
polymers

Review

Recent Advances in Boron-Containing Conjugated
Porous Polymers

Feng Qiu 1,2, Wuxue Zhao 2, Sheng Han 1, Xiaodong Zhuang 2, Hualin Lin 1,* and Fan Zhang 2,*
1 School of Chemical and Environmental Engineering, Center of Graphene Research,

Shanghai Institute of Technology, Shanghai 201418, China; fengqiu@sit.edu.cn (F.Q.);
hansheng654321@sina.com (S.H.)

2 School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites,
Shanghai Jiao Tong University, Shanghai 200240, China; zhaowuxue@yeah.net (W.Z.);
zhuang@sjtu.edu.cn (X.Z.)

* Correspondence: Lhl6534@163.com (H.L.); fan-zhang@sjtu.edu.cn (F.Z.); Tel.: +86-21-5474-8964 (F.Z.)

Academic Editors: Changsik Song and Hyeonseok Yoon
Received: 12 April 2016; Accepted: 9 May 2016; Published: 12 May 2016

Abstract: Porous polymers, integrating the advantages of porous materials and conventional
polymers, have been well developed and exhibited tremendous attention in the fields of material,
chemistry and biology. Of these, boron-containing conjugated porous polymers, featuring tunable
geometric structures, unique Lewis acid boron centers and very rich physical properties, such as high
specific surface, chargeable scaffold, strong photoluminescence and intramolecular charge transfer,
have emerged as one of the most promising functional materials for optoelectronics, catalysis and
sensing, etc. Furthermore, upon thermal treatment, some of them can be effectively converted to
boron-doped porous carbon materials with good electrochemical performance in energy storage and
conversion, extensively enlarging the applicable scope of such kinds of polymers. In this review, the
synthetic approaches, structure analyses and various applications of the boron-containing conjugated
porous polymers reported very recently are summarized.

Keywords: conjugated porous polymer; boron chemistry; structural characteristics; physical
properties; application

1. Introduction

Over the past few decades, porous materials, like activated carbons [1–3], zeolites [4,5] and
metal organic frameworks (MOFs) [6–8], with high surface areas and well-defined porosity have been
well developed and widely used in many fields. Different from inorganic porous materials, porous
polymers [9–13], featuring micro-/mesoporous scaffolds with the advantages of controlled porosity,
tailorable chemical compositions, multiple functionalities and convenient processibilities, have received
much attention in gas storage and separation [14–19], catalyst [20–22], proton exchange membrane [23],
sensor [24–28], drug delivery [29–31], biomolecular immobilization and tissue scaffold [32–35],
ultrahigh electrochemical capacity [36–41], etc. According to their structural architectures, porous
polymers can be classified as hyper-crosslinked polymers (HCPs) [42,43], polymers of intrinsic
microporosity (PIMs) [44,45], conjugated microporous polymers (CMPs) [36,46], covalent organic
frameworks (COFs) [10,47], porous aromatic frameworks (PAFs) [48–50], etc., which are efficiently
achieved via various chemical reactions, including anionic polymerization [51], addition-fragmentation
chain transfer polymerization (RAFT), polycondensation [10,11,52–54], transition metal-catalyzed
cross-coupling reactions [55–59] and click reactions [60–62]. With the help of these efficient synthetic
protocols, incorporating some key components into the polymeric scaffold plays an important role in
giving rise to porous polymers with promising properties.
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Post-synthesis and the bottom-up approach have been considered as the two main strategies
for the functionalization of porous polymers. For the former case [63–65], the building blocks in
a porous polymer network can be effectively modified, which is then linked with the functional
moieties by chemical transformation or coordinated binding. In the case of the latter one [39,66–68],
functional moieties are directly introduced into the building units of a porous polymer prior to
synthesis. For instance, a porous β-cyclodextrin polymer formed by polymerization of β-cyclodextrin
tetrafluoroterephthalonitrile showed high surface-area and a mesoporous architecture, which could
rapidly remove the organic micropollutants from water through the host-guest interaction [68].
Recently, heteroatoms were found to serve as efficient elements for constructing functional
porous polymers [36,38,69]. For example, some porous polymers combining electron-withdrawing
heteroatom moieties, e.g., boron atom or benzothiadiazole units, with p-type building blocks, e.g.,
triethynylbenzene, tetraphenylethene or triphenylamine, would generate charge/energy transfer
between donor/acceptor components, significantly expanding the applications of porous polymers in
light-emitting devices, metal-free catalysts and advanced electrodes [46,57,69].

To incorporate heteroatoms into porous polymers, early work was focused on the post-synthetic
method. For example, porous polymers were activated by the reaction of ammonia (NH3) with carbon
of the network at high temperatures [70]. However, this approach would destroy the skeletons of
porous polymers in the process of the formation of nitrogen-doped carbon materials. Alternatively, the
bottom-up methods on the basis of the different performances, including transition metal-catalyzed
cross-coupling polymerization [36,46], solvothermal polycondensation [71] and electrochemical
polymerization [72], have been regarded as the convenient approaches for the exact construction
of heteroatom-containing porous polymers. In this regard, heteroatoms can be incorporated into
the frameworks of porous polymers through the polymerization of heteroaromatic-based building
blocks, like melamine [38,73], cyanobenzene derivatives [74–76], thiophene derivatives [77–79],
triphenylphosphine [80–83], triarylboranes [28,57,58,84], etc. On the other hand, the formation
of heteroatom-containing linkers (e.g., imine [38,53,73], acylhydrazone [54], diazaborine [85],
thiol–yne [86]) via the polycondensation of the building blocks can be taken into account to couple
heteroatoms into the networks of porous polymers. The species, quantities, pore size distribution,
as well as valence states of heteroatoms in the porous polymers can be well controlled by such
a bottom-up performance, thus allowing one to clearly understand the relationship between structure
and properties.

To date, many heteroatoms, such as nitrogen, sulfur, phosphorus and boron, have been coupled
into the skeletons of porous polymers. Among these light elements, boron, a IIIA element in
the periodic table, is an indispensable one in organic chemistry [87–89]. Due to a boron atom
possessing three valence electrons, tri-coordinate boron structures can be formed by sp2–hybridization.
Furthermore, a four-coordinated boron-cored unit would be obtained by the coordination of the empty
p orbital on each boron center with a lone pair of electrons of a heteroatom or anion ion [89,90].
Encouraged by its alterable chemical bonding, the boron atom enables enriching the functions
of organic materials, including reagents, catalysts and luminescent materials [87,90,91]. With the
continuous emergence of new organoboron dyes and polymers with fantastic properties [88], the
boron-containing porous polymers have attracted increasing interest in the applications of luminescent
devices, catalysts, energy storage and conversions. Previous reviews concerning boron-containing
porous polymers mainly reported the boron-linked COFs [13,47]. In these systems, boron-carbon
linkages belong to dynamic covalent bonding, leading to forming of heteroatom-containing porous
polymers with high crystallinity. However, some intrinsic characteristics of the boron atom, for
example Lewis acidity widely known in tri-coordinate borane-containing organic small molecules and
polymers [20–22], are still not explored in porous polymers until recent years.

Normally, the boron atom is employed as a key component in a building block or linker
for the formation of a boron-containing conjugated porous polymer network (Figure 1). In the
former case, several kinds of boron-based functional molecules, including triarylboranes [28,57,58,84],
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boron-dipyrromethene (BODIPY) derivatives [46,92] and tetraphenylborate [93–96], have been used
as building blocks for the preparation of porous polymers through, for example, carbon–carbon
cross-coupling reactions, and the boron atom normally exerts a crucial effect on either the physical
properties or the main functions of a resulting porous polymer. For the latter case, the boron-based
heterocyclic linkers consisting of multiple B–O or B–N covalent bonds [47,85], which are formed via the
condensation reaction, represent one of the most popular dynamic covalent bonds for the construction
of a high crystalline framework (COF), and the boron atom mainly serves as a linkage for the formation
of a network, but has less effect on the functionality of a target porous polymer. According to these
remarkable differences between these two categories above, the representative examples in the recent
reports are presented in the following sections.
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2. Networks with Different Boron-Based Building Blocks

2.1. Triarylborane-Based Building Blocks

In the past several years, various tri-coordinate boron compounds, such as diboraanthracene,
borafluorene, anthrylboranes and triarylboranes, have been reported. Among them, triarylborane is
one of the most important series of organoboron compounds [87,97]. Owing to the steric protection
provided by the bulky aryl moieties, many triarylboranes exhibit excellent air and moisture stabilities.
Furthermore, the sp2–hybridized boron center, isoelectronic with carbocation, overlapping its empty
pπ-orbital with the adjacent organic π-conjugated system (e.g., aryl, vinyl, alkynyl) in a boron-based
chromophore, would lead to the formation of an extended π-conjugated backbone with a strong
electron-deficient character, with respect to the rich photophysical properties of such kinds of molecules.
Therefore, the boron-based chromophores have become one of the key active components in many
electronic devices, such as nonlinear optical emitters and electroluminescence diodes [87]. Therefore,
the construction of various polymeric materials on the basis of triarylborane-based building blocks
from linear conjugated polymers to porous polymers by the copolymerization with other monomers is
highly desirable.

In 2013, our group reported two kinds of multi-functional conjugated porous polymers
(BN-ph and BN-ph-ae) bearing trisdurylborane and triphenylamine as building block via Suzuki
cross-coupling polymerization and Sonogashira cross-coupling polymerization, respectively [57]
(Figure 2). They exhibited amorphous features with a classic disordered porous structure. The porous
properties of BN-ph and BN-ph-ae were investigated by nitrogen sorption analyses, which indicated
that both of them exhibit Type II isotherms. The high specific surface area (SBET) of 1279 m2¨ g´1 were
achieved for BN-ph. We found that SBET of BN-ph-ae dropped to 634 m2¨ g´1, with the increasing of
π-conjugated length in the porous polymer. The reason was probably attributed to the longer spacer
employed by acetylene-mediated BN-ph-ae than that of BN-ph. Moreover, BN-ph and BNph-ae
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showed H2 uptakes of 143 cm3¨ g´1 (1.28 wt %) and 106 cm3¨ g´1 (0.95 wt %), respectively, at 1 bar
and 77 K, which was in good agreement with their surface area results. Owing to the existence of
the D-π-A unit in BN-ph, the nearly solvent polarity-independent UV–VIS absorption was obtained,
indicating a relatively small dipole moment in the ground state; while the emission maxima of
BN-ph was red-shift from 427 to 509 nm with the increasing polarity of solvents. This suggested
a substantial polarized structure of BN-ph in the excited state, which was in accordance with a typical
D-π-A-conjugated system [98–100]. However, the BN-ph-ae with a longer π-bridge between D and A
showed a weak influence on this solvatochromic behavior, indicating the efficient D-π-A conjugated
system with the push-pull effect in the whole frameworks. Upon excitation at 350 nm, BN-ph with
a shorter π-bridge had an intense luminescence with a quantum yield (Φ) of 0.13; BN-ph-ae showed
much weaker emission with Φ of 0.07, which was consistent with the results of the photoluminescence
lifetime. Such a difference could be attributed to the efficiency of the charge transfer emission through
the π-bridge [101]. Both BN-ph and BN-ph-ae also exhibited good solid-state photoluminescence
performances, which might be beneficial from the rigid skeleton and amorphous architecture, thus
leading to the restriction of nonradiative deactivation and the π-π interaction in the solid state. On the
basis of their excellent luminescent properties, BN-ph could be used as probe for the detection of
fluoride. With the increasing of the molar ratio of n-Bu4NF (TBAF) in THF dispersion, the emission
intensity of BN-ph gradually decreased, caused by the suppression of charge transfer from nitrogen to
the boron center through the coordination of fluoride anions with boron atoms.
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Figure 2. A structural illustration of BN-ph and BN-ph-ae embedding D-π-A units (a); normalized
UV-VIS absorption spectra (b) and fluorescence spectra (c) (λex = 350 nm) of BN-ph; luminescence
photographs of BN-ph in different solvents under UV irradiation at λex = 365 nm (d). Reprinted with
permission from [57]. Copyright 2013, The Royal Society of Chemistry.

In the same year, Liu and coworkers reported the preparation of two kinds of
triarylborane-based conjugated microporous polymers (BCMP) in high yields [58]. One was
prepared via an alkyne-alkyne homocoupling of tris(alkynylduryl)borane (BCMP-1); another was
synthesized through Sonogashira–Hagihara coupling copolycondensation of tris(iododuryl)borane
and tri(4-ethynylphenyl)amine (BCMP-2). Surface area values of 815 and 911 m2¨ g´1 were
obtained for BCMP-1 and BCMP-2, respectively, which are much higher than that of the full-carbon
acetylene-mediated CMP network. Owing to the good stability and excellent porosity characteristics
of BCMPs, the CO2 adsorption capacity of these BCMPs was determined. BCMP-1 could store
up to 55.1 mg¨ g´1 of CO2 at a temperature of 273 K and 1 bar pressure, which are comparable
with the reported boron-based COFs with higher surface area and larger pore volume; while
a high carbon dioxide uptake of 74.5 mg¨ g´1 was obtained by BCMP-2 containing triphenylamine
under the same conditions, demonstrating that the electron-rich nitrogen atoms on the pore wall
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of BCMP-2 have a positive influence on the uptake capacity of carbon dioxide through the strong
acid-base interaction [102]. Besides, these BCPMs also showed good photophysical properties. The
UV–VIS absorption spectra of BCMP-1 synthesized from homocoupling of tris(alkynylduryl)borane
is red-shifted from that of its monomer by 58 nm, indicative of the extended π-conjugation for the
porous polymer. Upon irradiation from a UV lamp, strong luminescence with emission maxima
(λem) at 483 nm was observed. For BCMP-2, the UV–VIS and photoluminescence (PL) spectra are
remarkably red-shifted by 30 nm by comparison to those of BCMP-1, suggesting the electron-donating
effect of nitrogen in triphenylamine. The emission behavior of BCMP-2 is strongly dependent on the
polarity of organic solvent, due to the intramolecular charge transfer (ICT) from donor (D) nitrogen
to acceptor (A) boron. In 2015, the same group reported a boron-containing conjugated porous
polymer BCMP-3 with high surface area (950 m2¨ g´1) by Suzuki cross-coupling polycondensation of
tris(4-bromo-2,6-dimethylphenyl)borane and tris(4 dihydroxyboranylphenyl)amine [84]. This polymer
was explored as a porous luminescent chemosensor for selectively detecting trace amounts of F´ over
other common anions. Moreover, BCMP-3 could work as an adsorbent for F´ removal and showed
good adsorption capacities of up to 24 mg¨ g´1 at equilibrium F´ concentrations of 16 mgL´1 and
a temperature of 298 K. Owing to the low solubility in organic solvent, it exhibited good recyclability
and reusability for F´ removal without the loss of adsorption efficiency.

Similarly, Maji et al. [28] developed a boron-containing porous polymer (BMOP) consisting of
2,3,5,6-(tetramethylphenyl)boron and diethynylbiphenyl, which showed the formation of clustered
spherical particles with a dimension of 100 to 300 nm. A SBET of 390 m2¨ g´1 with an average pore
size of 1.08 nm was obtained (Figure 3). Upon the treatment with fluoride anion, BMOP showed
ratiometric fluorescent properties, in which the intensity of the emission band at 520 nm decreased,
while the emission band at 420 nm was enhanced. Accordingly, the fluorescent color of BMOP solution
changed from green to blue. Such a phenomenon could be attributed to the block of ICT from donor to
acceptor, resulting in π-π* emission localized on the extended monomer of the tetramethylphenyl-fused
1,4-diethynylbiphenyl unit. Particularly, the detection of F´ in water would be carried out in a mixed
solvent of THF/H2O. This ratiometric fluorescent change also could be observed distinctly, and the
detection limit of F´ ion by BMOP could reach to 2.6 µM, due to the strong B–F interactions. Upon
the addition of an excess of water, F´ in BMOP was eluted, and correspondingly, green emission was
recovered. Therefore, the real-time monitoring of the selective capture or release of F´ ions would
be realized.

2.2. Triphenyl Borate-Based Building Blocks

Each Lewis acid boron center in a tri-coordinate boron-based porous polymer allows for
accepting a lone pair of electrons from some anions, like fluoride [90] and cyanide [103,104], to
form an anionic tetra-coordinate boron-based porous polymer network. In this context, Jiang
and coworkers [72] recently synthesized a key monomer bearing a tris(2,3,5,6-tetramethylphenyl)
borane core with three N-substituted carbazole groups at the periphery. Then, the triphenyl
borane-based porous polymers with a surface area of 1074 m2¨ g´1 and a pore size of 1.5 nm
were achieved through electropolymerization with concurrent polymer-film deposition (Figure 4).
This neutral porous polymer (PBC) exhibited extremely low work function-selective electron flow.
After ionic ligation of (n-C4H9)4NF and electro-oxidation of carbazole units, the ionic network (OFPBC)
exhibited a significantly increased work function and turned into hole conduction, which offered
an unprecedented example with robust chemical and thermal stability for electrode interlayers in
energy-converting solar cells and light-emitting diodes.
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photoelectron spectroscopy for PBC, FPBC, and OFPBC films (b); ITO, Au and ZnO samples with and
without 20 nm-thick OFPBC films. The shift represents the change of the work function (c). Reprinted
with permission from [72]. Copyright 2016, Wiley-VCH.

Very recently, our group also prepared a new family of Lewis acid triarylborane-based conjugated
porous polymers, which were readily converted to the boron-containing anionic conjugated porous
polymers via the Lewis acid-base interaction, upon the treatment with tetrabutylammonium fluoride
(TBAF). Furthermore, the tetrabutylammonium cation in the network could be replaced by various
transition metal cations by ion exchange to form the transition metal-loaded boron-containing
conjugated porous polymers. As an example of cobalt(II)-loaded porous polymers, they enabled
efficient catalysis of homocoupling reactions of Grignard reagents with good size selectivity, associated
with the pore structures of the resulting anionic porous polymers. On the basis of such a strategy, one
even could introduce more than one transition metal ion into the as-prepared anionic porous polymer
networks, constructing versatile heterogeneous catalytic systems. Along this line, some works are in
progress in our group [105].
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2.3. BODIPY-Based Building Blocks

For the tri-coordinate boron, the empty p orbital on the boron center allows it excellent electron
receptivity, which provides the opportunity for the coordination with a heteroatom, e.g., oxygen,
nitrogen, to form tetra-coordinate boron-based compounds [106]. Among them, boron dipyrromethene
(BODIPY), comprising a four-coordinated boron center chelated by a bidentate heterocyclic ligand
and two fluorine atoms, is an important chelated borate dye [107,108]. It exhibits rich photophysical
properties, including high absorption coefficients, good fluorescence quantum yields, relatively narrow
absorption and emission bands and, thus, always serves as the functional building blocks for the
formation of oligomers, polymers and metal organic frameworks (MOFs) [109,110], demanding for
organic solar cells, organic light-emitting diodes, sensing and imaging, etc. [111]. Encouraged by these
successes, BODIPY-based conjugated porous polymers are being explored.

In 2015, Zhang and coworkers reported a series of BODIPY-based CMPs (CMP-0D, CMP-1D and
CMP-2D) with the controlled dimensionalities, in which bromo-functionalized carbon fullerene (0D),
single-walled carbon nanotubes (1D) and reduced graphene oxide (2D) were used as the templates, and
2,6-diiodo-1,3,5,7-tetramethyl-8-phenyl-4,4-difluoroboradiazaindacene and 1,3,5-triethynylbenzene
were copolymerized and grafted onto the templates through the Sonogashira–Hagihara coupling
reaction (Figure 5) [46]. The resulting CMP-nD had well-defined nanosphere, nanotube and nanosheet
morphologies with controlled thickness on nanocarbon by adjusting the feed ratios of the template and
monomers. After employing 0D, 1D and 2D nanostructured carbon templates, the SBET of CMP-nD
were 622, 614 and 593 m2¨ g´1, respectively, which were higher than that of CMP obtained without the
use of a template (574 m2¨ g´1). The pore structures of CMP-nD were not affected by the templates,
in comparison with that of pure CMP. After pyrolysis treatment, the resulting boron-containing
porous polymers CMP-nD were facile to be converted to the B/N co-doped porous carbon materials
with controlled dimensionalities, which exhibited promising electrocatalytic performance due to the
synergistic effects from boron and nitrogen. We found that the B/N co-doped porous carbons possess
high B/N doping contents (N = 5.1 to 8.6 wt %, B = 0.6 to 0.9 wt %) and exhibited efficient catalytic
performance for the oxygen reduction reaction (ORR). More importantly, the structure–property
relationship between the dimensions of porous carbon and electrochemically-catalyzed ORR was
well established in an order of 2D > 1D > 0D. Owing to ORR performance, these porous carbon
materials were used as the air electrodes in zinc–air batteries. As an example, the current density and
peak power density of a 2D porous carbon-based battery could reach to 23.9 and 14.6 mW¨ cm´2 at
0.61 V, respectively.

Using a similar synthesis strategy, Liras et al. [92] synthesized BODIPY-based conjugated porous
polymer (CMPBDP) in DMF by using 1,3,5,7,8-pentamethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene
and 1,3,5-triethynylbenzene as building blocks in a molar ratio of 1.5: 1 (Figure 6). Although the
polymer network was amorphous, the idealized geometry of CMPBDP optimized by Materials
Studio 6.0 using “universal” as the force field showed a planar configuration, thus leading to the
laminar morphology. The SBET of CMPBDP is 299 m2¨ g´1 with a micropore diameter of 1.3 nm
and an average mesoporous value of 3.7 nm. Owing to the existence of BODIPY, CMPBDP not only
showed highly red fluorescence with λem of 560 nm, even in the solid state, but also could be used
as a photocatalyst for selective oxidation of thioanisole. Reaction with 0.1 mol % of CMPBDP, the
corresponding sulfoxide product was obtained in a yield of 99% after 24 h of reaction, which was
higher than those of model compounds. This catalytic performance was comparable with the reported
BODIPY analogues, like iodine-functionalized BODIPY, dimeric BODIPY and other photosensitizers
of Ru(bpy)3Cl2. The recycling performance of CMPBDP was also evaluated, and the activity and
selectivity of CMPBDP could be maintained within 50 h of irradiation.
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Figure 5. A synthesis illustration of BODIPY-based porous polymers (conjugated microporous 
polymers (CMP)) CMP-0D, CMP-1D and CMP-2D (a); linear sweep voltammetry curves of AmorBN-
800, 0DBN-800, 1DBN-800, 2DBN-800 and Pt/C in O2-saturated 0.1 M KOH solution at 1600 rpm at a 
scan rate of 5 mV·s−1 (b); electron-transfer number for AmorBN-800, 0DBN-800, 1DBN-800 and 
2DBN-800 as a function of the electrode potential (c); polarization curve (V–i) and the corresponding 
power density plot of the battery using AmorBN-800, 0DBN-800, 1DBN-800 and 2DBN-800 as the 
cathode catalysts (d). Reprinted with permission from [46]. Copyright 2015, Wiley-VCH. 

Figure 5. A synthesis illustration of BODIPY-based porous polymers (conjugated microporous
polymers (CMP)) CMP-0D, CMP-1D and CMP-2D (a); linear sweep voltammetry curves of
AmorBN-800, 0DBN-800, 1DBN-800, 2DBN-800 and Pt/C in O2-saturated 0.1 M KOH solution at
1600 rpm at a scan rate of 5 mV¨ s´1 (b); electron-transfer number for AmorBN-800, 0DBN-800,
1DBN-800 and 2DBN-800 as a function of the electrode potential (c); polarization curve (V–i) and
the corresponding power density plot of the battery using AmorBN-800, 0DBN-800, 1DBN-800
and 2DBN-800 as the cathode catalysts (d). Reprinted with permission from [46]. Copyright
2015, Wiley-VCH.
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polymerization degrees and amorphous architectures. The values of their SBET were 82, 136 and  
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method. After being exposed to the iodine vapor, the color of the powders became progressively 
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2.4. Tetraphenylborate-Based Building Blocks

Tetraphenylborate is an important weakly-coordinating anionic borate, which can be used for
stabilizing the electrophilic cation species to achieve their catalytic activity in the carbon-carbon
formation reaction [112,113]. Wuest and coworkers reported the anionic porous supramolecular
networks from tetraphenylborates bearing multiple hydrogen-bonding sites [96]. This anionic
network was crystalline, in which 26% of the volume of the crystals was occupied by the ordered
tetraphenylborates, while 74% was available for including cations or guests. Interestingly, the resulting
channels were aligned with the c axis and had triangular cross-sections measuring approximately
8 ˆ 12 Å2 at the narrowest points. Thus, the porosity of the anionic network was greater than those of
the networks built from the neutral analogues.

In 2015, Zhu’s group [94] presented the design and synthesis of a series of charged
porous polymers (PAF-23, PAF-24, and PAF-25) comprising the charged tetrahedral lithium
tetrakis(4-iodophenyl)borate with different alkyne monomers, like 1,3,5-triethynylbenzene,
1,4,-diethynylbenzene and tetrakis(4-ethynylphenyl)methane (Figure 7). Owing to the efficient
Sonogashira–Hagihara coupling polymerization, these porous polymers showed high polymerization
degrees and amorphous architectures. The values of their SBET were 82, 136 and 262 m2¨ g´1,
respectively, with pore sizes of 0.44 to 0.47 nm, calculated by the Horvath–Kawazoe (HK) method.
After being exposed to the iodine vapor, the color of the powders became progressively darker;
correspondingly, the boron signals were significantly shifted to the low field (from ´26 ppm to
´5 ppm) and became broader after iodine capture. These results indicate that the central boron atoms
in networks show high affinity with iodine molecules. The I2 uptakes of these charged porous polymers
were evaluated in a pre-weighed glass vial at 75 ˝C and ambient pressure. The results showed that
per gram of PAF-23, PAF-24 and PAF-25 could adsorb approximately 2.71, 2.76 and 2.60 g of iodine,
respectively, which was the highest sorption values compared to those of the reported materials.
The reason might be attributed to the effective sorption sites, including an ionic bond, phenyl ring and
triple bond, for the high affinity of iodine. These materials were recyclable and could be reused for
iodine capture.
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permission from [94]. Copyright 2015, Wiley-VCH. 
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shows high chemical and photochemical stability, which has been widely applied as a building block 
in linear polymers or dendrimers [114,115]. Thomas et al. failed to synthesize homogeneous porous 
polymers via a Yamamoto coupling polymerization of lithium tetrakis(4-bromo-2,3,5,6-
tetrafluorophenyl)borate (Li[B(C6F4Br)4]) [93]. Therefore, they prepared the conjugated porous 
copolymer (Li-ABN) containing Li[B(C6F4Br)4] with 1,3,5-triethynylbenzene by Sonogashira–
Hagihara coupling polymerization (Figure 8). This network showed a high SBET of 890 m2·g−1 and a 
pore volume of 0.61 cm3·g−1, which was higher than that of uncharged analogues. Using the ”ship-in-
a-bottle” strategy, Li cation in Li-ABN could be exchanged by other cations. As an example of 
manganese(II) bipyridine complexes ([Mn-(bpy)2]2+) with good catalytic properties, the obtained 
[Mn-(bpy)2]2+-ABN could be used as catalysts for the oxidation of alkenes and alkanes. Within one 
hour, the complete conversion of styrene was observed, and the selectivity of the product could reach 
to 81%, even at the third run. These results demonstrated that the catalytic performance of [Mn-
(bpy)2]2+-ABN was better than other catalysts. In addition, the low solubility of [Mn-(bpy)2]2+-ABN 
in acetonitrile led to its recyclability and stability during the first three runs. 

Long and coworkers [95] reported the anionic tetrakis(phenyl)borate conjugated porous 
polymers by Sonogashira cross-coupling of tetrakis(4-iodophenyl)borate, tetrakis(4-iodo-2,3,5,6-
tetrafluorophenyl)borate or tetrakis(4-bromo-2,3,5,6-tetrafluorophenyl)borate with 1,4-diethynylbeznene 
and its tri(ethylene glycol)-substituted derivative. The good conductivity (2.7 × 10−4 S·cm−1), mild 
activation energies (0.28 eV) and strong ion-conducting transport (tLi+ = 0.93) had been obtained for 
these anionic porous polymers. 

Figure 7. A schematic illustration of triphenyl borate-based porous polymers PAF-23, PAF-24, and
PAF-25 (a); photographs of PAF-23, PAF-24 and PAF-25 when adsorbing iodine (b); the change of
solid-state 11B NMR spectra of PAF-23, PAF-24 and PAF-25 after adsorbing iodine (c). Reprinted with
permission from [94]. Copyright 2015, Wiley-VCH.

Compared to non-fluorinated tetraphenylborate anion, tetrakis(pentafluorophenyl)borate shows
high chemical and photochemical stability, which has been widely applied as a building block in linear
polymers or dendrimers [114,115]. Thomas et al. failed to synthesize homogeneous porous polymers
via a Yamamoto coupling polymerization of lithium tetrakis(4-bromo-2,3,5,6-tetrafluorophenyl)borate
(Li[B(C6F4Br)4]) [93]. Therefore, they prepared the conjugated porous copolymer (Li-ABN) containing
Li[B(C6F4Br)4] with 1,3,5-triethynylbenzene by Sonogashira–Hagihara coupling polymerization
(Figure 8). This network showed a high SBET of 890 m2¨ g´1 and a pore volume of 0.61 cm3¨ g´1,
which was higher than that of uncharged analogues. Using the ”ship-in-a-bottle” strategy, Li cation in
Li-ABN could be exchanged by other cations. As an example of manganese(II) bipyridine complexes
([Mn-(bpy)2]2+) with good catalytic properties, the obtained [Mn-(bpy)2]2+-ABN could be used as
catalysts for the oxidation of alkenes and alkanes. Within one hour, the complete conversion of styrene
was observed, and the selectivity of the product could reach to 81%, even at the third run. These results
demonstrated that the catalytic performance of [Mn-(bpy)2]2+-ABN was better than other catalysts.
In addition, the low solubility of [Mn-(bpy)2]2+-ABN in acetonitrile led to its recyclability and stability
during the first three runs.

Long and coworkers [95] reported the anionic tetrakis(phenyl)borate conjugated porous
polymers by Sonogashira cross-coupling of tetrakis(4-iodophenyl)borate, tetrakis(4-iodo-2,3,5,6-
tetrafluorophenyl)borate or tetrakis(4-bromo-2,3,5,6-tetrafluorophenyl)borate with 1,4-diethynylbeznene
and its tri(ethylene glycol)-substituted derivative. The good conductivity (2.7 ˆ 10´4 S¨ cm´1), mild
activation energies (0.28 eV) and strong ion-conducting transport (tLi+ = 0.93) had been obtained for
these anionic porous polymers.
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crystallinity, for example COFs, due to the dynamic covalent bond of boronate linkage. As a 
benchmark work, Yaghi and co-workers reported the first type of COFs (COF-1) [10], which was 
synthesized by self-condensation reactions of phenyl diboronic acid with planar six-membered B3O3 
rings. As a result of the reversible covalent bond of boroxine from the dehydration of boronic acid, 
this COF showed high crystallinity with the expanded porous 2D graphitic layers, and a Brunauer-
Emmett-Teller (BET) surface area of 711 m2·g−1 and an average pore size of 0.7 nm were obtained. 
Besides boroxine, boronate esters and borosilicate also could be used for the construction of boronate-
based COFs [10,11]. For example, 2D COF-5 containing boronate ester linkages was synthesized via 
the co-condensation of diboronic acid and hexahydroxy triphenylene with a longer conjugated 
length, leading to the higher SBET of 1590 m2·g−1 with the comparison of COF-1. The higher surface 
area of 4210 m2·g−1 was obtained for 3D boroxine-based COF constructed from self-condensation of 
diboronic acid with tetra(4-dihydroxyborylphenyl)silane. 

To date, great success in constructing boronate-based COFs by various synthetic strategies and 
building blocks was achieved [47,116]. With tunable chemical and physical properties, these COF 
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3. Networks with Different Boron-Based Linkers

3.1. B-O Type Linkers

Owing to its low toxicity to transition metal catalysts, boronate groups have been widely used as
the functional groups in carbon-carbon cross-coupling reactions, e.g., Suzuki reaction. The formation
of boronate groups also can be applied for the synthesis of porous polymers with high crystallinity, for
example COFs, due to the dynamic covalent bond of boronate linkage. As a benchmark work,
Yaghi and co-workers reported the first type of COFs (COF-1) [10], which was synthesized by
self-condensation reactions of phenyl diboronic acid with planar six-membered B3O3 rings. As a result
of the reversible covalent bond of boroxine from the dehydration of boronic acid, this COF showed
high crystallinity with the expanded porous 2D graphitic layers, and a Brunauer-Emmett-Teller (BET)
surface area of 711 m2¨ g´1 and an average pore size of 0.7 nm were obtained. Besides boroxine,
boronate esters and borosilicate also could be used for the construction of boronate-based COFs [10,11].
For example, 2D COF-5 containing boronate ester linkages was synthesized via the co-condensation
of diboronic acid and hexahydroxy triphenylene with a longer conjugated length, leading to the
higher SBET of 1590 m2¨ g´1 with the comparison of COF-1. The higher surface area of 4210 m2¨ g´1

was obtained for 3D boroxine-based COF constructed from self-condensation of diboronic acid with
tetra(4-dihydroxyborylphenyl)silane.

To date, great success in constructing boronate-based COFs by various synthetic strategies and
building blocks was achieved [47,116]. With tunable chemical and physical properties, these COF
materials, even with the non-conjugated boronate linkers, were exploited as promising candidates
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for applications in optoelectronics, including luminescent materials and organic semiconductors.
In organic semiconductors, the charge transfer is not only along the delocalized backbone of conjugated
polymers, but also goes through the columnar molecular arrangements by using a thermally activated
hopping mode [117]. Jiang and coworkers synthesized pyrene-functionalized COFs (PPy-COF and
TP-COF) via self-condensation of pyrene-2,7-diboronic acid (PDBA) and co-condensation PDBA with
2,3,6,7,10,11-hexahydroxytriphenylene [118,119]. Both PPy-COF and TP-COF possess highly ordered
2D eclipsed structures, which enable forming a conductive path for the relatively high electric current.
Using a porphyrin as the building block, the possibilities of carrier transportation of COFs could be
adjusted from hole conduction to ambipolar and electron conduction by coordination of metal (copper
and zinc) with porphyrin, owing to the different electron transport abilities of the metal channels
in H2-COF, CuP-COF and ZnP-COF [120]. Recently, Jiang et al. [121] reported donor–acceptor COF
consisting of boronate ester linkers, zinc phthalocyanines as electron donors and naphthalene diimides
as acceptors (Figure 9). This DZnPc-ANDI COF provided self-sorted, bicontinuous columnar arrays and
constitutes a periodically-structured heterojunction system, in which each donor column was interfaced
with four acceptor columns. Therefore, charge separation and exciton transfer would be realized
when the exciton was generated directly by light absorption, accounting for the long-distance charge
delocalization and exceptional long-term charge retention in the aligned bicontinuous π-columns,
which provided them as promising high performance semiconducting materials for the application in
photo-induced energy conversion.
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Figure 9. A structural illustration of the donor–acceptor covalent organic framework (COF) (DZnPc-
ANDI COF) (a); slipped stacking of DZnPc-ANDI COF and the illustration of its electron transport (b); 
femtosecond transient absorption spectra of DZnPc-ANDI COF at different time intervals in DMF (c); time 
profiles of the transient bands at 480, 576 and 840 nm (d). Reprinted with permission from [121]. 
Copyright 2016, Wiley-VCH. 

Using graphene oxide as a building block, Srinivas et al. [122] synthesized a range of porous 
graphene oxide frameworks (GOFs) by cross-linking of oxygen functional groups on the GO layers 
with various boronic acids to form the linear boronate ester linkers in a solvothermal reaction  
(Figure 10). The GOFs showed periodic layered structures with largely expanded interlayer spacing. 
Owing to the existence of strong boronate-ester bonds between the GO layers, the thermal stability 
of GOFs is higher than that of precursor GO. This frameworks exhibited a reasonably higher surface 

Figure 9. A structural illustration of the donor–acceptor covalent organic framework (COF)
(DZnPc-ANDI COF) (a); slipped stacking of DZnPc-ANDI COF and the illustration of its electron
transport (b); femtosecond transient absorption spectra of DZnPc-ANDI COF at different time intervals
in DMF (c); time profiles of the transient bands at 480, 576 and 840 nm (d). Reprinted with permission
from [121]. Copyright 2016, Wiley-VCH.

Using graphene oxide as a building block, Srinivas et al. [122] synthesized a range of porous
graphene oxide frameworks (GOFs) by cross-linking of oxygen functional groups on the GO layers with
various boronic acids to form the linear boronate ester linkers in a solvothermal reaction (Figure 10).
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The GOFs showed periodic layered structures with largely expanded interlayer spacing. Owing to
the existence of strong boronate-ester bonds between the GO layers, the thermal stability of GOFs
is higher than that of precursor GO. This frameworks exhibited a reasonably higher surface area of
about 470 m2¨ g´1 compared to the ca. 10 m2¨ g´1 for GO. The H2 uptake of all of the GOFs at 77 K
was evaluated, and the obtained H2 uptake capacities (1.2 to 0.4 wt %) of GOFs are relatively high in
comparison with other porous materials with respect to the similar BET surface area.
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4-bromo-phenylboronic acid in a yield of 73% [85]. This key monomer was further used to synthesize 
B, N-containing porous conjugated polymers (PPs-BN-i) by Sonogashira–Hagihara cross-coupling 
copolymerization with 1,3,5-triethynylbenzene, tris(p-ethynylphenyl) amine and tetrakis(4-
ethynylphenyl)methane, respectively (Figure 11). These porous polymers showed low porosities of 
16, 32 and 51 m2·g−1 for PPs-BN-1, PPs-BN-2 and PPs-BN-3, respectively, which was caused by the 
low rigidity of the naphthyl moieties in polymeric networks. After pyrolysis at 800 °C under a 
nitrogen atmosphere for 2 h, carbon materials deriving from PPs-BN-i exhibited a high degree of 
graphitization with increasing BET surface areas of 215, 291 and 268 m2·g−1, respectively. The obtained 
B/N co-doped porous carbons showed excellent CO2 adsorption, and the CO2 uptakes of PPs-BN-1-
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Figure 10. A structural illustration of graphene oxide frameworks (GOFs) with various types of
phenylboronate pillaring units (a); nitrogen adsorption (filled) and desorption (empty) isotherms of
GOFs measured at 77 K (b); hydrogen adsorption isotherms of GOFs at 77 K (c); isosteric heat of
GOF-1PBA and GOF-14PDBA for capturing H2 (d). Reprinted with permission from [122]. Copyright
2011, The Royal Society of Chemistry.

3.2. B-N-Type Linkers

In comparison with the boronate ester linker, six-membered heterocyclic 1,3,2-diazaborine
composed from boronic acid with diamino compounds is much more stable both in moist air and
organic solvents. However, as far as we know, there are very few BN-containing conjugated porous
polymers documented so far. In 2015, Zhang et al. pre-prepared 1,3,2-diazaborine-containing building
block via condensation reaction of 4,4,5,5-tetraamino-1,10-binaphthyl with 4-bromo-phenylboronic
acid in a yield of 73% [85]. This key monomer was further used to synthesize B, N-containing
porous conjugated polymers (PPs-BN-i) by Sonogashira–Hagihara cross-coupling copolymerization
with 1,3,5-triethynylbenzene, tris(p-ethynylphenyl) amine and tetrakis(4-ethynylphenyl)methane,
respectively (Figure 11). These porous polymers showed low porosities of 16, 32 and 51 m2¨ g´1 for
PPs-BN-1, PPs-BN-2 and PPs-BN-3, respectively, which was caused by the low rigidity of the naphthyl
moieties in polymeric networks. After pyrolysis at 800 ˝C under a nitrogen atmosphere for 2 h, carbon
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materials deriving from PPs-BN-i exhibited a high degree of graphitization with increasing BET surface
areas of 215, 291 and 268 m2¨ g´1, respectively. The obtained B/N co-doped porous carbons showed
excellent CO2 adsorption, and the CO2 uptakes of PPs-BN-1-800, PPs-BN-2-800 and PPs-BN-3-800
reached to 3.23, 3.25 and 3.11 mmol¨ g´1, respectively, at 273 K and 1 bar pressure. The B/N co-doped
porous carbon PPs-BN-3-800 with a low surface area of 268 m2¨ g´1 offered a higher CO2 uptake than
N-doped porous carbon FCDTPA-700 (BET = 417 m2¨ g´1) under the same conditions, suggesting
that the increased polarization arising from the B/N co-doped effect might enhance the basicity of
the backbone of the resulting materials, which was likely beneficial to CO2 capture. In addition, the
selective gas absorption of B/N co-doped porous carbons was also evaluated. Due to the different
polarity between methane and carbon dioxide, the highest selectivity of CO2/CH4 was achieved for
PPs-BN-1-800 in a ratio of 5.1/1 at 298 K and 1 bar, which was comparable to those of the reported
porous materials.
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298 K (b); CO2 and CH4 uptake/selectivity of porous carbon (c). Reprinted with permission from [85].
Copyright 2015, The Royal Society of Chemistry.

Kahveci et al. had designed and synthesized a kind of five-membered diazaborole-linked porous
organic polymer (DBLP) by utilizing the condensation reaction of diamines and boronic acids [123].
These microporous DBLPs exhibited high surface areas in the range of 730 to 1120 m2¨ g´1. DBLPs
can store CO2 up to 4.48 mmol¨ g´1 (at 273 K and 1 bar) with high (35 kJ¨ mol´1) isosteric heats of
adsorption. This high uptake and binding affinity for CO2 might arise from the rich nitrogen content
and the microporous nature of the polymers. Other novel properties, including high H2 uptake
2.13 wt % at 77 K and 1 bar and moderate CO2/N2 selectivity were obtained.

4. Conclusions and Perspectives

In this feature article, we have witnessed the significant progress in the synthesis and application of
boron-containing conjugated porous polymers in recent years. The structures of these porous polymers
could be tailorable by changing the boron-based building blocks (like triarylborane derivatives,
BODIPY derivatives and triarylborate derivatives), the linkage modes (e.g., carbon-carbon linkage and
boronate linkage) and polymerization reaction conditions. With respect to the full-carbon analogues,
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incorporation of boron atoms into the skeletons of the conjugated porous polymers can take unique
advantage of their empty pπ orbitals to offer Lewis acidity, extended π-conjugated systems and
an electron-deficient character. As a consequence, the resulting boron-containing conjugated polymers
are rendered with very rich physical properties, including solvatochromic behavior, bright fluorescent
properties in the solid state, specific recognition of anions, strong dipole–quadrupole interaction with
CO2, ion exchange capability and a narrow energy gap, thus making them widely applicable for
luminescent organic devices, selective sensors, gas storage and separation, catalysts, energy storage
and conversion.

To date, a great deal of accomplishments and progress have already been achieved in the area
of boron-containing conjugated porous polymers. However, some primary challenges still exist
as follows: (1) the design and synthesis of novel boron-based building blocks; (2) the exploration
of new boron-based linkages governed by dynamic covalent bonding; (3) the improvement of
the stability of boron-based porous polymers against moisture and air; (4) the establishment of
the boron-based multi-stimuli-responsive systems. Provided that these difficulties are overcome,
boron-based conjugated porous polymers serve as promising candidates in a much larger scope.
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