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Methylation similarities of two CpG sites within exon 5
of human H19 between normal tissues and testicular
germ cell tumours of adolescents and adults, without
correlation with allelic and total level of expression

AJM Gillis, AJMH Verkerk, MC Dekker, RJHLM van Gurp, JW Oosterhuis and LHJ Looijenga
Laboratory of Experimental Patho-Oncology, Dr Daniel den Hoed Cancer Center, Academic Hospital Rotterdam, Groene Hilledijk 301, 3075 EA Rotterdam,
The Netherlands

Summary Testicular germ cell tumours (TGCTs) of adolescents and adults morphologically mimic different stages of embryogenesis.
Established cell lines of these cancers are used as informative models to study early development. We found that, in contrast to normal
development, TGCTs show a consistent biallelic expression of imprinted genes, including H19, irrespective of histology. Methylation of
particular cytosine residues of H19 correlates with inhibition of expression, which has not been studied in TGCTs thus far. We investigated the
methylation status of two CpG sites within the 3' region of H19 (exon 5: positions 3321 and 3324) both in normal tissues as well as in TGCTs.
To obtain quantitative data of these specific sites, the ligation-mediated polymerase chain reaction technique, instead of Southern blot
analysis, was applied. The results were compared with the allelic status and the total level of expression of this gene. Additionally, the
undifferentiated cells and differentiated derivatives of the TGCT-derived cell line NT2-D1 were analysed. While peripheral blood showed no
H19 expression and complete methylation, a heterogeneous but consistent pattern of methylation and level of expression was found in the
other normal tissues, without a correlation between the two. The separate histological entities of TGCTs resembled the pattern of their non-
malignant tissues. While the CpG sites remained completely methylated in NT2-D1, H19 expression was induced upon differentiation. These
data indicate that methylation of the CpG sites within exon 5 of H19 is tissue dependent, without regulating allelic status and/or total level of
expression. Of special note is the finding that, also regarding methylation of these particular sites of H19, TGCTs mimic their non-malignant
counterparts, in spite of their consistent biallelic expression.
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Expression of a, thus far, limited number of mouse and human
genes is found to be influenced by their parental origin (Kato et al,
1996; Looijenga et al, 1996 for review). The growing list of
reports about (possible) associations between aberrant expression
of these so-called imprinted genes and non-neoplastic or
neoplastic pathological conditions stresses the importance of this
topic in medical research. In particular, biallelic expression, i.e.
loss of imprinting (LOI), of one or more imprinted genes has been
found in a number of cancers (Feinberg, 1993; Rainier et al, 1993,
1995; Steenman et al, 1994; Zhan et al, 1994, 1995; Kondo et al,
1995; Li et al, 1995; Taniguchi et al, 1995; Douc-Rasy et al,
1996; Hibi et al, 1996; Riou et al, 1996; Uyeno et al, 1996. In
contrast to the finding of biallelic expression of H19, one of the
imprinted genes expressed predominantly during early develop-
ment (Brunkow and Tilghman, 1991; Poirier et al, 1991; Lustig et
al, 1994; Leighton et al, 1995), in only a certain percentage of the
different neoplasms studied, we reported on the consistent biallelic
expression of H19 in human testicular gern cell tumours of
adolescents and adults (TGCTs) (Van Gurp et al, 1994; Verkerk et
al, 1996), which has recently been confirmed by others (Mishina et
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al, 1996). In spite of the exceptional histological diversity of this
particular cancer (Mostofi et al, 1987; Oosterhuis and Looijenga,
1993), both the seminomas (SEs), showing characteristics of early
(primordial) germ cells and the non-seminomatous TGCTs (NSs)
in which the undifferentiated stem cells [embryonal carcinomas
(ECs)] can differentiate into embryonal [teratoma (TE)] and
extraembryonal elements [yolk sac tumour (YS) and choriocarci-
noma (CH)] expressed both the paternal and maternal allele in an
approximately equal amount. In addition, we found evidence that
the common precursor of TGCTs, known as carcinoma in situ
(Skakkebek et al, 1987), also shows biallelic expression of H19
(Verkerk et al, 1996), analogous to mouse primordial germ cells
(Szabo and Mann, 1995). Our hypothesis is that the biallelic
expression of H19, and possibly all imprinted genes
(Rachmilewitz et al, 1996), in TGCTs is due to retention of an
intrinsic feature of their cell of origin, a transformed primordial
germ cell.
One of the likely mechanisms responsible for the allele-specific

expression of imprinted genes under physiological conditions is
methylation of cytosine residues, an epigenetic mechanism gener-
ally involved in the regulation of gene expression in vertebrates
(Eden and Cedar, 1994 for review). While DNA methylation is in
principle stable and inherited in somatic daughter cells, multiple
studies have indicated that methylation ofDNA can be differentia-
tion and/or maturation dependent (Monk, 1990; Luebbert et al,
1991; Shemer et al, 1991). For example, extensive demethylation
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has been reported during early mouse embryogenesis (Howlett and
Reik, 1991; Kafri et al, 1992; Razin and Shemer, 1995), in which
the primordial germ cells are found to be highly demethylated
(Kafri et al, 1992). Earlier publications on methylation of several
non-imprinted genes in SEs and NSs indicate that SEs are, like
primordial germ cells, highly demethylated, while the NSs show
more methylation, like somatic tissues (Peltomaki, 1991). Several
studies have been published dealing with the methylation status of
mouse and human imprinted genes (Bartolomei et al, 1993;
Ferguson-Smith et al, 1993; Stoger et al, 1993; Zhang et al, 1993;
Feil et al, 1994; Labosky et al, 1994; Moulton et al, 1994; Reik and
Allen, 1994; Reik et al, 1994; Steenman et al, 1994; Szabo and
Mann, 1994; Jinno et al, 1995; Sasaki et al, 1995; Taniguchi et al,
1995; Tremblay et al, 1995; Douc-Rasy et al, 1996). Most of the
results were obtained using Southern blot analysis, although
this method does not result in quantitative data, and interpretation
of regions containing many and/or closely apposed recognition
sites of the methylation-sensitive restriction endonuclease is
troublesome. These limitations can be solved using the recently
developed ligation-mediated polymerase chain reaction (LM-
PCR) (Pfeifer et al, 1989; McGrew and Rosenthal, 1993). This
technique allows a quantitative methylation analysis of individual
cytosine residues within a particular stretch of DNA.
We used LM-PCR to study the similarities and differences in

methylation status of two specific CpG sites within the 3' region of
HJ9 (as part of one HpaII and one HhaI-site) in normal tissues
(showing monoallelic expression) and in TGCTs with different
histological compositions (showing biallelic expression). These
results were correlated with the total expression level of this gene.
Additionally, a TGCT-derived cell line, representative of ECs, and
its more differentiated derivatives were investigated using the
same approach.
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MATERIALS AND METHODS

RNAase protection analysis

A cDNA fragment of the human H19 gene (exon 5: position
3030-3375) (Brannan et al, 1990) including the polymorphic RsaI
site (position 3238) was cloned into SacIISmaI-digested PGEM-
3Z plasmid (Promega). To generate the antisense probe, in vitro
transcription of 1 jg of plasmid DNA in the presence of [a-32P]
CTP was performed using Sp6 RNA polymerase after lineariza-
tion of the plasmid with EcoRI. As control, a sense probe was
generated similarly after linearization of the plasmid with HindIlI
and transcription using T7 RNA polymerase. As reference for the
amount of RNA used for the analysis, a y-actin antisense probe
was constructed as follows. A 129-bp Hinfi-HindIl fragment
(Enoch et al, 1986) was subcloned into the SmaI/HindIII site of the
PGEM4Z plasmid (Promega). The antisense probe was generated
by linearization of the plasmid with EcoRI and transcription with
T7 RNA polymerase in the presence of [a-32P]CTP. Subsequently,
template DNA was removed by adding 2.5 U of RQ1 DNAase
(Promega) for 20 min at 37°C. The labelled probes were separated
from the unincorporated nucleotides using the Quick Spin
Columns Sephadex G50 (Boehringer Mannheim).
From each sample, total RNA was isolated from approximately ten

frozen tissue sections of 50 jm thickness each, using RNA STAT-60
(TEL-TEST). Of each sample, two 5-jim sections (the first and
the last in the series) were stained with haematoxylin and
eosin for microscopic analysis of the histological composition. Five

Figure 1 (A) Results of RNAase protection analysis for H19 expression in
normal tissues and testicular germ cell tumours of adolescents and adults
(TGCTs). The expression level is indicated relative to y-actin as described in
the Materials and methods section. Pla, full-term placenta; Ske, skeletal
muscle; Adr, adrenal gland; Kid, kidney; Hea, heart muscle; Liv, liver; Ute,
uterus; Thy, thyroid gland; Lun, lung; SpI, spleen; Tes, normal testis; Epi,
normal epididymis; Pbl, peripheral blood; SE, seminoma; NS, non-
seminomatous TGCTs; NS1, NS-TGCTs without extraembryonal elements;
NS2, non-seminomatous TGCTs with a yolk-sac and/or a choriocarcinoma
component. (B) Reverse transcription polymerase chain reaction-based
detection of H19 expression in the TGCT-derived cell line NT2-D1 (NT2)
under undifferentiated and differentiated (+ RA) conditions. (C) RNAase
protection analysis of the undifferentiated and differentiated cells of the cell
line NT2-D1. Note the induction of expression upon differentiation in B and C
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Tissue-dependent methylation of H19 -exon 5 727

Table 1 Summary of the methylation status (%) [mean (x) and standard deviation (s.d.)] of the Hpall and Hhal site within exon 5 of H19
in normal tissues and testicular germ cell tumours of adolescents and adults as studied by ligation-mediated polymerase chain reaction

n Hpa II Hha I

x s.d. x s.d.

Tissue
Peripheral blood 12 100.0 0.0 100.0 0.0
Placenta 12 3.2 9.2 14.8 7.3
Liver 4 68.8 3.9 56.8 6.0
Lung 5 64.6 13.4 66.8 8.2
Spleen 4 88.3 3.8 68.0 22.3
Kidney 4 67.3 2.4 65.8 13.1
Thyroid gland 3 85.0 2.0 93.0 1.7
Uterus 2 43.5 0.7 39.5 7.8
Adrenal gland 2 47.5 6.4 52.0 5.7
Heart 5 36.4 18.0 33.4 17.2
Skeletal muscle 4 31.3 10.9 30.0 9.5
Testis 3 32.7 11.0 27.0 4.0
Epididymis 1 14.0 2.8 25.0 17.3

All without placenta 55.1 21.4 49.6 21.6

Tumour
Seminoma 10 22.2 16.9 22.0 17.0
Non-seminomatous testicular germ cell tumours (NS) 10 44.2 15.8 45.2 14.7
NS without extraembryonal elements 5 49.2 19.3 52.8 12.7
NS with extraembryonal elements 5 39.2 11.3 37.6 13.5

micrograms ofRNA was used for the analysis using the Ribonuclease
Protection Assay Kit RPA II (Ambion), according to the manufac-
turer's description. After hybridization, the samples were treated with
RNAase (1:100) for 1 h at 37°C. The samples were loaded onto a 6%
polyacrylamide/8 M urea gel and electrophoresed for 3 h at 60 W,
after which the gel was vacuum dried. Subsequently, exposure was
performed to CEA RP films (medical radiograph screen film blue
sensitive, Cea Corps) for various lengths of time at -80°C.

Interpretation of the autoradiographs was established using a
videodensitometer (2600, Biorad) with appropriate software appli-
cations as recommended by the supplier. Within each lane, the
relative intensity of the H19 signal was determined compared with
that of the y-actin signal, after compensating for background
signal. The intensity of the smallest actin band (four protected
fragments were found by RNAase protection analysis) was used as
reference. The intensity is approximately one-fifth of the total
actin signal present. Therefore, the relative level of H19 expres-
sion compared with the actin signal is a fivefold overestimation of
the absolute level.

Reverse transcription polymerase chain reaction
(RT-PCR)
Five micrograms of total RNA, isolated as described above, was
reverse transcribed. cDNA was generated at 37°C for 2 h in a total
volume of 40 gl containing 1 mm each dNTP (Pharmacia), 1 mM
dithiothreitol, 1.2 gg of random hexamer primers (pd[N]6)
(Pharmacia), 1.2 ,ug of oligo d(T) primer d[T] 12-18 (Pharmacia),
4.5 U of RNAasin (Pharmacia), 50 mm Tris-HCl (pH 8.3), 75 mM
potassium chloride, 3 mm magnesium chloride and 1 gl of
Superscript RNAase H-RT (BRL; 200 U g1-1).

Amplifications were performed using 2 gl of the RT reaction in
a total volume of 50 gl containing 1 x Taq DNA polymerase buffer

with 1.5 mm magnesium chloride, 100 pmol of each primer,
250 mm each dNTP and 1 U of Taq DNA polymerase (Promega).
A primer set, referred to as HN9 and HN1O, spanning intron 3
and 4 (DNA fragment 949 bp, cDNA fragment 788 bp) was
used. Primer positions are: forward primer HN9 (5'-bp
ACTTCCTCCAGGGAGTCGGCA-3') and reverse primer HNIO
(5'-TGATGATGAGTCCAGGGCTCCT-3'), derived from posi-
tions 3453-3474 of the published HJ9 sequence (which was
renumbered by us, starting at 1 at the beginning of the published
sequence; Brannan et al, 1990). After an initial denaturation of
4 min at 94°C, every amplification cycle consisted (between 30
and 35 cycles) of 1 min at 94°C, 2 min at 66°C and 2 min at 72°C.
Hypoxanthine phosphoribosyl transferase (HPRT) primers were
used (243 and 244; Gibbs et al, 1989) to validate the integrity
of the cDNA. PCR products were visualized on 2.5-3% [50%
regular and 50% NuSieve GTG (FMC)] agarose gels stained with
ethidium bromide.
The samples were studied to provide information on the poly-

morphic RsaI restriction site in exon S (Zhang and Tycko, 1992),
amplified with primerset HN9 and HN1O. High-molecular-weight
DNA was isolated using proteinase K-sodium dodecyl sulphate
treatment followed by phenol-chloroform extraction and ethanol
precipitation (Maniatis et al, 1982). Again, tissue sections were
used to verify histological composition. Amplification products
(5-10 gl) were digested to completion with 40 U of RsaI endo-
nuclease (Pharmacia). Heterozygous samples showed an
uncleaved band of 949 bp and cleaved bands of 714 bp and 235 bp.
The matched RNAs were judged as biallelic when the cDNA
amplification products after digestion showed the uncleaved 788-
bp band as well as the cleaved 553-bp and 235-bp bands.
Completion of digestion was tested by always including a sample
homozygous for the allele with the RsaI site. In addition, at least
three independent digests were performed for each sample.
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Figure 2 Schematic representation of the different Hpall and Hhal sites
studied in H19 exon 5 by ligation-mediated polymerase chain reaction (A)
and of the technique itself (B). See Materials and methods for a detailed
description of the primers used. After Bgl I digestion, the samples are
digested using either Hpall, Hhal or Msp I. While the first are methylation
sensitive, the latter is resistant and recognizes the same site as Hpall. After
denaturation of the digested DNA, a single-strand polymerase chain reaction
is performed using HP-1, creating a blunt end at the 5' region of the
fragment. Subsequently, linker ligation is performed and a second
polymerase chain reaction is performed using HP-2 (nested compared with
HP-1) and the longest linker primer. A single polymerase chain reaction is
performed with the radioactively end-labelled primer HP-3 (located 5' of HP-
2). Depending on the methylation status of the Hpall and Hhal sites, different
fragment lengths can be found, which can be distinguished from each other
on a polyacrylamide gel

Ligation-mediated polymerase chain reaction

High-molecular-weight DNA was isolated using standard proce-
dures from the histologically checked samples as described above.
Six micrograms of DNA was digested with the restriction endo-
nuclease BglI. After ethanol precipitation, the pellet was resolved
in 20 p1 of water. Completeness of digestion was checked by
performing a PCR using primers HN9 and HN1O (see above). The
samples were only used for further analysis when no amplification
products could be identified after agarose gel electrophoresis and
ethidium bromide staining. The proper samples were split into four
identical fractions. These were digested overnight at 37°C using
the restriction endonucleases HpaII, HhaI and MspI and no restric-
tion endonuclease as control.

For the LM-PCR, all samples and solutions were chilled on ice
before use. The digested DNA samples were subjected to the
procedure described previously (Pfeifer et al, 1989; McGrew
and Rosenthal, 1993), with some modifications. To each aliquot
(1.5 jig of DNA), 25 jil of 'first-strand mixture' was added (48 mm
sodium chloride, 12 mm Tris HCI pH 8.9, 6 mm magnesium

sulphate, 0.012% gelatin) and 0.3 pmol of the gene specific primer
HP-I (5'-GGCTCCTGCTGAAGCCCT-3'), 240 gM dNTPs and
1 U of PFU-DNA polymerase (Statagene). First-strand synthesis
was performed using a thermal cycle consisting of 5 min at 95°C,
30 min at 60°C and 10 min at 76°C. Subsequently, the samples
were immediately chilled on ice. Twenty microlitres of dilution
mixture (110 mm Tris HCIpH 7.5, 18 mm magnesium chloride, 50
mM DTT and 125 jg ml-' bovine serum albumin) and 25 gl of
ligation mixture (10 mm magnesium chloride, 20 mM DTT, 3 mM
ATP, 100 pmol of unidirectional linker (Mueller and Wold, 1989),
which had been annealed before in 250 mM Tris HCI pH 7.7] and
4.5 units of T4-DNA-ligase (Promega) were added. After incuba-
tion for 12-16 h at 16WC, the samples were chilled on ice, and
9.5 pl of precipitation mixture (0.1% yeast tRNA, 2.7 M sodium
acetate pH 7.0) and 220 p1 of 96% ethanol were added. The
samples were incubated at -20°C for at least 2 h and spun down
for 15 min at 4°C. The pellet was washed using 75% ethanol and
vacuum dried. Subsequently, the pellets were resuspended in 70 pl
of water and placed on ice. After addition of 30 p1 of amplification
mixture [133 mm sodium chloride, 67 mM Tris HCIpH 8.9, 17 mM
magnesium sulphate, 0.03% gelatin, 670 gM dNTPs, 10 pmol of
gene-specific primer HP-2 (5'-TGCTGAAGCCCTGGTGGG-3'),
10 pmol of the longest linker primer and 1 unit of Taq-polymerase
(Promega)], the samples were amplified for 18 cycles consisting
each of 1 min at 95°C, 2 min at 60°C, and 2.5 min at 72°C, with a
5 s extension for each cycle. Before the first cycle, the samples were
denatured for 3.5 min at 95°C, while the last extension lasted 6 min.

Samples were placed on ice, and 5 p1 of labelling mixture [40 mm
sodium chloride, 20 mM Tris HCI pH 8.9, 5 mm magnesium
sulphate, 0.001% gelatin, 2 mM dNTPs, 2.5 pmol of gene-specific
primer HP-3 (5'-TCGGAGCTTCCAGACTAG-3') end-labelled
with T4-polynucleotide kinase (New England Biolabs) and [y-
32P]ATP] and 1 unit of Taq polymerase were added. The labelling
cycle consisted of 3.5 min at 950C, 2 min at 620C and 10 min at
720C, 1 min at 950C, 2 min at 620C and 10 min at 720C. The
samples were extracted using phenol-chloroform and subsequently
ethanol precipitated using 0.2 M NaAc. After resuspension of the
pellet in 10 p1 of loading buffer, 2.5 p1 was heated for 5 min at
950C, chilled on ice and loaded on a 6% 0.4-mm polyacrylamide
sequencing gel. Exposure was done overnight at -800C, and the
autoradiographs were analysed quantitatively as described above.

Growth of the cell line NT2-D1

The TGCT-derived cell line NT2-D1 was grown two-dimension-
ally in tissue culture-treated flasks (Costar) under standard condi-
tions, i.e. 37°C, 5% carbon dioxide in air-humidified atmosphere
in Dulbecco's modified Eagle medium (DMEM)/HF12 with
10% heat-inactivated fetal calf serum (FCS) (BRL-GIBCO).
Subsequently, the cells were exposed to 105 M all-trans retinoic
acid (RA, Sigma) for various lengths of time. RNA from the
different time points was isolated and studied for H19 expression
as described above.

RESULTS

RNAase protection analysis and reverse transcription
polymerase chain reaction

To obtain a general impression of the total level ofH19 expression in
the samples included in this study, we applied RNAase protection
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Figure 3 Representative examples of the results of ligation-mediated polymerase chain reaction to detect methylation of the cytosine residues as part of the
Hpall and Hhal site within exon 5 of H19 as detected in normal tissues (A). [Note the hypermethylation in peripheral blood (Pbl, including Msp as positive
control), thyroid gland and spleen compared with full-term placenta, normal testis parenchyma (= testis) and normal epididymis. Lung and uterus show an
intermediate pattern.] Seminomas (SE) and non-seminomatous testicular germ cell tumours (NS) are shown in B. In addition, one peripheral blood (Pbl) sample
is illustrated in which Msp digestion is shown as positive control. Note the general hypomethylation within the SE compared with the NS

analysis. Some representative results are indicated in Figure lA.
Relatively high expression was found in placenta, skeletal muscle
and adrenal gland (in decreasing order), in agreement with published
data (Rachmilewitz et al, 1992; Douc-Rasy et al, 1993; Goshen et al,
1993; Walsh et al, 1995). The other normal tissues (kidney, heart,
liver, uterus, thymus, lung and testis) showed a low level or no
expression (spleen, epididymis and peripheral blood). A consistent
low level of expression was found in SEs (n = 24, mean 0.16, stan-

dard deviation 0.074), while the NSs showed a variable level of
expression (n = 13, mean 1.25, standard deviation 1.12), being
significantly different (P < 0.005, Student's t-test, unpaired analysis).
Within the group of NSs, lower expression was detected in the
samples without extraembryonal elements (indicated as N1 in Figure
IA), while a higher expression was found in tumours containing a
YS and/or a CH component (indicated as N2 in Figure 1A). A
detailed description of the H19 expression pattem determined by
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Figure 4 Results of the methylation status of the cytosine residues within
one Hpall and one Hhal site within exon 5 of H19 in the undifferentiated and
differentiated cells of the cell line NT2-D1, as studied by ligation-mediated
polymerase chain reaction. Note the methylation of all sites under both
conditions. Bgl and Msp digestions are included as controls

RNAase protection analysis and mRNA in situ hybridization within
the different histological components within NSs is published else-
where (Verkerk et al, 1996).

Thus far, in a series of more than 60 primary TGCTs, including
the samples studied here, no deletions including H19 could be
identified (unpublished observations), in spite of a high frequency
of loss of heterozygosity of Ilpl5.5 (Lothe et al, 1993; Looijenga
et al, 1994; Lothe et al, 1995; Peng et al, 1995). In contrast, a
recent study reported the presence of deletions including H19 in
about 25% of TGCTs (Mishina et al, 1996). As reported previ-
ously (Van Gurp et al, 1994; Verkerk et al, 1996), TGCTs show a
consistent biallelic expression of H19, irrespective of histology
and total level of expression, as also found by others more recently
(Mishina et al, 1996). In contrast, normal tissues, including
full-term placenta, normal testis and epididymis samples show
monoallelic expression (not shown, Verkerk et al, 1996; and
reported by Zhang et al, 1993; Reik et al, 1994; Adam et al, 1996;

Douc-Rasy et al, 1996; Hibi et al, 1996; Mishina et al, 1996). No
expression of this gene could be found with RT-PCR in peripheral
blood, concordant with RNAase protection analysis (see above
and reported previously by Reik et al, 1994). Differentiation of the
cell line NT2-D1 upon retinoic acid exposure resulted in a strong
induction of H19 expression, illustrated by RT-PCR (Figure 1B).
To exclude possible artefacts in the RT-PCR procedure at early
stages of differentiation (showing absence of expression), these
results were verified using RNAase protection analysis, illustrated
in Figure IC, which support the data obtained by RT-PCR. It could
not be determined whether expression of H19 was mono- or bial-
lelic, because this cell line was homozygous for the reported poly-
morphisms within H19 (not shown). However, we have recently
found a TGCT-derived cell line, known as NCCIT (Damjanov et
al, 1993), that expressed both parental alleles of H19 specifically
upon differentiation induced by retinoic acid (not shown).

Ligation-mediated polymerase chain reaction

Southern blot analysis is not suitable to obtain quantitative data on
the methylation status of specific sites closely situated to each
other. Therefore, we applied the recently developed technique of
LM-PCR. The HpaII and HhaI sites in exon 5 of H19 analysed by
this method are indicated in Figure 2A. The primers used, as well
as the technique itself, are schematically illustrated in Figure 2B.
To verify complete digestion of the DNA samples to be tested,
Bgll and BglIMspI controls were included in every experiment
(see Materials and methods). When these samples resulted solely
in detection of the 134-bp and 77-bp fragments, respectively, the
HpaII- and HhaI-digested samples were interpreted. Only the
methylation status of the most 3'-located CpG sites (within one
HpaII and one HhaI site) will be discussed hereafter, unless indi-
cated otherwise.
A variable level of methylation was detected for the cytosine

residues within the HpaII (CCGG) and HhaI recognition sites
(GCGC) in the normal tissues, of which the total percentage (not
differentiated to one of the cytosine residues for the HpaII site) is
shown in Table 1. Representative examples of the LM-PCR
analysis are shown in Figure 3A. A high level of methylation of
both sites was found in thyroid gland, peripheral blood and spleen.
Because this HpaII site of H19 was found to be completely
methylated in peripheral blood, indicating that both the paternal
and maternal allele are methylated, the level of methylation of the
more upstream-located CpG site (position 3308, see Figure 2A)
could also be analysed. This site was again found to be completely
methylated, just as the CpG site at position 3287. Most other
tissues showed a methylation level between 50% and 70% for the
most 3'-located HpaII site and the HhaI-site, with a slightly lower
level in skeletal and heart muscle as well as in uterus. For both
sites, a low level of methylation was detected in full-term placenta,
indicating at least that not all maternal or paternal alleles present
are methylated. Possible contamination of blood cells in these
samples, explaining the remaining level of methylation, could not
be excluded, although MspI digestion resulted only in the 77-bp
fragment, indicating complete digestion (not shown). Also a rela-
tively low level of methylation was detected in samples predomi-
nantly consisting of germ cells (normal testis parenchyma and
epididymis), indicating that the majority of the alleles present are
unmethylated. This was found to be significantly lower compared
with the samples of adult somatic tissues (P < 0.005 for HhaI and
P < 0.0005 for HpaII, Student's t-test, unpaired analysis).
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The results on methylation of these HpaII and HhaI sites of the
tumours are also indicated in Table 1, of which representative
examples are shown in Figure 3B. For both sites, a significantly
lower methylation level was found in SEs compared with NSs
(P < 0.005 and < 0.0005, respectively, Student's t-test, unpaired
analysis). Within the group of NSs, there is a trend towards a lower
level of methylation in samples with a YS and/or a CH component
(showing a higher level of expression, see above) for both the
HpaII and HhaI sites. SEs, showed a similar level of methylation
to samples with a high proportion of germ cells, especially
epididymis (see above), while the methylation in NSs resembled
that of normal somatic tissues (P > 0.05, Student's t-test, unpaired
analysis). Both the undifferentiated and differentiated cells of
NT2-D1 showed complete methylation of all CpG sites, including
the two more upstream-located HpaII sites, as found in peripheral
blood (see above) (Figure 4); this is in spite of induction of H19
expression upon differentiation (see above).

DISCUSSION

H19, a gene expressed predominantly during early embryogenesis
(Brunkow and Tilghman, 1991; Poirier et al, 1991, Lustig et al,
1994; Leighton et al, 1995), is imprinted, i.e. shows uniparental
expression in most tissues (Bartolomei et al, 1991; Zhang and
Tycko, 1992; Zhang et al, 1993; Sasaki et al, 1995; Svensson et al,
1995). In contrast, TGCTs, which are overall rare, but common
malignancies in Caucasian men aged between 15 and 45 years
(Feuer, 1995; M0ller et al, 1995; Bergstrom et al, 1996), show
consistent biallelic expression of this gene, irrespective of the
histological composition of the cancer (this manuscript and Van
Gurp et al, 1994; Verkerk et al, 1996). This finding is of impor-
tance because all TGCTs originate from a common precursor,
referred to as carcinoma in situ (Skakkebaek et al, 1987), which is
assumed to be the malignant counterpart of a primordial germ cell
that is initiated during intrauterine development (J0rgensen et al,
1995). Interestingly, it has been found that mouse primordial germ
cells show biallelic expression of imprinted genes, including HJ9
(Szabo and Mann, 1995) and, in accordance with this finding, we
detected specifically biallelic expression of H19 in testicular
parenchyma containing carcinoma in situ (Verkerk et al, 1996).
These data suggest that TGCTs show biallelic expression of H19,
and possibly of other imprinted genes (Rachmilewitz et al, 1996),
as a result of retention of 'primordial germ cell-like' characteris-
tics. The results on total level of expression of H19, obtained by
RNAase protection analysis and mRNA in situ hybridization (this
paper and Verkerk et al, 1996), also show strong similarities with
the expression pattern found during early development (Looijenga
et al, 1996 for review). The mechanistic basis for lack of establish-
ment of monoallelic expression in TGCTs showing loss of the
primordial germ cell characteristics, i.e. the NSs, as found during
normal embryogenesis is unclear as yet, but aberrant methylation
could be involved.
The mouse and human inactive (paternal) allele is found to be

hypermethylated compared with the active (maternal) allele
(Bartolomei et al, 1993; Ferguson-Smith et al, 1993; Zhang et al,
1993). Indeed, that methylation has a role in, at least, the final
establishment of this uniparental pattern of expression has recently
been demonstrated by the finding of expression of both parental
alleles of H19 in DNA methylase-deficient mice (Li et al, 1993).
Moreover, hypermethylation of both the paternal and maternal
H19 alleles has been found in cancers of different origin showing

down-regulation of expression of the normally active allele (Zhang
et al, 1993; Moulton et al, 1994; Reik et al, 1994; Steenman et al,
1994; Taniguchi et al, 1995). Because Southern blot analysis was

applied in these studies, it was most often not possible to identify
the methylation status of the individual cytosine residues. This is,
however, possible using the technique of LM-PCR. We used this
method to investigate quantitatively the relationship between
allelic status and total level of H19 expression and methylation of
two CpG sites within exon 5 of this gene (position 3321 and 3324)
in normal tissues as well as in TGCTs. These sites were chosen,
because they have been found to be differentially methylated
between the maternal and paternal allele in normal tissues (Zhang
et al, 1993; Moulton et al, 1994; Jinno et al, 1995) and to be hyper-
methylated in Wilms' tumours showing LOI and down-regulation
of total H19 expression (Moulton et al, 1994; Steenman et al,
1994; Taniguchi et al, 1995). In addition, the reported shift from
biallelic towards monoallelic expression ofH19 during maturation
of human placenta is accompanied by a progressive methylation of
the 3'-region, which encompasses these specific sites, of the allele
to be silenced (Jinno et al, 1995). Therefore, a disturbed methyla-
tion pattern of H19 in TGCTs, which is in one way or another
related to biallelic expression, could be demonstrated by analysis
of these particular sites.
A heterogeneous, but consistent, pattern of methylation in the

normal and malignant tissues was found. In spite of the correlation
between hypermethylation and lack of H19 expression, as found in
peripheral blood, the other normal and malignant tissues, as well
as the TGCT-derived cell line, showed no such correlation. The
fact that full-term placenta showed retention of monoallelic
expression and a low level of methylation (less than 15%) indi-
cates that absence of differential methylation of these sites does
not lead to biallelic expression per se, as found by overall
demethylation in DNA methylase-deficient mice (Li et al, 1993).
In addition, the high level of methylation in spleen and thyroid
gland, both showing monoallelic expression, also indicates that
hypermethylation does not always result in inhibition of expres-
sion. This is supported by the results found in the cell line NT2-
Dl. The low level of expression and low methylation in SEs also
indicates that demethylation of these sites does not result in up-
regulation of expression, supported by the findings in the NSs.
These percentages also show that methylation of these particular
sites is not restricted to all alleles derived from one parent, indi-
cating that they are not directly involved in the mechanism of
genomic imprinting. In summary, we conclude that regulation of
HJ9 expression (allele specific and total) can not be attributed to
the differential methylation pattern of the CpG sites analysed in
this study and that the level of methylation is determined by tissue-
specific factors. In agreement with these data, it was recently
reported that the 5'-region of both the mouse and human HI9 gene
seems to harbour the critical region showing parental origin-
specific methylation, being involved in recognition of the parental
alleles as well as the specific inhibition of expression of the
paternal allele (Tremblay et al, 1995; Jinno et al, 1996). Currently,
the methylation status of this region is studied in the series
reported here.
The discrepancy between the data reported by Jinno et al,

(1995), showing progressive hypermethylation of the 3'-region of
H19 during development of human placenta and the low methyla-
tion status found by us is most probably due to the different
methods used. In the first study, Southern blot analysis and subse-
quent hybridization with a region-specific probe was applied,
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showing up to 70% methylation. The CpG sites at positions 3321
and 3324, which we studied using LM-PCR, are mapped at the
most 3' end, located on the 0.4-kb fragment of the allele with the
recognition site for RsaI; this region allows no interpretation
regarding methylation status in the survey performed on devel-
oping placenta. Moreover, it was recently shown, using an allele-
specific mRNA in situ hybridization approach, that the shift from
biallelic to monoallelic expression of H19 during placental devel-
opment, as found by Jinno et al (1995), is due to cell type-specific
activation of the paternal allele (Adam et al, 1996). Therefore, the
methylation data in this particular tissue need reinterpretation.
The tissue-dependent pattern of methylation and H19 expres-

sion in the normal tissues, as reported here, seems to be retained in
the TGCTs: hypomethylation and a low level of expression in SEs
(as in samples with a large proportion of germ cells) and more
methylation and an expression level dependent on the histological
composition in NSs (as in the other normal tissues); this is in spite
of the consistent biallelic expression of H19 in the tumours (Van
Gurp et al, 1994; Verkerk et al, 1996). The lower level of methyla-
tion found in NSs with a YS and/or CH component is of particular
interest because of the reported hypomethylation of this gene in
mouse extraembryonal tissues (Sasaki et al, 1995). Interestingly,
the hypomethylation of the samples containing a high proportion
of cells belonging to the germ cell lineage implies that hyper-
methylation of the 3' region of H19 detected in both mouse and
human sperm (Bartolomei et al, 1993; Zhang et al, 1993) is a rela-
tively late event in the maturation of male germ cells.

In conclusion, despite the lack of correlation between methyla-
tion of two CpG sites within exon 5 of H19 and expression pattern
in normal human tissues and TGCTs, our data support the model
that TGCTs originate from a primordial germ cell and that these
tumours mimic early development not only morphologically but
also on their molecular level. This demonstrates the putative value
of TGCTs as a model to study mechanisms involved in embryo-
genesis, including genomic imprinting.
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