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Abstract 

Affinity fingerprints report the activity of small molecules across a set of assays, and thus permit to gather information 
about the bioactivities of structurally dissimilar compounds, where models based on chemical structure alone are 
often limited, and model complex biological endpoints, such as human toxicity and in vitro cancer cell line sensitiv‑
ity. Here, we propose to model in vitro compound activity using computationally predicted bioactivity profiles as 
compound descriptors. To this aim, we apply and validate a framework for the calculation of QSAR‑derived affinity 
fingerprints (QAFFP) using a set of 1360 QSAR models generated using  Ki,  Kd,  IC50 and  EC50 data from ChEMBL data‑
base. QAFFP thus represent a method to encode and relate compounds on the basis of their similarity in bioactivity 
space. To benchmark the predictive power of QAFFP we assembled  IC50 data from ChEMBL database for 18 diverse 
cancer cell lines widely used in preclinical drug discovery, and 25 diverse protein target data sets. This study comple‑
ments part 1 where the performance of QAFFP in similarity searching, scaffold hopping, and bioactivity classification 
is evaluated. Despite being inherently noisy, we show that using QAFFP as descriptors leads to errors in prediction on 
the test set in the ~ 0.65–0.95  pIC50 units range, which are comparable to the estimated uncertainty of bioactivity data 
in ChEMBL (0.76–1.00  pIC50 units). We find that the predictive power of QAFFP is slightly worse than that of Morgan2 
fingerprints and 1D and 2D physicochemical descriptors, with an effect size in the 0.02–0.08  pIC50 units range. Includ‑
ing QSAR models with low predictive power in the generation of QAFFP does not lead to improved predictive power. 
Given that the QSAR models we used to compute the QAFFP were selected on the basis of data availability alone, we 
anticipate better modeling results for QAFFP generated using more diverse and biologically meaningful targets. Data 
sets and Python code are publicly available at https ://githu b.com/isidr oc/QAFFP _regre ssion .

Keywords: QSAR, Affinity fingerprints, ChEMBL, Bioactivity modeling, Cytotoxicity, Drug sensitivity prediction, Drug 
sensitivity

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco 
mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
A major research question in Quantitative Structure–
Activity Relationship (QSAR) has been (and still is) how 
to numerically encode small molecules [1–4]. Compound 
descriptors are generally calculated using 2-dimensional 
(2D) or 3-D representations of chemical structures as a 
starting point (although sometimes even simpler 1-D 

descriptors are also used, e.g., atom counts or molecular 
weight [5, 6]). The underlying idea when these descrip-
tors are used to generate QSAR models is the ‘Molecu-
lar Similarity Principle’, which states that the bioactivities 
of structurally similar compounds tend to be correlated 
more often than those of dissimilar ones [7, 8]. Although 
compound descriptors based on the chemical struc-
ture are customarily used today in similarity searching 
and QSAR, they suffer from the limitation that they can 
only provide accurate predictions for structurally similar 
compounds, where the above principle holds. However, 
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in case of e.g., ‘activity cliffs’ [9], different scaffolds bind-
ing to the same protein, or different binding sites, there 
are exceptions to this principle, and molecular descrip-
tors based purely on molecular structure will not be 
sufficiently information-rich in order to handle such 
multi-modal models very well. Hence, the information 
that can be gathered about the bioactivities of structur-
ally dissimilar compounds on the basis of their chemical 
structure alone is often limited.

A conceptually different approach is the quantification 
of compound similarity on the basis of the similarity of 
their bioactivity profiles instead of the similarity of their 
chemical structures [10–12]. The underlying principle, 
similarity in bioactivity space, is that compounds display-
ing correlated bioactivity endpoints across a set of assays 
(e.g., assays based on the activity of a purified protein, 
or cell-based assays) are likely to display similar activi-
ties also on other assays (which conceptually can then be 
modelled as a linear combination, or more complex func-
tion, of the input assay panel activities [13]). The set of 
bioactivities across a panel of assays are usually known as 
affinity, bioactivity, protein or high-throughput screening 
fingerprints [12–15]. Note that the term ‘affinity finger-
print’ is often used even when the bioactivity endpoints 
are not  Ki nor  Kd values, but rather assay-specific metrics 
of potency, such as  IC50 or  EC50 values, so it comprises a 
broad set of activity spectra-based descriptors. In the fol-
lowing and in the accompanying manuscript, we use the 
term affinity fingerprint to refer to the set of biological 
endpoints, experimentally determined or predicted, irre-
spective of whether the endpoint measured corresponds 
to a potency or an affinity metric. For a comprehensive 
review of existing methods to predict affinity fingerprints 
using existing high-throughput data [16–28], the reader 
is referred to the introduction of the accompanying man-
uscript [29].

Affinity fingerprints encode information about the 
many interactions (both strong and weak) between a 
given compound and its targets, and thus permit to 
model complex biological endpoints, such as human tox-
icity and in vitro cancer cell line sensitivity, and provide 
complementary signal to chemical structure information 
[30, 31]. Current predictive methods use either structural 
information of compounds as descriptors to model their 
activity on a single target (i.e., QSAR [32]), or assay activ-
ity as covariates to model the activity of a single com-
pound across a target panel [33–35]. The latter strategy 
suffers from the limitation that in order to make predic-
tions on novel targets these need to be experimentally 
profiled in the same way as those in the training set. In 
contrast, QSAR methods permit, to the extent the train-
ing data allows extrapolation in chemical space [36], to 
make predictions on new molecules more scalable, as the 

computation of compound descriptors only requires the 
chemical structure as input. Therefore, designing compu-
tational tools to model assay readouts using the chemical 
structure of compounds as input would permit to predict 
in silico the affinity fingerprint for a molecule of interest 
without the need for experimental testing, which in turn 
could provide a better description of the relevant vari-
ance connecting chemical and biological space.

The construction of such in silico affinity fingerprints, 
termed QSAR-derived Quantitative Affinity Fingerprints 
(QAFFPs), is described in the accompanying manuscript 
[29] where their performance for similarity searching, 
compound activity classification and scaffold hopping 
is reported. The range of application of QAFFP is fur-
ther enhanced in the present manuscript, in which the 
use of QAFFPs in regression settings is studied. Specifi-
cally, QAFFPs were assessed to model in  vitro potency 
on a continuous scale across 43 diverse data sets (Fig. 1 
and Tables  1, 2). For each compound in each data set, 
the predictions generated by a set of 1360 QSAR mod-
els (termed base models) trained on  IC50,  EC50,  Ki and 
 Kd data were recorded. These vectors of predicted activi-
ties, i.e., QAFFP, were then used as compound descrip-
tors to build QSAR models. To benchmark the predictive 
power of QAFFP, we assembled 18 diverse cytotoxicity 
data sets from ChEMBL, and constructed QSAR models 
using cross-validation. In addition, we also used 25 addi-
tional protein target QSAR data sets from ChEMBL for 
validation. The compounds were encoded using either 
circular Morgan fingerprints [37], 1-D and 2-D physico-
chemical descriptors, or QAFFP fingerprints. Hence, this 
framework allowed us to evaluate the predictive power 
of QAFFP fingerprints across a wide range of bioactivity 
prediction models.  

Methods
Data collection and curation
We gathered  IC50 data for 18 cancer cell lines from 
ChEMBL database version 23 using the chembl_webre-
source_client python module [38–40]. To gather high-
quality data, we only kept  IC50 values corresponding to 
molecules that satisfied the following filtering criteria 
[41]: (i) molecule type equal to “Small molecule”, (ii) 
activity unit equal to “nM”, and (iii) activity relationship 
equal to “=”. The average  pIC50 value was calculated 
when multiple  IC50 values were annotated for the same 
compound-cell line pair.  IC50 values were modeled in a 
logarithmic scale  (pIC50 = − log10  IC50  [M]). Further 
information about the data sets is given in Table  1 and 
in a previous study by the authors [42]. We also collected 
25 QSAR data sets for validation from previous work by 
the authors (Table 2) [42–44]. All data sets used in this 
study, as well as the code required to generate the results 
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presented herein, are publicly available at https ://githu 
b.com/isidr oc/QAFFP _regre ssion . The distribution of 
bioactivity values for all data sets is reported in Addi-
tional file 1: Figure S1.

Molecular representation
The Innovative Medicines Initiative eTOX project stand-
ardizer (https ://githu b.com/flatk inson /stand ardis er) was 
used to normalize all chemical structures reported here 
to a common representation scheme using the default 
options. This normalization step is crucial for the genera-
tion of compound descriptors, as these (except for e.g., 
heavy atom counts) generally depend on a consistent rep-
resentation of molecular properties, such as aromaticity 
of ring systems, tautomer representation or protonation 
states. Entries corresponding to entirely inorganic struc-
tures were removed. In the case of organic molecules, the 

largest fragment was kept in order to filter out counte-
rions following standard procedures in the field [45, 46], 
and salts were neutralized.

QSAR‑based activity fingerprints (QAFFP)
The protocol to calculate QSAR-based affinity finger-
prints using ChEMBL data is explained in detail in the 
accompanying manuscript [29]. In brief, the workflow 
can be summarized in the following five steps (Fig. 1):

1. We initially gathered a total of 1360 QSAR data 
sets from ChEMBL version 19. We considered both 
human and non-human protein targets, and  EC50 
(173 targets),  IC50 (786),  Ki (365), and  Kd (36) values 
as bioactivity endpoints. We only considered meas-
urements with an activity relationship equal to ‘=’ 
and activity values reported in ‘nM’ units. The mean 
value was used as the activity value when multiple 
measurements were annotated for the same com-
pound-protein pair only if the standard deviation of 
all annotated measurements was lower than 0.5; oth-
erwise the data point was not further considered.

2. To model these data sets, we trained tenfold CV RF 
models using 30% of the data as the test set, and Mor-
gan2 fingerprints as compound descriptors. We term 
these models base models. A total of 440 models (376 
unique targets) displayed an average  R2

test value > 0.6, 
and a cross-validation  q2 value > 0.5. These cut-off 
values are a reasonable choice to identify models 
with high predictive power on unseen data (although 
we note that the minimum predictive power required 
for a model to be useful in practice depends on the 
context in which it is applied, e.g., poor predictive 
performance might be useful in hit identification but 
not in lead optimization) [47].

3. The cross-validation predictions served to build a 
cross-conformal predictor for each of the 1360 base 
models as previously described [48].

4. To calculate QAFFP for the compounds in the 18 
cytotoxicity and 25 protein target data sets, we used 
the base models to calculate point predictions (i.e., 
 IC50,  EC50,  Kd, and  Ki values), and calculated confi-
dence intervals (90% confidence) for each individual 
prediction using the corresponding conformal pre-
dictor. Hence, for a given compound we computed (i) 
a 1360-dimensional fingerprint, where each bit cor-
responds to the predicted activity for that compound 
using one of the 1360 base models considered, and 
(ii) a 1360-dimensional vector recording the predic-
tion errors calculated using conformal prediction.

Fig. 1 Overview of the workflow used in this study. We initially 
assembled and modelled 1360 data sets from ChEMBL database 
using RF (Random Forest) and conformal prediction. Of these, 
440 displayed high predictive power in cross validation  (q2 > 0.5) 
and on external molecules  (R2 test set > 0.6), and hence, were 
selected to build QAFFP fingerprints for 18 cytotoxicity and 25 
protein target data sets (Tables 1 and 2) assembled from ChEMBL 
database as well. To benchmark the predictive signal of QAFFP, we 
compared the performance of RF models trained on QAFFP against 
models generated using Morgan2 fingerprints or 1‑D and 2‑D 
physicochemical descriptors across a diverse set of 43 bioactivity data 
sets (Tables 1 and 2)

https://github.com/isidroc/QAFFP_regression
https://github.com/isidroc/QAFFP_regression
https://github.com/flatkinson/standardiser
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5. Next, we combined the point predictions and the 
predicted confidence intervals to define three types 
of QAAFP (Fig. 1):

• Real-valued QAFFP (rv-QAFFP): This type of fin-
gerprint is defined by the point predictions com-
puted using the base models. We defined two 
types of rv-QAFFP fingerprints: “rv-QAFFP 440” 
fingerprints were computed using the 440 base 
models showing high predictive power on unseen 
data as explained above, whereas “rv-QAFFP 
1360” fingerprints were calculated using the 1360 
base models irrespective of their predictive power 
on the test set.

• Binary QAFFP (b-QAFFP 440): To construct 
“b-QAFFP 440” fingerprints we set to one 1 all 
positions in the rv-QAFFP 440 fingerprint cor-
responding to predictions lying above a given 
activity cutoff (in this case 5  pIC50 units), and 
which are within the applicability domain (AD) 
of the underlying base model. We consider that 
a prediction is within the AD of a base model if 
the predicted confidence interval is lower than 2 
 pIC50 units, (i.e., the predicted confidence interval 
is no wider than +/− 2). Thus, all values that lie 
below the affinity cutoff but are still within model 
AD were encoded using zeros. The value was set 
to zero as well for predictions lying outside the 

model AD, following the assumption that a com-
pound is more likely to be inactive than active. 
Thus, this corresponds to setting to one those bits 
corresponding to the targets with which a given 
compound is predicted to interact even at low 
compound concentrations, while also taking into 
account the confidence of the prediction.

In the case of the 25 protein target data sets (Table 2), 
base models trained on bioactivity data from these tar-
gets or their orthologues were excluded, and thus not 
considered to compute QAFFP for these data sets.

As a baseline method for comparisons, we consid-
ered RF models trained on Morgan fingerprints [37], 
and physicochemical descriptors. We computed circu-
lar Morgan fingerprints using RDkit (release version 
2013.03.02) [37, 49]. The radius was set to 2 and the fin-
gerprint length to 1024. Thus, we refer to Morgan fin-
gerprints as Morgan2 hereafter. Morgan fingerprints 
encode compound structures by considering radial atom 
neighborhoods. The choice of Morgan fingerprints as a 
base line method to compare the performance of QSAR-
derived affinity fingerprints was motivated by the high 
retrieval rates obtained with Morgan fingerprints in 
benchmarking studies of compound descriptors [50, 51]. 
A total of 200 1-D and 2-D physicochemical descriptors 
(abbreviated as Physchem hereafter) were also computed 
using RDkit and used to generate QSAR models. We 

Table 1 Cytotoxicity data sets used in this study

Cell line Cell line description ChEMBL assay ID Cellosaurus ID Organism of origin Number 
of bioactivity 
data points

A2780 Ovarian carcinoma cells CHEMBL3308421 CVCL_0134 Homo sapiens 2255

CCRF‑CEM T‑cell leukemia CHEMBL3307641 CVCL_0207 Homo sapiens 3047

DU‑145 Prostate carcinoma CHEMBL3308034 CVCL_0105 Homo sapiens 2512

HCT‑116 Colon carcinoma cells CHEMBL3308372 CVCL_0291 Homo sapiens 6231

HCT‑15 Colon adenocarcinoma cells CHEMBL3307945 CVCL_0292 Homo sapiens 994

HeLa Cervical adenocarcinoma cells CHEMBL3308376 CVCL_0030 Homo sapiens 7532

HepG2 Hepatoblastoma cells CHEMBL3307718 CVCL_0027 Homo sapiens 3897

HL‑60 Promyeloblast leukemia cells CHEMBL3307654 CVCL_0002 Homo sapiens 4637

HT‑29 Colon adenocarcinoma cells CHEMBL3307768 CVCL_0320 Homo sapiens 5630

K562 Erythroleukemia cells CHEMBL3308378 CVCL_0004 Homo sapiens 4160

KB Squamous cell carcinoma CHEMBL3307959 CVCL_0372 Homo sapiens 2731

L1210 Lymphocytic leukemia cells CHEMBL3308391 CVCL_0382 Mus musculus 4873

LoVo Colon adenocarcinoma cells CHEMBL3307691 CVCL_0399 Homo sapiens 1120

MCF7 Breast carcinoma cells CHEMBL3308403 CVCL_0031 Homo sapiens 12,001

MDA‑MB‑231 Breast epithelial adenocarcinoma cells CHEMBL3307960 CVCL_0062 Homo sapiens 3482

NCI‑H460 Non‑small cell lung carcinoma CHEMBL3307677 CVCL_0459 Homo sapiens 2277

PC‑3 Prostate carcinoma cells CHEMBL3307570 CVCL_ NIRG—MRC0035 Homo sapiens 4294

SK‑OV‑3 Ovarian carcinoma cells CHEMBL3307746 CVCL_0532 Homo sapiens 1589
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also combined Morgan2 fingerprints, physicochemical 
descriptors, and QAFFP to define combined descriptors, 
namely: rv-QAFFP 440 and Morgan2, rv-QAFFP 440 and 
Physchem, b-QAFFP 440 and Morgan2, b-QAFFP 440 
and Physchem, rv-QAFFP 1360 and Morgan2, rv-QAFFP 
1360 and Physchem. Thus, we considered a total of 11 
types of descriptors to encode the compounds.

The Jaccard-Needham dissimilarity between pairs of 
compounds was computed using the function scipy.spa-
tial.distance.jaccard from the python library SciPy [52].

Model training and performance evaluation
We trained Random Forest (RF) models using tenfold CV 
on 70% of the data selected at random. The performance 
was evaluated on the remaining 30% of the data (i.e., test 
set) by calculating the root mean squared error (RMSE) 
and the Pearson correlation coefficient  (R2) for the 
observed against the predicted  pIC50 values. We trained 
50 models for all combinations of factor levels, giving rise 
to 23,650 models (43 data sets × 11 descriptors sets × 50 
replicates). In each replicate, a different subset of the data 

was selected as the test set. The composition of the train-
ing and test sets across the 50 replicates for a given data 
set was the same for all fingerprint types. RF models and 
feature importance values were computed using the Ran-
domForestRegressor class from the python library Scikit-
learn [53].

RF are generally robust across a wide range of param-
eter values. In practice, a suitable choice for the number 
of trees in the Forest (ntrees) was shown to be 100 in previ-
ous work [54–56], as higher values do not generally lead 
to significantly higher predictive power, which we found 
to be also the case for these data sets (Additional file 1: 
Figure S2). Hence, we trained the RF models using 100 
trees and the default values for all other parameters.

Experimental design
To benchmark the predictive power of QAFFP, Mor-
gan2 fingerprints and physicochemical descriptors in 
a statistically robust manner we designed a balanced 
fixed-effect full-factorial experiment with replications 
[57]. We considered two factors, namely: (i) data set: 43 

Table 2 Protein target data sets used in this study

Target preferred name Target abbreviation Uniprot ID ChEMBL ID Number 
of bioactivity 
data points

Alpha‑2a adrenergic receptor A2a P08913 CHEMBL1867 203

Tyrosine‑protein kinase ABL ABL1 P00519 CHEMBL1862 773

Acetylcholinesterase Acetylcholinesterase P22303 CHEMBL220 3159

Androgen Receptor Androgen P10275 CHEMBL1871 1290

Serine/threonine‑protein kinase Aurora‑A Aurora‑A O14965 CHEMBL4722 2125

Serine/threonine‑protein kinase B‑raf B‑raf P15056 CHEMBL5145 1730

Cannabinoid CB1 receptor Cannabinoid P21554 CHEMBL218 1116

Carbonic anhydrase II Carbonic P00918 CHEMBL205 603

Caspase‑3 Caspase P42574 CHEMBL2334 1606

Thrombin Coagulation P00734 CHEMBL204 1700

Cyclooxygenase‑1 COX‑1 P23219 CHEMBL221 1343

Cyclooxygenase‑2 COX‑2 P35354 CHEMBL230 2855

Dihydrofolate reductase Dihydrofolate P00374 CHEMBL202 584

Dopamine D2 receptor Dopamine P14416 CHEMBL217 479

Norepinephrine transporter Ephrin P23975 CHEMBL222 1740

Epidermal growth factor receptor erbB1 erbB1 P00533 CHEMBL203 4868

Estrogen receptor alpha Estrogen P03372 CHEMBL206 1705

Glucocorticoid receptor Glucocorticoid P04150 CHEMBL2034 1447

Glycogen synthase kinase‑3 beta Glycogen P49841 CHEMBL262 1757

HERG HERG Q12809 CHEMBL240 5207

Tyrosine‑protein kinase JAK2 JAK2 O60674 CHEMBL2971 2655

Tyrosine‑protein kinase LCK LCK P06239 CHEMBL258 1352

Monoamine oxidase A Monoamine P21397 CHEMBL1951 1379

Mu opioid receptor Opioid P35372 CHEMBL233 840

Vanilloid receptor Vanilloid Q8NER1 CHEMBL4794 1923
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data sets considered, and (ii) descriptor: rv-QAFFP 440, 
b-QAFFP 440, rv-QAFFP 1360, Morgan2, Physchem, 
rv-QAFFP 440 and Morgan2, rv-QAFFP 440 and Phy-
schem, b-QAFFP 440 and Morgan2, b-QAFFP 440 and 
Physchem, rv-QAFFP 1360 and Morgan2, rv-QAFFP 
1360 and Physchem. In addition, we included an interac-
tion term between the factors descriptor and data set to 
examine whether the performance of the descriptor types 
used vary across data sets.

This factorial design was studied with the following lin-
ear model:

where the response variable, RMSEi,j,k test, corre-
sponds to the RMSE value for the predicted against the 
observed activities on the test set for a given data set, 
descriptor type and replicate. The factor levels “ovar-
ian carcinoma cells A2780” (data set), and “Morgan2” 
(descriptor), were used as reference factor levels to cal-
culate the intercept term of the linear model, μ0, which 
corresponds to the mean  RMSEtest value for this combi-
nation of factor levels. The coefficients (slopes) for the 
other combinations of factor levels correspond to the 
difference between their mean  RMSEtest value and the 
intercept. The error term, ǫi,j,k, corresponds to the ran-
dom error of each  RMSEtest value, which are defined as 
ǫi,j,k = RMSEi,j,k −mean(RMSEi,j) . These errors are 
assumed to (i) be mutually independent, (ii) have an 
expectation value of zero, and (iii) have constant vari-
ance. The use of a linear model to assess the predictive 
power of QAFFPP, Morgan2 fingerprints and Physchem 
descriptors allowed to control for the variability across 
data sets, and to avoid that results were biased by ele-
ments such as the number of datapoints, data set model-
lability, etc.

The normality and homoscedasticity assumptions of 
the linear model were assessed with (i) quantile–quantile 
(Q–Q) plots and (ii) by visual inspection of the  RMSEtest 
distributions, and (iii) by plotting the fitted  RMSEtest values 
against the residuals [57]. Homoscedasticity means that 
the residuals are evenly distributed (i.e., equally dispersed) 
across the range of the  RMSEtest values considered in the 
linear model. It is essential to examine this assumption to 

RMSE test set = dataseti + descriptorj + (dataset ∗ descriptor)i,j + µ0 + εi,j,k
(

i ∈ {1, . . . ,Ndatasets = 43}; j ∈
{

1, . . . ,Ndescriptors = 11
}

;

k ∈
{

1, . . . ,Nreplicates = 50
}

;
)

guarantee that the modeling errors (i.e., residuals) and the 
dependent variable are not correlated. A systematic bias 
of the residuals would indicate that they are not consist-
ent with random error, and hence, they contain predictive 
information that should be included in the model.

Results and discussion
We initially sought to examine the differences between 
Morgan2 fingerprints and QAFFP in terms of how they 
encode the chemical space. To this aim, for each pair of 
compounds in the 18 cytotoxicity data sets considered 

(Table  1) we computed pairwise Jaccard-Needham dis-
similarity values [52, 58] using Morgan2 fingerprints 
(similarity in chemical space; x-axis in Fig. 2), and pair-
wise Pearson correlation coefficients using rv-QAFFP 
440 fingerprints (similarity in bioactivity space; y-axis 
in Fig. 2). Overall, we observe a negative and significant 
correlation (Pearson correlation, P < 0.001) between 
Jaccard-Needham dissimilarity and correlation in bio-
activity space for all data sets. The pairwise correla-
tion values calculated using rv-QAFFP are, as expected, 
highly correlated for pairs of structurally similar com-
pounds (i.e., showing a low Jaccard-Needham dissimi-
larity; upper left-hand quadrant in the panels in Fig.  2). 
These results are consistent with the fact that QAFFP are 
computed using base models trained on Morgan2 fin-
gerprints and with the similarity principle, as structur-
ally similar compounds are expected to show correlated 
bioactivity profiles. A substantial fraction of compound 
pairs showing a relatively large degree of structural dis-
similarity (Jaccard-Needham dissimilarity ~ 1) show high 
similarity in bioactivity space (upper right-hand quadrant 
in Fig.  2). For instance, compounds CHEMBL357519 
and CHEMBL9011 (first row in Fig.  3) display com-
parable activities on the cell line KB  (pIC50 = 6.57 and 
7.56, respectively), and a Jaccard-Needham dissimilar-
ity of 0.87. However, their rv-QAFFPs are highly cor-
related, with a Pearson correlation coefficient of 0.84 
(P < 0.05). Another example is the pair of compounds 
CHEMBL31400 and CHEMBL1801792 in the HeLa data 
set (second row in Fig. 3), with  pIC50 values of 7.16 and 

Fig. 2 Jaccard‑Needham dissimilarity calculated using Morgan2 fingerprints, against Pearson correlation values calculated using rv‑QAFFP 440 for 
all pairs of compounds in each data set. Only a randomly picked subset of the 18 cytotoxicity data sets is shown for illustration. Similar results were 
obtained for the other data sets

(See figure on next page.)
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7.10, respectively, a Jaccard-Needham dissimilarity of 
0.86, and highly correlated rv-QAFFP 440 values (Pear-
son  R2 = 0.80, P < 0.05). Overall, these results show that 
structurally dissimilar compounds displaying comparable 
 pCI50 values (given the uncertainty of  pIC50 data [41]) are 
often clustered closely in bioactivity space, as quantified 
by the correlation between their rv-QAFFP 440 values. 
This is also allowed according to the ‘Neighbourhood 
Behavior’ principle [59], which states that while similar 
molecules are expected to behave similarly or average, 

dissimilar molecules may display either dissimilar, but in 
some cases also similar properties. 

To test whether encoding compounds using rv-QAFFP 
improves the modeling of compound activity, we gener-
ated RF models for the 18 cytotoxicity data sets (Table 1), 
as well as for 25 protein target data sets (Table 2) [42]. As 
a baseline for comparisons, we trained RF models using 
Morgan2 fingerprints or physicochemical descriptors, 
and quantified performance by calculating the RMSE and 
 R2 values for the observed against the predicted  pIC50 

Fig. 3 Examples of structurally dissimilar compounds, showing correlated rv‑QAFFP 440 and similar  pIC50 values. These examples illustrate that 
the similarity in bioactivity space is captured by the rv‑QAFFP 440 even for structurally dissimilar compounds, underlining the importance of using 
multi‑modal representations of chemical structures, beyond similarity in chemical descriptor space alone
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values for the compounds in the test set (Fig. 4 and Addi-
tional file 1: Figure S3). The average  R2

test values (n = 50) 
were above 0.6 for all data sets, indicating that Morgan2 
fingerprints and physicochemical descriptors capture the 
aspects of molecular structure related to bioactivity, and 
hence permit to model compound activity for these data 
sets satisfactorily.

We used the same modeling strategy to generate RF 
models using three types of QAFFP (b-QAFFP 440, rv-
QAFFP 440, and rv-QAFFP 1360), and QAFFPs com-
bined with Morgan2 fingerprints and physicochemical 
descriptors (see “Methods”). Overall, the models trained 
on QAFFP showed high predictive power, with  R2 values 
in the 0.5–0.9 range, and RMSE values in the ~ 0.6–0.95 
 pIC50 units range (Fig. 4 and Additional file 1: Figure S3). 
These values are in agreement with the expected model 
performance given the uncertainty of  pIC50 data from 
ChEMBL; i.e., the maximum Pearson correlation coeffi-
cient when modeling  IC50 data from ChEMBL, which was 
estimated to be in the 0.51–0.85 range [41, 60]. Finally, 
we performed Y-scrambling experiments for all data sets 
[61]. To this aim, we shuffled the bioactivity values for the 
training set instances before model training. We obtained 
 R2 values around 0 (P < 0.001) in all Y-scrambling experi-
ments we performed (Additional file 1: Figure S4). There-
fore, these results indicate that the predictive power of 
the models trained on QAFFP is not a consequence of 
spurious correlations.

To assess the relative performance of the 11 descrip-
tor types defined in a statistically robust manner, we 
designed a factorial experiment (see “Methods”). The fit-
ted linear model displayed an  R2 value adjusted for the 
number of parameters equal to 0.90, and a standard error 
for the residuals equal to 0.03 (P < 10−15), indicating that 
the variability of model performance on the test set can 
be explained to a large extent by the data set and descrip-
tor type used. The values for the coefficients, namely 
slopes and intercept, and their P values are reported in 
Additional file 2: Table S1. The verification of the model 
assumptions is reported in Fig. 5. We did not include the 
percentage of the data included in the test set as a covari-
ate in the linear model because we observed that the rela-
tive performance of the descriptor types considered was 
overall constant across models trained on increasingly 
larger fractions of the data (Additional file 1: Figure S5).

The factorial analysis revealed a significant interac-
tion between the factors data set and descriptor type 
(P < 10−15) indicating that the predictive power  of the 
descriptor types considered varies across data sets. This 
can be observed in Fig. 4 as well, as the distances between 
the boxes vary across data sets; i.e., a given descriptor 
type leads to the highest predictive power for some data 
sets but not in others. For instance, the average RMSE 
value for rv-QAFFP 440 (red box) is higher than that 
corresponding to Morgan2 fingerprints (light blue box) 
when modeling the cell line data set A2780; however, 
the opposite is observed for the data set Cannabinoid 
(first panel in Fig.  4). Interestingly, combining Morgan2 
fingerprints and QAFFP did not increase model perfor-
mance, and models trained on the binary form of QAFFP 
(b-QAFFP) constantly led to lower predictive power as 
compared to rv-QAFFP (Fig. 4 and Additional file 1: Fig-
ure S3). Overall, these results suggest that the predictive 
signal provided by both fingerprints, at least when using 
RF, does not seem to be complementary.

Given the substantial diversity in performance of the 
1360 base models used to generate QAFFP [29], we next 
sought to investigate whether we could better model the 
18 cytotoxicity data sets by computing rv-QAFFP using 
only those base models showing high predictive power. 
To this end, we used increasingly higher cut-off val-
ues for the minimum  R2

test value a base model needs to 
show to be considered for the calculation of rv-QAFFP. 
That is, we hypothesized that removing from the rv-
QAFFP those bits corresponding to moderately predic-
tive base models might lead to a less noisy rv-QAFFP 
and a better description of the relevant variance con-
necting chemical and biological space, thus increasing 
predictive power. We found that rv-QAFFP built using 
base models with  R2

test > 0.60–0.65 lead to the lowest 
average  RMSEtest values for the 18 cytotoxicity data sets 
(Fig.  6). Models trained on rv-QAFFP values generated 
with highly predictive base models  (R2

test > 0.8) only, 
leaving 76 based models to compute QAFFP, increased 
the average  RMSEtest values by ~ 12–20%. One explana-
tion for this might be that increasing the dimensionality 
of the QAFFP by including low predictive base models 
adds predictive signal, even if these generate inaccurate 
predictions [13]. However, we observed that including 
all 1360 base models to compute QAFFP (i.e., rv-QAFFP 
1360) did not increase predictive power on the test set, 

Fig. 4 RMSEtest values calculated with models trained on each of the 11 descriptor types considered across the 43 data sets modelled in this study 
(18 cytotoxicity and 25 protein data sets; Tables 1 and 2). We trained 50 models for each combination of descriptor type and data set, each time 
holding a different subset of the data as test set. Overall, predictive models were obtained for all descriptor types, and the performance of different 
descriptor types varied across data sets modelled

(See figure on next page.)
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indicating that base models with low predictive power 
do not add additional predictive signal (Fig. 7). It is also 
important to consider that RF models are generally 
robust to moderate noise levels when modeling QSAR 
data sets, and hence, low levels of noise are well tolerated, 
and, in fact, might even help to generate models robust 
to noisy input data [62, 63]. Together, these results indi-
cate that although the predictions generated by moder-
ately predictive base models might be noisy, they better 
explain the relevant variance connecting chemical and 
biological space [13], and that including base models with 
low predictive power does not add additional predictive 
signal to improve the modelling of these data sets. 

We next analysed the predictive signal provided by each 
bit in the QAFFP, each one corresponding to a different 
base model, using the feature importance functionality of 
Random Forest models [64]. We did not observe a corre-
lation between the predictive power of base models and 
the estimated variable importance across the 50 models 
generated for each descriptor and data set combination 
(Fig. 8). The contribution of each descriptor was variable 
across data sets, and in none of the cases the predictive 
power was driven by the contribution of few base mod-
els, but rather by the combination of weak contribution 
from many models (Additional file 1: Figure S6).

Finally, we sought to investigate whether the activ-
ity of some compounds is better modelled by QAFFP in 
comparison to Morgan2 fingerprints. Such an evidence 
would support the use of QAFFP instead of, or in addi-
tion to, other compound descriptors in predictive bio-
activity modeling. To this, we examined the correlation 
between the errors in prediction on the test set calculated 

with models trained on either Morgan2 fingerprints, 
one of the three types of QAFFP considered, or com-
binations thereof. It was found that 40.1–56.6%, and 
73.7–86.2% of the test set instances were predicted with 
an absolute error in prediction below 0.5 and 1.0  pIC50 
units, respectively by both Morgan2 and QAFFP-based 
models (Table 3). Although less than 0.5% of the test set 
instances were predicted with variable errors in predic-
tion across models trained on different fingerprint types, 
the error in prediction for some compounds varies > 2 
 pIC50 units depending on the fingerprint type used for 
modeling (Additional file 1: Figures S7, S8). For instance, 
the error in prediction for compound CHEMBL2420625 
is 1.93  pIC50 units (σ = 0.29; n = 50) for the Morgan2-
trained model, whereas the error drops to 0.69  pIC50 
units (σ = 0.16; n = 50)  pIC50 units for models trained on 
QAFFP (Additional file 1: Figure S8).

To assemble the 18 cytotoxicity data sets used here, we 
included all  IC50 values for a given cell line satisfying the 
stringent criteria described in “Methods” irrespective of 
the cytotoxicity assay used. We have previously shown 
that cytotoxicity measurements might vary considerably 
cross cytotoxicity assays [41]; others have shown that dif-
ferent biological conclusions might be obtained depend-
ing on the parameterization of the dose–response curves 
[65–69]. Hence, we anticipate that the performance of 
QAFFP might be higher when modeling proprietary bio-
activity data generated under uniform experimental con-
ditions  and data  analysis pipelines [15, 27]. Our results 
show that compound activity can be modelled on a con-
tinuous scale using the predicted activities on an unbiased 
selection of protein targets as compound descriptors. 

a b c

Fig. 5 Verification of the linear model assumptions. a Assumption of homoscedasticity of the residuals. Fitted values against the residuals. The 
residuals are centered around zero and, roughly, present a comparable dispersion across the range of values considered, indicating that the 
assumption of the homoscedasticity of the residuals is fulfilled. Assumption of the normality of the residuals, assessed with the distribution of the 
residuals (b) and a quantile–quantile (Q–Q) plot (c). The residuals follow a Gaussian distribution with zero mean, indicating that the assumption of 
the normality of the residuals is fulfilled. Overall, these results indicate that the assumptions of the linear model are fulfilled
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However, we note in particular that the base models 
used to generate QAFFP were selected on the basis of 
the amount of bioactivity data available in ChEMBL only, 
and on whether they could be satisfactorily modelled 
using Morgan2 fingerprints. Hence, no biological crite-
ria were considered. As more public data become avail-
able, it will be possible to test whether including targets 
with high network connectivity in pathways involved in 

cytotoxicity, drug resistance, cell cycle, and other biologi-
cal processes altered in specific cancer types and diseases, 
might lead to better modeling of compound activity 
[70]. Similarly, using biologically meaningful targets to 
construct QAFFP might provide a better stratification 
between active and inactive compounds in bioactivity 
space, and hence enable the generation of models with 
higher predictive power [33, 70, 71]. Another important 

Fig. 6 RMSEtest values obtained with models trained on rv‑QAFFP fingerprints calculated using only those base models with  R2 values on the test 
set greater or equal than the cut‑off value indicated in the x‑axis. Each point corresponds to a replicate. Overall, the predictive power on the test set 
declines as the set of models included to generate the rv‑QAFFP is reduced



Page 13 of 17Cortés‑Ciriano et al. J Cheminform           (2020) 12:41  

aspect to consider is that the sensitivity of some cancer 
cell lines to certain chemicals with well-defined mecha-
nisms of action depends on the modulation of one or few 

proteins or pathways [71–76]. In such cases, using com-
pound activity on a small set of assays as descriptors, and 
univariate or low-dimensional models might be sufficient 
to accurately model drug response [33, 77]. Here, instead 
of focusing on specific targets associated to the activ-
ity of few compounds, we have considered a data-driven 
approach that can be applicable to (potentially) any com-
pound irrespective of its mechanism of action.

Conclusions
This study complements the accompanying paper [Skuta 
et  al.], where the performance of QAFFP for similarity 
searching, compound classification and scaffold hop-
ping is reported. Here, we have performed a compre-
hensive assessment of the performance of regression 
models trained on QSAR-derived affinity fingerprints 
(QAFFP). QAFFP enabled the generation of highly pre-
dictive models, with RMSE values in the ~ 0.6–0.9  pIC50 
units range, which is comparable to the predictive power 
obtained using Morgan2 fingerprints and physicochemi-
cal descriptors, as well as to the uncertainty of heteroge-
neous  IC50 data in ChEMBL. This level of performance 
is in line with the high predictive power obtained with 
QAFFP in similarity searching, compound classification, 
and scaffold hopping tasks [Skuta et al.]. Notably, QAFFP 
calculated using base models showing high and moderate 
performance were more predictive than those trained on 
QAFFP generated using highly predictive models alone, 
and likely the increased ability to describe variance in 
the mapping from chemical to biological space seems to 

Fig. 7 RMSE on the test set for predictive models trained on either 
rv‑QAFFP 440 or rv‑QAFFP 1360. The results for the 43 data sets and 
50 replicates are shown. Overall, it can be seen that the performance 
of models trained on rv‑QAFFP computed using base models with 
low and high predictive power (i.e., rv‑QAFFP 1360) is comparable to 
the performance of models trained on rv‑QAFFP (i.e., rv‑QAFFP 440) 
computed using only base models showing high predictive power

Fig. 8 Analysis of feature importance. The variable importance averaged across 50 replicates for each feature in the QAFFP (i.e., base model) is 
shown against the predictive power of each base model in cross validation calculated during the training of base models. Overall, a correlation 
between predictive power and feature importance was not observed
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be the cause of this behaviour. To further evaluate the 
practical utility of QAFFP, future studies will be needed 
to challenge them in more complex scenarios, including 
the modeling of the synergistic or antagonistic effect of 
compound combinations [79–82], and to test whether 
the integration of QAFFP and cell line profiling data sets 
(e.g., basal gene expression profiles, or changes in gene 
expression induced upon compound administration) 
improves drug sensitivity modeling.
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Additional file 1: Figure S1. Distribution of  pIC50 values for all data sets 
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models trained on each of the 11 descriptor types considered across 
the 43 data sets modelled in this study (related to Fig. 4). We trained 50 
models for each combination of descriptor type and data set, each time 
holding a different subset of the data as test set. Figure S4. Y‑scrambling 
experiments.  R2

test values calculated for models trained after shuffling the 
response variable are shown. Figure S5.  RMSEtest values as a function of 
the fraction of the training data used as test set for all data sets. Figure 
S6. Mean variable importance +/− standard deviation averaged across 
50 replicates. Only the top 20 descriptors are shown for each data set. 
Figure S7. Examples of compounds that were predicted with higher error 
by models trained on Morgan2 fingerprints than by models trained on 
rv‑QAFFP 440. The predictions were calculated on the test set across 50 
replicates. The mean and the standard deviation across these 50 replicates 

are shown. The data set is indicated below the compounds ChEMBL IDs. 
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type indicated in x‑axis, against the predicted  pIC50 values calculated 
using models trained using the fingerprint type indicated in the y‑axis. 
The plot shows the predictions for 50 replicates for data set A2780. Similar 
results were obtained for the other data sets. Overall, it can be seen that 
the predictions generated by models trained using Morgan2 fingerprints 
and the rv‑QAFFP 440 versions considered are highly correlated across the 
entire bioactivity range modelled.
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AEP Morgan2 
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HT‑29 49.2 80.9 0.5 1.6 0 0.1 0 0

K562 44.7 79.5 0.5 2.6 0 0.2 0 0

KB 40.1 74.6 0.6 3.1 0.1 0.5 0 0.1

L1210 42.6 76.4 0.5 2.4 0.1 0.2 0 0

LoVo 49.3 79.8 0.6 1.7 0 0.1 0 0

MCF7 50.1 82.8 0.4 2.8 0.1 0.4 0 0.1

MDA‑MB‑231 53.7 84.9 0.3 1.3 0 0.1 0 0

NCI‑H460 43.6 75.6 0.9 3.1 0.1 0.5 0 0.2

PC‑3 53.6 85.1 0.4 1.6 0 0.1 0 0
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