
Journal of Mathematical Biology (2022) 85:22
https://doi.org/10.1007/s00285-022-01786-4 Mathematical Biology

The large-sample asymptotic behaviour of quartet-based
summary methods for species tree inference

Yao-ban Chan1 ·Qiuyi Li1 · Celine Scornavacca2

Received: 23 February 2022 / Revised: 8 June 2022 / Accepted: 14 July 2022 /
Published online: 17 August 2022
© The Author(s) 2022

Abstract
Summary methods seek to infer a species tree from a set of gene trees. A desirable
property of such methods is that of statistical consistency; that is, the probability of
inferring thewrong species tree (the error probability) tends to 0 as the number of input
gene trees becomes large. A popular paradigm is to infer a species tree that agrees
with the maximum number of quartets from the input set of gene trees; this has been
proved to be statistically consistent under several models of gene evolution. In this
paper, we study the asymptotic behaviour of the error probability of such methods in
this limit, and show that it decays exponentially. For a 4-taxon species tree, we derive
a closed form for the asymptotic behaviour in terms of the probability that the gene
evolution process produces the correct topology.We also derive bounds for the sample
complexity (the number of gene trees required to infer the true species tree with a given
probability), which outperform existing bounds. We then extend our results to bounds
for the asymptotic behaviour of the error probability for any species tree, and compare
these to the true error probability for some model species trees using simulations.
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1 Introduction

A central problem of phylogenetics is the inference of the evolutionary history of a
group of species in the form of a species tree, where leaves represent extant species
and internal vertices represent speciation events. Likewise, the gene families contained
within the genomes of the species have their own evolutionary histories, which can
also be represented by trees that can be considered as evolving ‘within’ the species
tree. This implies that the gene trees are heavily dependent on the species trees.

Historically, species trees have been inferred using so-called ‘concatenation’ meth-
ods, where the sequences of individual genes are concatenated together to form a
set of ‘species sequences’, which are then used as input to a tree-building method of
choice, often maximum-likelihood based (e.g., RAxML, Stamatakis 2014). However,
this carries the implicit assumption that the individual gene trees are identical to the
species tree. This is not necessarily the case, due to a number of processes which cause
discordance between the gene and species trees.

One such process is incomplete lineage sorting (Maddison 1997), which occurs
when gene lineages do not coalesce immediately (going backwards in time) within a
single species. This can cause branch length differences between the gene and species
trees, and if alleles are maintained over a sequence of rapid speciations, even topo-
logical differences. Thus in recent years there has been a rapid growth of ‘summary’
methods for species tree inference, where gene families are identified and a gene tree
built from the sequences of each individual family. The set of gene trees are then
summarised in some way to produce a species tree. This paradigm acknowledges and
incorporates the fact that gene trees may differ from each other and the species tree.

A popular summarymethod is ASTRAL (Mirarab et al. 2014;Mirarab andWarnow
2015), which works by solving the ‘maximum quartet support species tree’ (MQSST)
problem. Each gene tree is decomposed into a number of gene quartets, with topologies
determined by the gene tree. ASTRAL then uses a dynamic programming algorithm
to find the species tree which maximises the number of gene quartets that agree with
it. As this problem is NP-hard (Lafond and Scornavacca 2019), ASTRAL has two
running modes: one which solves this problem exactly, and a faster heuristic which
restricts the search space but does not guarantee optimality. We consider only the first
mode in this paper.

The dominant statistical model for incomplete lineage sorting is the multispecies
coalescent (MSC, Rannala and Yang 2003), which considers each species branch as
a separate population in which Kingman’s coalescent (Kingman 1982) is run. The
lineages at the top of each branch (going backwards in time) then become input to
the coalescent at the bottom of its parent branch. This model provides exact proba-
bilities of each gene tree (and gene tree topology) given a specified species tree. It
has been shown for both unpartitioned and partitioned methods (Roch and Steel 2015;
Roch et al. 2019) that under this model, there are species trees where concatenation
methods are not statistically consistent: they do not reconstruct the true species tree
with probability approaching 1 as the number of input gene trees becomes arbitrarily
large. Conversely, ASTRAL is statistically consistent (for all species trees) under the
multispecies coalescent (Mirarab et al. 2014), when input gene trees are considered
to be correctly reconstructed from sequences.
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In addition, it is well known that incomplete lineage sorting is not the only cause of
discordance between gene and species trees. Discordance can also arise due to other
genetic evolutionary processes such as gene duplication, gene loss, and lateral genetic
transfer. Models of gene evolution incorporating duplication and loss only (DL) are
well-established, dating back to Goodman (Goodman et al. 1979), as are models with
duplication, loss, and transfer (DTL; see Doyon et al. 2011, for a review). These
generally consider duplications and losses (and sometimes transfers) to occur as inde-
pendent linear birth-death processes within each species branch. More recently, some
unified models (DLCoal, Rasmussen and Kellis 2012, and MLMSC, Li et al. 2021)
have been developed that account for both DTL and the population-level processes
that cause incomplete lineage sorting.

For each of these models, it is of interest to determine if ASTRAL (and other sum-
mary methods) is statistically consistent. This becomes progressively more difficult as
the models increase in complexity, but it has been proven that this is indeed the case
for the DLmodel (Legried et al. 2021) and the DLCoal model (Markin and Eulenstein
2020). A numerical study (Yan et al. 2021) also looked at the practical accuracy of
ASTRAL under the DLCoal model. The consistency of ASTRAL under the MLMSC
(or, indeed, any models with transfers) remains unknown.

We approach this problem in a general way by not restricting our consideration to
the MSC or any other particular model of gene evolution. Instead, we consider the
asymptotic behaviour of the probability of inferring the wrong species tree (the error
probability) as the number of input gene trees, N , becomes large. Rather surprisingly,
while there has been considerable interest on whether the error probability goes to 0
or not (i.e., statistical consistency), no-one (to the best of our knowledge) has studied
the asymptotic behaviour of the error probability when it does go to 0. Our results
below show that the decay is exponential in nature, which is unsurprising but does not
seem to have been theoretically proven before.

A very closely related work is that by Shekhar et al. (2017), who studied the sample
complexity (the number of gene trees required to infer the true species tree with a given
probability) of ASTRAL. They derived bounds for this quantity under themultispecies
coalescent, and recently Hill et al. (2020) derived corresponding results under the
DLCoalmodel. The focus of these papers is on the behaviour of the sample complexity
as the length of the shortest branch of the species tree goes to 0, for a fixed (but small)
error probability. Conversely, our results study the asymptotic behaviour of the error
probability as the number of input gene trees becomes large, for a fixed species tree.
However, their bounds are comparable in some situations to our results.

In this paper, we study the asymptotic behaviour of the error probability as N →
∞. We first study the case of a 4-taxon species tree, and derive a closed form for
the asymptotic behaviour in terms of the probability that the gene evolution process
produces the correct topology. We also provide bounds for the error probability that
hold for all N . This enables us to numerically derive corresponding bounds on the
sample complexity for ASTRAL under the MSC, which outperform the bounds from
Shekhar et al. (2017) in practice. We then extend our results to species trees with
arbitrary numbers of taxa, resulting in bounds (both asymptotic and for all N ) for the
error probability for any species tree. Using simulations, we compare our bounds with
the true error probability for some sample topologies.
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2 4-taxon species tree

Wefirst study the case where the species tree S has 4 taxa.We suppose that N unrooted
gene trees are simulated from the species tree under an unspecified gene evolutionary
process that has probability p > 1

3 to produce the correct topology S, and equal

probability 1−p
2 to produce either of the other two possible topologies. (Although it

is possible that the incorrect topologies may be produced with unequal probability,
many models, such as the MSC, will produce them with equal probability.) These
trees are then used as input to a quartet-based summary method to infer a species
tree. Although we refer to this method as ASTRAL throughout this paper, we only
require that it solves theMQSST problem. (In the case where the input gene trees have
an equal maximum number of two or more different topologies, we assume that the
method randomly chooses one to infer as the species tree.) Since p > 1

3 , we know
that this method is statistically consistent.

We begin by defining a function that we will use repeatedly throughout this paper.

Definition 1 Let f (p) be the function

f (p) = −2c ln c − (1 − 2c) ln(1 − 2c) + c ln p + (1 − c) ln
1 − p

2
,

where

c = 1

2 +
√

1−p
2p

. (1)

We illustrate the behaviour of this function in Fig. 1. Important aspects to note are
that it is defined (for our purposes) on the domain p ∈ ( 13 , 1), is always negative on
this domain, and monotonically decreases to an asymptote at p = 1.

Wenowderive the central result of this paper:we show that the asymptotic behaviour
of the error probability goes to 0 exponentially with N , and derive a closed form for the
exponential constant that only depends on the probability p of producing the correct
topology.

Theorem 1 Given a 4-taxon species tree, let p > 1
3 be the probability that the gene

evolution process produces the correct topology. As the number of gene trees N → ∞,
the probability of inferring the wrong species tree with ASTRAL behaves as

ln P(error) ∼ f (p)N .

Proof Let N1, N2, N3 be the number of gene trees produced with the three topologies,
with N1 being the correct one. (Obviously, N1 + N2 + N3 = N .) Then (N1, N2, N3)

has a multinomial distribution with parameters N and (p, 1−p
2 ,

1−p
2 ).
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Fig. 1 The function f (p)

The correct species tree will be inferred if N1 > N2, N3. Consider now the case
N1 = N2 = cN , N3 = (1− 2c)N for some c ∈ [ 13 , 1]. In this case, the wrong species
tree will be inferred with probability 1

2 . The probability of this event is:

P(N1 = N2 = cN , N3 = (1 − 2c)N )

= N !
(cN )!(cN )!((1 − 2c)N )! p

cN
(
1 − p

2

)cN (
1 − p

2

)(1−2c)N

= N !
((cN )!)2 ((1 − 2c)N )! p

cN
(
1 − p

2

)(1−c)N

.

(For brevity, we leave the N3 = (1 − 2c)N out in the following, as it is implied by
N1 = N2 = cN .)

Using Stirling’s formula ln x ! ∼ x ln x − x ,

ln P(N1 = N2 = cN )

∼ N ln N − N − 2(cN ln cN − cN ) − (1 − 2c)N ln(1 − 2c)N

+ (1 − 2c)N + cN ln p + (1 − c)N ln
1 − p

2

=
[
−2c ln c − (1 − 2c) ln(1 − 2c) + c ln p + (1 − c) ln

1 − p

2

]
N .
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We now choose c to maximise the (log-)probability of this event:

d

dc
ln P(N1 = N2 = cN ) ∼

[
−2 ln c − 2 + 2 ln(1 − 2c) + 2 + ln p − ln

1 − p

2

]
N

=
[
2 ln

1 − 2c

c
+ ln

2p

1 − p

]
N .

Setting this to 0 yields

ln

(
1

c
− 2

)2

= ln
1 − p

2p

c = 1

2 +
√

1−p
2p

.

Note that there is no guarantee that cN is an integer for this value of c; however, as
N → ∞, it will become arbitrarily close to such a value.

We now claim that the probability of inferring the wrong species tree has the same
asymptotic behaviour as P(N1 = N2 = cN ). Since this event will produce a wrong
species tree with probability 1

2 , we have

P(error) ≥ 1

2
P(N1 = N2 = cN )

ln P(error) ≥ ln P(N1 = N2 = cN ) − ln 2.

To show the opposite bound, consider that there are ∼ N2

2 possible combinations
of N1, N2, N3 which add to N (we can choose N1, N2 such that N1 + N2 ≤ N , and
then N3 is determined). Of these, 2

3 produce the wrong species tree by symmetry.
For each of these combinations n1, n2, n3, we assume without loss of generality that
n2 ≥ n1, n3. Then one of the following cases occurs:

• n1 = n2, so P(N1 = n1, N2 = n2) ≤ P(N1 = N2 = cN ) by construction of c;
• n2 > n1 and n3 > n1, so

P(N1 = n1, N2 = n2) = N !
n1!n2!n3! p

n1

(
1 − p

2

)n2+n3

<
N !

(n1 + 1)!n2!(n3 − 1)! p
n1+1

(
1 − p

2

)n2+n3−1

= P(N1 = n1 + 1, N2 = n2).

• n2 > n1 ≥ n3, so

P(N1 = n1, N2 = n2) = N !
n1!n2!n3! p

n1

(
1 − p

2

)n2+n3
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≤ N !
n1!(n2 − 1)!(n3 + 1)! p

n1

(
1 − p

2

)n2+n3

= P(N1 = n1, N2 = n2 − 1).

We can recursively apply the latter two relations until n1 = n2, then use the first
case. Thus each of these combinations has a probability which is bounded above by
P(N1 = N2 = cN ).

Hence (with a slight abuse of notation, as the inequality only holds in the asymptotic
limit)

P(error) ≤ N 2

3
P(N1 = N2 = cN )

ln P(error) ≤ ln P(N1 = N2 = cN ) + 2 ln N − ln 3.

Since the two last terms are o(N ), the claim is proved, as is the result. �	
Note. An initial attempt at deriving this result involved using a normal approx-

imation to the multinomial; rather surprisingly (to us), this failed because the
approximation of multinomial tail probabilities became inaccurate faster than the nor-
mal approximation became accurate.

This theorem leads to an immediate result on the Robinson-Foulds (RF) accuracy
of the inferred species tree.

Corollary 2 Under the conditions of Theorem 1, as the number of gene trees N → ∞,
the average RF distance between S and the tree inferred by ASTRAL behaves as

ln(RF) ∼ f (p)N .

Proof This follows immediately fromTheorem1and the relation RF = 2P(error). �	
Theorem 1 can be extended to derive lower and upper bounds on the error proba-

bility, as we show in the following theorem. These bounds apply for all N , not just in
the limiting case.

Theorem 3 Under the conditions of Theorem 1, the probability of inferring the wrong
species tree with ASTRAL is bounded below by

ln P(error) ≥
[
−2c′ ln c′ − (1 − 2c′) ln(1 − 2c′) + c′ ln p + (1 − c′) ln 1 − p

2

]
N

− ln N − ln 4πc′(1 − 2c′)1/2 − 2 − 3c′

12c′(1 − 2c′)
1

N
+ 1

12N + 1
,

where c′ is the nearest number to

c = 1

2 +
√

1−p
2p
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such that c′N is an integer. Likewise, it is bounded above by

ln P(error) ≤ max
c

{[
−2c ln c − (1 − 2c) ln(1 − 2c) + c ln p + (1 − c) ln

1 − p

2

]
N

+ ln
N + 1

3
− ln 2πc(1 − 2c)1/2 + 1

12N
− 2

12cN + 1
+ 1

12(1 − 2c)N + 1

}
.

The proof uses a bounded version of Stirling’s formula and is given in Appendix A.
Finally, we note that, depending on the gene evolution process, it is possible that

the two incorrect topologies may not be generated with equal probability. This cannot
happen for the MSC, but in models which include duplication it may occur for species
trees that are not ultrametric, or if duplication rates are allowed to vary between
branches. This can, and more easily, also happen in models including lateral gene
transfers or introgression. In these cases, Theorem1 can be generalised to the following
result.

Theorem 4 Given a 4-taxon species tree, let the probabilities of producing the three
quartet topologies be p1 > p2 ≥ p3, where p1 is the probability of producing the
correct topology and p1 + p2 + p3 = 1. As the number of gene trees N → ∞, the
probability of inferring the wrong species tree with ASTRAL behaves as

ln P(error)

∼
[

− 2c ln c − (1 − 2c) ln(1 − 2c) + c ln p1 p2 + (1 − 2c) ln(1 − p1 − p2)
]
N ,

where

c = 1

2 + 1−p1−p2√
p1 p2

.

We sketch a proof in Appendix B, and also state a generalisation of Theorem 5
there. Note that, in models including lateral gene transfers or introgression, we can
have extreme cases where the topology matching the species tree is not the most
common one. In these cases, even our generalisations do not hold.

3 General species tree

We now consider the case of a species tree S with an arbitrary number n of taxa. As
before, we start by assuming that for any quartet, the gene evolution process produces
the two incorrect topologies with equal probability.

To derive a lower bound on the asymptotic behaviour of the error probability, we
require an assumption on the gene evolution process. Consider an internal branch x
of the species tree which divides the extant species into four clades Ax , Bx , Cx , and
Dx . Now consider two species quartets (a1, b1, c1, d1) and (a2, b2, c2, d2), such that
one species is drawn from each clade for both quartets. We say that these two species
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quartets are positively correlated if the events of producing each of the three topologies
are positively correlated between the two quartets; that is,

P
[
((a1, b1), (c1, d1)) ∩ ((a2, b2), (c2, d2))

]

≥ P
[
((a1, b1), (c1, d1))

]
P

[
((a2, b2), (c2, d2))

]
,

and likewise for the other two topologies. We then say that the gene evolution process
is positively correlated if this property holds for all such pairs of quartets for all internal
species branches. It is easy to see that the MSC is positively correlated, as there is a
positive probability of the gene lineages from a1 and a2 coalescing before they reach
the root, and likewise for the remaining three pairs of species.

Theorem 5 Given a species tree S, assume the gene evolution process is positively
correlated. Let pmin be the minimum probability among all quartets in S of producing
the correct topology. For any internal species branch x ∈ E(S), let Ax , Bx , Cx , and
Dx be the four clades that it divides the leaves of S into, and let

px = max
a∈Ax ,b∈Bx ,c∈Cx ,d∈Dx

P(correct topology for quartet (a, b, c, d)). (2)

Then the probability of inferring the wrong species tree with ASTRAL has the limiting
behaviour (as N → ∞)

ln P(error) ∼ αN ,

where the (logarithm of the) growth constant α is bounded by

max
x

f (px )|Ax ||Bx ||Cx ||Dx | ≤ α ≤ f (pmin). (3)

Proof To derive the upper bound, a sufficient (but not necessary) condition to infer
the correct species tree is that each of the

(n
4

)
species quartets have a plurality of gene

quartets with the correct topology. (We use the word ‘plurality’ to mean that more
gene quartets have the correct topology than any other, not that more than half the
gene quartets have the correct topology.) Let Ti be the event that species quartet i has
a majority of gene quartets with the correct topology. Then

P(error) ≤ P
(∪i T

′
i

)

≤
∑
i

P(T ′
i )

≤
(
n

4

)
max
i

P(T ′
i ).

Clearly, the probability of T ′
i ismaximised for the species quartet that has theminimum

probability pmin of producing the correct topology (the smaller the probability of
producing the correct topology, the smaller the probability that the majority of quartets
have the correct topology). The upper bound then follows from Theorem 1.
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To derive the lower bound, consider an internal species branch x , and consider
the species quartets that contain one species from each of the clades Ax , Bx ,Cx , Dx .
There are |Ax ||Bx ||Cx ||Dx | such species quartets, which generate N |Ax ||Bx ||Cx ||Dx |
gene quartets. A necessary (but not sufficient) condition to infer the correct species
tree is that the majority of these gene quartets have the correct topology. To see this,
suppose that the correct species tree is inferred, but the majority of these quartets have
the wrong topology. In this case, performing a nearest-neighbour interchange move
on x to this wrong topology will result in a species tree that agrees with more of these
quartets, and not change the agreement with any other quartets. This improves the
quartet score, a contradiction.

Let Ex be the event that the majority of these gene quartets have the same wrong
topology.

Now although gene quartets from different gene families are independent, this is not
the case for gene quartets from the same gene family. Since the gene evolution process
is positively correlated, the probability of Ex is bounded below by the probability
that the majority of the gene quartets have the same wrong topology if they were all
generated independently. Thus we have

P(error) ≥ P(Ex )

≥ P(Ex | quartets generated independently)

≥ P(Ex | quartets generated independently with correct probability px ).

We now apply the same argument as in Theorem 1, with the difference that instead
of N gene quartets, we have N |Ax ||Bx ||Cx ||Dx | quartets. Since we can choose the x
which maximises the resulting bound, this produces the lower bound.

Finally, because both the lower and upper bounds are O(N ), we can say that the
error probability also has this limiting behaviour as N → ∞. �	

Note in particular that the upper bound does not depend on n, the size of the species
tree, whereas the lower bound does.

While the derivation of the upper bound is very similar to that in Shekhar et al.
(2017), the lower bound is qualitatively different. In that paper, they show the existence
of a species tree for which the error probability is bounded below by a specified value.
Our result is more general, in that it bounds the error for any species tree. (On the
other hand, this means that their lower bound can be tighter than ours.)

Note also that under the MSC, the probability of producing the correct topology for
a quartet depends only on the length of the internal branch; thus all species quartets
(a, b, c, d) in (2) have exactly the same chance of producing the correct topology for
a branch x , and there is no maximisation required to calculate px .

It is worth considering what sort of branch x will tend to maximise the lower
bound. Since f (p) is a negative and decreasing function, it is maximised for small p.
However, we also wish to simultaneously minimise |Ax ||Bx ||Cx ||Dx |; this generally
occurs when x is a branch near the leaves, so that three of the four clades are small.
The smallest possible value for this quantity is either n − 3 (if x is the internal branch
of a subtree ((a, b), c)) or 2(n−2) (if no such subtree exists and x is one of the internal
branches of a subtree ((a, b), (c, d))). Note that the first case in particular corresponds
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to the construction used to prove Claim 2.1 in Shekhar et al. (2017). Therefore, the
branch that maximises the lower bound will usually be a short branch close to the tips
of the species tree; this is the kind of branch that is most difficult to infer correctly.

Using similar arguments to Theorem 3, we can bound the error probability for
general trees for all N ; we state this result without proof in Appendix D.

4 Sample complexity under themultispecies coalescent

The results in the previous sections apply under anymodel of gene evolution, requiring
only the probability p of producing the correct topology. The most-studied model for
this purpose is the multispecies coalescent, under which p depends only on the length
of the internal branch l (in coalescent units), given by the relation p = 1− 2

3e
−l . (We

change the notation here from Shekhar et al. 2017, where the length of the internal
branch is denoted f , but we have already used this notation for the asymptotic growth
constant function.) Substituting this relation into Theorem 1 gives the following result
for the sample complexity of ASTRAL under the MSC on a 4-taxon species tree.

Theorem 6 Under themultispecies coalescent, theminimumnumber of genes required
to correctly reconstruct a 4-taxon species tree with ASTRAL with probability at least
1 − ε grows asymptotically (as ε → 0) as

N ∼ g(l) ln ε,

where g(l) is the function

g(l) = 1

f (1 − 2
3e

−l)
.

As l → 0,

g(l) ∼ −4

3
l−2.

Proof The first expression follows immediately from setting P(error) = ε in Theo-
rem 1.

To derive the l → 0 asymptotic behaviour, we expand (1) as a Maclaurin series for
c in l:

c = 1

2 +
√

2
3 e

−l

2− 4
3 e

−l

= 1

3
+ 1

6
l − 5

24
l2 + O(l3).
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(a) (b)

Fig. 2 The logarithm of the error probability (for a 4-taxon species tree) vs N , for fixed p (fixed l under
the MSC). We show the asymptotic behaviour (black), our bounds (blue), and the upper bound of Shekhar
et al. (2017) (red) (color figure online)

Substituting this and p = 1 − 2
3e

−l into the expression for f (p) and expanding
as a Maclaurin series in l gives the asymptotic behaviour for g(l). A more detailed
derivation is given in Appendix C. �	

Corresponding bounds for the sample complexity are given in Shekhar et al. (2017).
In the case n = 4, their bounds are (in our notation)

[
1

2
�−1

(
1

4
+ ε

2

)]2
l−2 ≤ N ≤ 9

2
ln

(
4

ε

)
1

(1 − e−l)2
,

where � is the normal cdf. We see that the asymptotic behaviour of our expression
agrees with the upper bound, as they are both O(l−2 ln ε). The lower bound is not
directly comparable, as it only applies for values of l below a threshold depending on
ε. Thus it is only suited to analysis of the case l → 0 for fixed ε, not ε → 0 for fixed l.

We can derive bounds on the error probability for all N under the MSC from
Theorem 3, by substituting the relation for p. In Fig. 2, we compare the asymptotic
behaviour for the error probability against our bounds and the upper bound of Shekhar
et al. (2017). We can see that our upper bound outperforms that of Shekhar et al.
(2017) in the limit N → ∞, and in general for large l; however theirs works better for
small N and l. We can also see that the asymptotic behaviour lies between our bounds,
which is expected in the asymptotic limit but appears to hold for all N anyway.

We can also derive bounds for the sample complexity from Theorem 3 by solving
for N numerically (an analytical inversion is likely impossible). We show the results
of this in Fig. 3. We can see that our bounds, particularly the upper bound, outperform
the bounds of Shekhar et al. (2017). This is because we require very large N to reach
the desired error probability, so the better asymptotic properties of our bounds result
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(a) (b)

Fig. 3 The sample complexity of ASTRAL (for a 4-taxon species tree) vs 1/l2, for fixed ε. We show the
asymptotic behaviour (black), our bounds (blue), and the bounds of Shekhar et al. (2017) (red) (color figure
online)

in tighter bounds than that of Shekhar et al. (2017), which outperform ours for low N
but have worse asymptotic properties.

Finally, we state bounds for the sample complexity under the MSC for the case of
a species tree with an arbitrary number n of taxa.

Theorem 7 Under themultispecies coalescent, theminimumnumber of genes required
to correctly reconstruct a species tree with ASTRAL with probability at least 1 − ε

grows asymptotically (as ε → 0) as

N ∼ 1

α
ln ε,

where

g(lmin) ≤ 1

α
≤ g(lxmax)

|Axmax ||Bxmax ||Cxmax ||Dxmax |
,

where lmin is the length of the shortest internal species branch and xmax is the branch
that maximises the lower bound in (3).

5 Simulations

We follow the simulations of Shekhar et al. (2017) and study three model species trees
with n = 8 species, shown in Fig. 4. The caterpillar tree is maximally unbalanced,
while the balanced tree is maximally balanced; both have all internal branches with
length l. The ‘double-quartet’ tree has the same topology as the balanced tree, but
with a very long internal branch (separating the two quartets) and all other branches
of length l.
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(a) (b) (c)

Fig. 4 The three model trees. The branch that provides the lower bound is highlighted in red (color figure
online)

The branch that provides the best lower bound in Theorem 5 for each tree is
highlighted in Fig. 4. Because all internal branches (save the long branch in the
double-quartet tree) have the same length (and therefore the same probability of pro-
ducing the correct topology under the MSC), this branch is the one that minimises
|Ax ||Bx ||Cx ||Dx |. The value of this quantity is 5, 8, and 8 for the caterpillar, balanced,
and double-quartet trees respectively, which also gives the factors by which the lower
bound is (negatively) greater than the upper bound. For these trees, the upper bounds
are identical.

We simulate N independent gene trees under the MSC model for a range of N
from 10 to 60000. The gene trees are then input into ASTRAL to infer a species tree,
which is then compared with the true species tree. This is done for a range of l from
0.005 to 0.1 (with l−2 evenly spaced as in Shekhar et al. 2017), with varying numbers
of replicates (always at least 2000) for each value of N and l. We then fit a linear
regression to ln ε against N to calculate the growth constant α.

In Fig. 5, we show the growth constants for the three trees against l−2, together with
our asymptotic bounds from Theorem 5 and the upper bound of Shekhar et al. (2017).
(As mentioned above, the lower bound of Shekhar et al. 2017, cannot be compared
here.) We can clearly see that our formulas do indeed bound the asymptotic growth
constants, and moreover that we provide a tighter upper bound on the asymptotic
behaviour than Shekhar et al. (2017).

In general, the true growth rate is closer to our upper bound than our lower bound.
This is unsurprising considering that the lower bound is derived by considering all
quartets corresponding to the same internal branch as independent, a large relaxation
for the highly positively-correlated MSC. We also observe the pattern observed in
Shekhar et al. (2017) that ASTRAL performs worse (the growth rate of the log-error
probability is smaller negatively) on the double-quartet tree than the other two trees;
see Shekhar et al. (2017) for a discussion of why this is so.

6 Discussion

In this paper, we have derived the asymptotic behaviour of the error probability (the
probability of inferring the wrong species tree) of ASTRAL in the large-sample limit
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(a) (b)

(c)

Fig. 5 Growth constants for ln ε for the three model trees, with our asymptotic bounds (blue) and the upper
bound of Shekhar et al. (2017) (red) (color figure online)

(as the number of input gene trees becomes large). In particular, we show that the
error probability goes to 0 exponentially with respect to N , and derive a closed form
for the growth constant of this exponential behaviour exactly for the simplest case of
a 4-taxon species tree. We calculate bounds on the growth constant for species trees
with arbitrary number of taxa, and extend our results to rigorous bounds for any N for
both the 4-taxon and general species tree. Our results improve previous bounds on the
sample complexity from Shekhar et al. (2017).

It is true that in practice each species only has a finite number of genes (where a
gene is simply a non-recombining locus in a genome); thus N has a natural boundary
which it cannot go beyond. On the other hand, the increasing amount of whole-genome
data available does allow a greater and greater number of genes (and therefore gene
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trees) to be used in species tree inference, and so an exploration of the behaviour of
these methods in the large-N limit is of practical importance. In particular, our results
are good enough to be useful in the question of determining the sample complexity,
which is of great practical interest as it allows one to estimate a priori how many gene
trees need to be extracted from the genome for use in species tree inference.

Our results are quite general, in the sense that although they are expressed in relation
to ASTRAL, they apply for any species tree inference method which solves the max-
imum quartet support species tree problem. Nor are they limited to the multispecies
coalescent model; although this is the dominant model at themoment, this may change
with the recent rise of unifiedmodels that also include DTL processes, such as DLCoal
or MLMSC. Our results (possibly apart from the lower bound for n species, which
additionally requires positive correlation) apply equally well to these models, and
to future models that may additionally include other processes. We require only the
ability to calculate the probability of the gene evolution process generating a correct
quartet topology. While this is not always an easy task theoretically under the more
complex models, it can often be estimated very accurately via simulations on 4-taxon
species trees (vastly more efficient than conducting simulations over many species).

One restriction on the gene evolution process that we require for our lower bound is
that it must be positively correlated. This seems a natural requirement, and it is indeed
easy to show that it holds for theMSC (as discussed above). However, it is not trivial to
extend this argument to more complicated models such as DLCoal or MLMSC, and it
remains an open question whether thesemodels are indeed positively correlated or not.

Finally, we note that the important practical consideration of whether the gene trees
are reconstructed with or without error does not affect our theoretical results in Sects. 2
and 3. We only require the probability p of producing the correct quartet topology (or
in the more general case, the probabilities p1, p2, p3 of the three topologies). If there
is gene tree error, we can simply consider p as the probability of reconstructing, with
error, the correct topology (likewise in the more general case). For our results to hold,
it only matters that p > 1

3 , so that we are in the statistically consistent regime. As
discussed in Shekhar et al. (2017), this will hold under a simple model where the gene
tree error proportion is less than or equal to 2

3 , and errors are unbiased and independent
between quartets.

For Sects. 4 and 5, the presence of gene tree error does affect the formula p =
1 − 2

3e
−l , and so the asymptotic behaviour for the sample complexity becomes a

lower bound in practice.
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Appendix A Proof of Theorem 3

We start by following the proof of Theorem 1. Let N1, N2, and N3 be the number of
gene trees produced with the three possible topologies as before. As before, we have

P(N1 = N2 = cN , N3 = (1 − 2c)N ) = N !
((cN )!)2 ((1 − 2c)N )! p

cN
(
1 − p

2

)(1−c)N

.

We first derive the lower bound by using a bounded version of Stirling’s formula
(Robbins 1955),

x ln x − x + 1

2
ln 2πx + 1

12x + 1
≤ ln x ! ≤ x ln x − x + 1

2
ln 2πx + 1

12x
.

This gives

ln P(N1 = N2 = cN )

≥ N ln N − N + 1

2
ln 2πN + 1

12N + 1

− 2

(
cN ln cN − cN + 1

2
ln 2πcN + 1

12cN

)

− (1 − 2c)N ln(1 − 2c)N + (1 − 2c)N

− 1

2
ln 2π(1 − 2c)N − 1

12(1 − 2c)N

+ cN ln p + (1 − c)N ln
1 − p

2

=
[
−2c ln c − (1 − 2c) ln(1 − 2c) + c ln p + (1 − c) ln

1 − p

2

]
N

− ln N − ln 2πc(1 − 2c)1/2 − 2 − 3c

12c(1 − 2c)N
+ 1

12N + 1
.

Half of this probability gives a lower bound on the error probability for any c, as long
as cN is an integer. We thus choose c as before to maximise f (p), but round it so that
cN is an integer. (In theory, a marginally better bound could be found by optimising
over possible values of c, but the integer constraint makes this difficult.)

We now derive the upper bound using the same bounds for Stirling’s formula. This
gives

ln P(N1 = N2 = cN )

≤ N ln N − N + 1

2
ln 2πN + 1

12N
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− 2

(
cN ln cN − cN + 1

2
ln 2πcN + 1

12cN + 1

)

− (1 − 2c)N ln(1 − 2c)N + (1 − 2c)N

− 1

2
ln 2π(1 − 2c)N − 1

12(1 − 2c)N + 1

+ cN ln p + (1 − c)N ln
1 − p

2

=
[
−2c ln c − (1 − 2c) ln(1 − 2c) + c ln p + (1 − c) ln

1 − p

2

]
N

− ln N − ln 2πc(1 − 2c)1/2 + 1

12N
− 2

12cN + 1
+ 1

12(1 − 2c)N + 1
.

Wenow choose c to maximise the probability of this event (we do not need to constrain
cN to be an integer here). As shown in the proof of Theorem 1, this provides an upper
bound for the probability of any specific combination of N1, N2, N3 which adds to N
and may produce the wrong species tree.

Now there are N (N+1)
2 possible combinations of N1, N2, N3 which add to N . By

symmetry, 2
3 of these combinations produce the wrong species tree. Thus

ln P(error) ≤ ln P(N1 = N2 = cN ) + ln
N (N + 1)

3
.

This gives the upper bound.

Appendix B Non-equivalent alternative topologies

Here we extend our results to the case where the two incorrect topologies need not be
generated with equal probability. We start by briefly sketching a proof of Theorem 4,
which proceeds exactly as for Theorem 1 with small variations. Firstly, (N1, N2, N3)

has a multinomial distribution with parameters N and (p1, p2, p3), which gives

P(N1 = N2 = cN , N3 = (1 − 2c)N ) = N !
((cN )!)2 ((1 − 2c)N )! p

cN
1 pcN2 p(1−2c)N

3 .

Applying Stirling’s formula gives

ln P(N1 = N2 = cN )

∼ [−2c ln c − (1 − 2c) ln(1 − 2c) + c ln p1 p2 + (1 − 2c) ln p3] N

d

dc
ln P(N1 = N2 = cN ) ∼

[
2 ln

1 − 2c

c
+ ln

p1 p2
p23

]
N .

123



The large-sample asymptotic behaviour of quartet-based... Page 19 of 22 22

Setting to 0 and solving for c yields

c = 1

2 + p3√
p1 p2

.

Substituting p3 = 1− p1 − p2 into these expressions gives the asymptotic expression
for the error probability.

There is an extra difficulty with showing that each specific error term is bounded
above by P(N1 = N2 = cN ), as the third relation P(N1 = n1, N2 = n2) ≤ P(N1 =
n1, N2 = n2 − 1) for n2 > n1 ≥ n3 used in the proof of Theorem 1 does not hold. We
can instead use the relation P(N1 = n1, N2 = n2) ≤ P(N1 = n1 + 1, N2 = n2 − 1)
for n2 > n1, but this only shows that each error term is bounded above by either
P(N1 = N2 = cN ) or P(N1 = cN , N2 = cN + 1). However, since these terms have
the same asymptotic behaviour as N → ∞, the result still holds.

We now state a generalisation for Theorem 5. The proof is sufficiently straightfor-
ward that we will omit it.

Definition 2 Let f (p1, p2) be the function

f (p1, p2) = −2c ln c − (1 − 2c) ln(1 − 2c) + c ln p1 p2 + (1 − 2c) ln(1 − p1 − p2),

where

c = 1

2 + 1−p1−p2√
p1 p2

.

Theorem 8 Given a species tree S, assume the gene evolution process is positively
correlated. For any species quartet (a, b, c, d), let the probabilities of producing the
three quartet topologies be p1(a, b, c, d) > p2(a, b, c, d) ≥ p3(a, b, c, d), where
p1(a, b, c, d) is the probability of producing the correct topology and p1(a, b, c, d)+
p2(a, b, c, d)+ p3(a, b, c, d) = 1. For any internal species branch x ∈ E(S), let Ax ,
Bx , Cx , and Dx be the four clades that it divides the leaves of S into.

Then the probability of inferring the wrong species tree with ASTRAL has the
limiting behaviour (as N → ∞)

ln P(error) ∼ αN ,

where the (logarithm of the) growth constant α is bounded by

α ≥ max
x

min
a∈Ax ,b∈Bx ,c∈Cx ,d∈Dx

f (p1(a, b, c, d), p2(a, b, c, d))|Ax ||Bx ||Cx ||Dx |,
α ≤ max

(a,b,c,d)
f (p1(a, b, c, d), p2(a, b, c, d)).
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Appendix C Expanded proof of Theorem 6

We firstly expand the Maclaurin series for c and p:

c = 1

2 +
√

2
3 e

−l

2− 4
3 e

−l

= 1

3
+ 1

6
l − 5

24
l2 + O(l3)

p = 1 − 2

3
e−l

= 1

3
+ 2

3
l − 1

3
l2 + O(l2).

Then,

−2c ln c = 2

3
ln 3 +

(
1

3
ln 3 − 1

3

)
l +

(
− 5

12
ln 3 + 1

3

)
l2 + O(l3)

−(1 − 2c) ln(1 − 2c) = 1

3
ln 3 +

(
−1

3
ln 3 + 1

3

)
l +

(
5

12
ln 3 − 7

12

)
l2 + O(l3)

c ln p = −1

3
ln 3 +

(
−1

6
ln 3 + 2

3

)
l +

(
5

24
ln 3 − 2

3

)
l2 + O(l3)

(1 − c) ln
1 − p

2
= −2

3
ln 3 +

(
1

6
ln 3 − 2

3

)
l +

(
− 5

24
ln 3 + 1

6

)
l2 + O(l3).

Therefore,

f (p) = −3

4
l2 + O(l3).

Series expansions were performed with the aid of WolframAlpha.

Appendix D Bounds for general species trees for all N

Theorem 9 Given a species tree S, let pmin be defined as in Theorem 5, and

xmax = argmax
x

f (px )|Ax ||Bx ||Cx ||Dx |,
pmax = pxmax .

Then the probability of inferring the wrong species tree with ASTRAL is bounded
below by

123



The large-sample asymptotic behaviour of quartet-based... Page 21 of 22 22

ln P(error)

≥
[
−2c′ ln c′ − (1 − 2c′) ln(1 − 2c′) + c′ ln pmax + (1 − c′) ln 1 − pmax

2

]
N ′

− ln N ′ − ln 4πc′(1 − 2c′)1/2 − 2 − 3c′

12c′(1 − 2c′)
1

N ′ + 1

12N ′ + 1
,

where N ′ = |Axmax ||Bxmax ||Cxmax ||Dxmax |N and c′ is the nearest number to

c = 1

2 +
√

1−pmax
2pmax

such that c′N ′ is an integer.
It is also bounded above by

ln P(error) ≤ max
c

{[
−2c ln c − (1 − 2c) ln(1 − 2c) + c ln pmin + (1 − c) ln

1 − pmin
2

]
N

+ ln
N + 1

3
+ ln

(
n

4

)
− ln 2πc(1 − 2c)1/2

+ 1

12N
− 2

12cN + 1
+ 1

12(1 − 2c)N + 1

}
.
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