and Methods
collection of Snps dataset. The SNP data for the human STK11 gene was collected from various web-
based data sources such as: OMIM (Online Mendelian Inheritance in Man)51, SNPs information from NCBI 
dbSNP52, and the protein sequence was retrieved from UniProt database (UniProtKB ID Q15831)53.

Assessment of functional consequences of missense mutations. Functional consequences of 
nsSNPs in the coding region were predicted by using SIFT, PolyPhen 2, I-Mutant 3.0, PROVEAN, P-Mut, SNAP2, 
PON-P, and Mutation Assessor algorithms. SIFT uses the homology sequence of the proteins and alignment of 
natural nsSNPs with orthologous and paralogous protein sequences to predict nsSNPs as deleterious. A SIFT 
score less than 0.05 indicates deleterious impact of nsSNPs on protein function54. Another algorithm, PolyPhen2, 
utilizes the protein sequence and substitution of amino acids in protein sequence to predict the structural and 
functional effect on the protein. If amino acid are changed or a mutation is found in protein sequence, it classi-
fies SNPs as possibly damaging (probabilistic score >0.15), probably damaging (probabilistic score >0.85), and 
benign (remaining). Furthermore, PolyPhen2 calculates the position-specific independent count (PSIC) score for 
each variant in protein. The difference of PSIC score between variants indicates that the functional influence of 
mutants on protein function directly55. The Protein Variation Effect Analyzer (PROVEAN) algorithm was used 
to predict the damaging effect of nsSNPS in the STK11 protein sequences. This tool utilizes delta alignment scores 
on the basis of the variant version and reference of the protein sequence regarding the homologous sequences. 
An equal score or below the threshold of −2.5 indicates deleterious nsSNP alignment56. The change in stability 
caused by mutation was predicted by I-Mutant 3.0. It is a support vector machine (SVM) based tool server. 
I-Mutant 3.0 prediction is classified into three categories, such as neutral mutation (−0.5 ≤ DDG ≥ 0.5 kcal/mol), 
large decrease (<−0.5 kcal/mol), and large increase (>0.5 kcal/mol). I-Mutant predicts the Gibbs free energy 
change (ΔG) dependent on the difference of mutated protein and native type protein. PMUT allows the fast 
and accurate prediction (~80% success rate in humans) of the pathological character of single amino acid point 
mutations based on the use of neural networks. Inputing a FASTA sequence in the PMut server provided results 
which showed the difference among neutral variations and disease-related protein sequence. A prediction score 
more than 0.5 indicates nsSNPs having a pathological impact on protein function57. SNAP2 is a neural network 
based classifier. It was used to predict the functional impact of single amino acid substitutions in the STK11 
protein. This server accepts a FASTA sequence and provides a prediction score (ranges from −100 strong neutral 
prediction to +100 strong effect prediction) that reflects the likelihood of a specific mutation to alter the native 
protein function58. Another algorithm, PON-P2, predicts the pathogenicity (harmfulness) of amino acid substi-
tutions. It is a machine learning-based tool and utilizes amino acid properties, GO annotations, evolutionarily 
conserved sequence and functional annotations. PON-P2 distributes variants into 3 groups: pathogenic, neutral, 
or unknown classes59. The Mutation Assessor algorithm predicts the functional impact of amino acid substitu-
tions. The functional impact is evaluated based on evolutionary conservation of the affected amino acid in protein 
homologs60.

Identification of mutant nsSNPs position in different domains. The InterPro (http://www.ebi.ac.uk/
interpro/) tool was used for identification of different conserved domains in the STK11 protein and also mapping 
of nsSNPs positions in different domains61. Protein sequence in FASTA format or protein ID was inserted as a 
query to predict domains and motifs.

identification of functional Snps in conserved regions and phylogenetic analysis of 
STK11. Amino acid substitutions in the evolutionarily conserved region were predicted by the ConSurf 
server32. According to the Bayesian method, conservation scores were classified into 3 categories: 1–4 score is 
variable, 5–6 score indicates intermediate, and 7–9 score is conserved62,63. A protein structure or protein FASTA 
sequence of STK11 was input and conserved patterns were predicted in order to find a conservation score and 
colouring scheme. Structural and functional amino acids were also predicted. High-risk nsSNPs residing in the 
highly conserved region were selected for further analysis.

To execute phylogenetic analysis for human STK11 protein sequence (UniProtKB ID STK11_HUMAN) 
and eight different species protein sequences such as Macaca mulatta (H9ETP1_MACMU), Pan troglodytes 
(H2QET9_PANTR), Gallus gallus (STK11_CHICK), Rattus norvegicus (STK11_RAT), Mus musculus (STK11_
MOUSE), Xenopus tropicalis (F6PM85_XENTR), Bos taurus (E1BCU9_BOVIN), and Ovis aries (W5PNM2_
SHEEP) were retrieved from the UniProtKB and were subjected to evolutionary conservation. Then, multiple 
sequence alignment (MSA) was executed by the ClustalW tool and the phylogenetic tree was created using 1,000 
bootstraps in the MEGA6 package64,65.

Identification of high-risk nsSNPs in the UTR regions. The 5′ and 3′UTRs have significant roles in 
the post-transcriptional regulation of gene expression, message stability, translational efficiency, and subcellular 
localization66. UTRScan was used to predict high-risk nsSNPs in UTRs67. Its input format requires submission of 
a protein′s FASTA format. Output was in the form of signal name and its position in the transcript.

Modeling of native and nsSnps structure. The mutant SNPs can notably alter the stability of proteins. 
Consequently, 3D structures of native and mutant proteins were constructed to investigate the structural stability 
and deviations difference within native and mutant proteins. We generated the 3D structure of native and mutant 
proteins using the SWISS-MODEL server38. Only the protein kinase domain of the proteins was modeled which 
is comprised of residues 47–342. Structural validation was carried out by the RAMPAGE server68 and the 3D 
structures were visualized by Discovery Studio 4.169.
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Prediction of structural effects upon mutation. Project HOPE web server (http://www.cmbi.ru.nl/
hope/home) was used for predicting the structural impact of amino acids substitutions on the STK11 protein. To 
evaluate the structural features of mutations on the native protein, Project HOPE utilized the tertiary structure of 
the proteins that are available in the Distributed Annotation System (DAS) servers and Uniprot database. If nec-
essary, the Project HOPE web server can build homology models separately. This server also provides significant 
information about the structural changes between mutant and native residues70.

Molecular docking analysis of STK11. Native and mutant modeled STK11 structures were docked 
against the STRADα-MO25α complex. To obtain the STRADα-MO25α complex all the chains and hetero 
atoms in the PDB file of PDB ID: 2WTK were removed except chain A and B which corresponds to MO25α and 
STRADα proteins respectively. This complex was loaded as a receptor molecule in the PatchDock server71,72 and 
modeled structures were loaded as ligand molecules. Clustering RMSD was set at 4 Å, complex type as default, 
then protein-protein docking was performed. The solution with the highest score was chosen for further analysis. 
Docked complexes of STK11-MO25α-STRADα were aligned and visualized in Discover Studio 4.169. The bind-
ing affinity of ATP with the native and mutant STK11 structures was also evaluated. Quantum chemical calcula-
tions were conducted using the Gaussian 09 program package73. The ATP structure was retrieved from PubChem 
database (PubChem CID: 5957) and was optimized in the ground state by DFT (density functional theory) using 
the B3LYP 6–31 G(d) basis set. Docking analysis of native and mutant proteins with ATP was performed by 
AutoDock Vina74. In AutoDock Vina, the parameters were set at default and the grid box was set such that it 
covered the full structure of the proteins. Torsional rotation of all rotatable bonds was allowed for ligands and 
molecular docking was performed. After that, the binding complex of target proteins and ligand were obtained by 
PyMoL75 and visualized in Discovery Studio 4.169.

Molecular Dynamics Simulation. MD simulations were performed using the YASARA dynamics pro-
gram76 to reveal changes at the atomic level in different time scales for native and mutant STK11-ATP complexes. 
Before starting the simulation, the structures of native and mutant proteins were cleaned and also the H-bond 
network was optimized77. Then, a cubic cell was formed by extending 8 Å on each side of the protein and a peri-
odic boundary condition was maintained. The AMBER14 force field was applied for simulations78. The system 
was implemented by adding water molecules and NaCl salt at 0.9% concentration to replicate the physiological 
ion concentration. For short-range Coulomb and van der Waals interaction, the cut-off radius was set to 8 Å. The 
long-range electrostatic interactions were measured by the PME (particle-mesh Ewald) method79. MD simulation 
of each system was run for 150 ns at 310 K with a time step interval of 2.5 fs. The trajectory files were evaluated to 
get RMSD, RMSF, Rg, SASA, H-bond, and secondary structure analysis.

Principal component analysis (PCA). The PCA method projects multivariate energy factors into 
low-dimensional space, which highlights the variabilities present in the collected MD trajectory data although 
they do not specifically aim to identify them.80,81 Any potential energy variabilities due to hidden data structures 
such as groups of samples, local fluctuations in data densities, and unique samples can be visualized by this tech-
nique. PCA decomposes the multivariate response arranged in an X matrix into a product of two new matrices as 
indicated in the following equation:

= +X T P Ek k
T

where Tk is the matrix of scores which represents how sample relate to each other, Pk is the matrix of loadings 
which contains information about how variables relate to each other, k is the number of factors included in the 
model and E is the matrix of residuals, which contains the information not retained by the model. Mutant pro-
teins may have different energy profile compared to the native protein which should be discernable by this data 
decomposition mechanism. All calculations were performed with MATLAB 2011a (The Mathworks, Natick, MA, 
USA) equipped with the PLS Toolbox v. 6.2.1 (Eigenvector Research Inc., Wenatchee, WA, USA). In this analysis, 
the last 50 ns of MD simulation trajectory data of different potential energy were used. Before applying PCA, 
autoscale function was used to preprocess the data. First 4 PCs explained >80% of the energy variation.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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