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Abstract 

Background:  Precision medicine for cancer treatment relies on an accurate pathologi-
cal diagnosis. The number of known tumor classes has increased rapidly, and reliance 
on traditional methods of histopathologic classification alone has become unfeasible. 
To help reduce variability, validation costs, and standardize the histopathological diag-
nostic process, supervised machine learning models using DNA-methylation data have 
been developed for tumor classification. These methods require large labeled training 
data sets to obtain clinically acceptable classification accuracy. While there is abun-
dant unlabeled epigenetic data across multiple databases, labeling pathology data for 
machine learning models is time-consuming and resource-intensive, especially for rare 
tumor types. Semi-supervised learning (SSL) approaches have been used to maximize 
the utility of labeled and unlabeled data for classification tasks and are effectively 
applied in genomics. SSL methods have not yet been explored with epigenetic data 
nor demonstrated beneficial to central nervous system (CNS) tumor classification.

Results:  This paper explores the application of semi-supervised machine learning on 
methylation data to improve the accuracy of supervised learning models in classifying 
CNS tumors. We comprehensively evaluated 11 SSL methods and developed a novel 
combination approach that included a self-training with editing using support vector 
machine (SETRED-SVM) model and an L2-penalized, multinomial logistic regression 
model to obtain high confidence labels from a few labeled instances. Results across 
eight random forest and neural net models show that the pseudo-labels derived from 
our SSL method can significantly increase prediction accuracy for 82 CNS tumors and 9 
normal controls.

Conclusions:  The proposed combination of semi-supervised technique and multino-
mial logistic regression holds the potential to leverage the abundant publicly avail-
able unlabeled methylation data effectively. Such an approach is highly beneficial in 
providing additional training examples, especially for scarce tumor types, to boost the 
prediction accuracy of supervised models.
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Background
Artificial intelligent (AI) technologies have been widely adopted in the diagnostic pro-
cess of various biomedical disciplines [1–4]. Furthermore, with the advent of high-
throughput technologies such as microarrays and nucleic acid sequencers, the use of 
machine learning and deep learning has also become increasingly indispensable in the 
field of cancer genomics [5–7]. The introduction of these advanced computational meth-
ods has provided many opportunities to improve health care and increase the precision 
of oncologic diagnosis.

A key challenge in medical science is the precise classification of diseases and the 
development of optimal therapies. This is particularly more challenging in classify-
ing brain tumors due to the developmental complexity of the brain. The World Health 
Organization has defined 82 central nervous system (CNS) tumor classes, encompass-
ing a broad spectrum from benign neoplasms, which can be treated by surgery alone, to 
malignant tumors that respond poorly even with aggression adjuvant therapy. With the 
advancement in AI and the abundance of genomic and epigenomic data, methylation-
based classification of human tumors has emerged as an essential diagnostic tool in the 
clinical laboratory. Supervised models have been implemented to assist in diagnosing 
CNS tumors and sarcomas [8, 9].

These initially deployed models are clinically useful but have inherent limitations. 
Constructing optimal supervised models for methylation-based classification in the clin-
ical environment is dependent on having a comprehensive set of labeled “gold standard” 
data for training and validation. Unfortunately, the current reference sets are not entirely 
complete, yielding a significant proportion of unclassifiable tumors [8]. Furthermore, the 
reference cohorts suffer from a considerable class imbalance due to the lack of sufficient 
examples of rare tumor types to train supervised classification models, thus, degrading 
model performance.

To fully leverage methylation profiling and machine learning for tumor classification, 
models should be improved over time by augmenting the training cohorts with addi-
tional labeled reference examples of rare tumors and relabeling samples after additional 
molecular substructures have been identified within known tumor types. In addition, 
with the vast publically available methylation profiling data, model updates would ben-
efit from combining well-characterized data with relevant tumor profiles acquired from 
large public repositories.

Obtaining additional labeled training data for improving CNS tumor classifiers can 
be challenging. Current “gold standard” approaches to sample labeling for methyla-
tion cohorts include a histomorphologic assessment by expert pathologists, orthogonal 
molecular testing, and unsupervised methods such as dimensionality reduction or clus-
ter analysis. However, establishing a ground truth methylation class is difficult for a sub-
set of tumors because they lack defining gene abnormalities or copy number changes. 
Additionally, closely related molecular subgroups within tumor types can be challenging 
to distinguish unbiasedly. Therefore, the cost of time, effort, and additional testing make 
this degree of rigor in labeling infeasible, particularly when applied to large cohorts.

Semi-supervised learning (SSL), an intermediate approach between unsupervised 
(with no labeled training data) and supervised (with only labeled training data) learning, 
is often used when labeling data is not feasible or requires substantial resources [10, 11]. 
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Depending on the objectives, SSL can be divided into classification [12], regression [13], 
or clustering [14]. In this study, our objective is the former, which focuses on enhancing 
supervised classification by minimizing errors in the labeled examples. There are two 
different learning settings in semi-supervised classification: transductive and inductive 
learning. Transductive learning predicts the labels of the unlabeled examples provided 
during the training phase. On the other hand, inductive learning predicts the labels of 
unseen data using the labeled and unlabeled data provided during the training phase 
[12].

Semi-supervised learning methods have shown great success in areas such as image 
recognition and natural language processing [15–19], and it has been applied to a diverse 
set of problems in biomedical science including image classification [20–24] and medi-
cal language processing [25–28]. These methods have been applied to classification tasks 
using image and natural language data, which relies on spatial and semantic structure, 
i.e. the spatial correlations between pixels in images and sequential correlations between 
words in the text. By contrast, healthcare and genomic problems primarily involve high-
dimensional tabular data in which the inherent structures among features are unknown 
and vary across different data sets. Some examples of semisupervised learning appli-
cations in genomic medicine include gene finding, miRNA discovery, predicting gene 
regulatory networks, and survival modeling [12, 29–32]. Although SSL has shown to be 
effective in the genomic field, it has not been explored with epigenetic or methylation 
data from human tumors. Rare applications to brain tumor classification have been lim-
ited to deriving tumor classes from radiologic images [33].

In this study, and in the context of methylation-based CNS classification, we present 
the first application utilizing widely used semi-supervised learning algorithms known as 
“self-training” [34–36] and “co-training” [11, 37] to assign CNS tumors to 91 methyla-
tion subclasses. Our objective focuses on determining how the performance of super-
vised AI models used for CNS tumor classification is affected by the number of “labeled” 
individuals with known methylation classes and “unlabeled” individuals with SSL labels. 
This study demonstrates the efficient enhancement of CNS tumor prediction accuracy 
through the inclusion of patients without histopathological diagnosis labeled via semi-
supervised learning methods. This approach is likely to be more broadly applicable to 
other types of cancer and biomedical data.

Results
Cohort characteristics

As an initial evaluation of SSL on methylation data, we used a cohort of previously pub-
lished training data from a comprehensive brain tumor classification model (GSE90496 
[8]). We applied five different training functions with four different base learners (Addi-
tional file  1: Table  S1). This cohort has several characteristics that make it ideal for 
this task. The cohort includes 2801 labeled tumors comprising 75 methylation families 
(MCF) from tumor and standard brain samples, representing 82 distinct CNS tumor 
methylation subclasses (MC) and nine control groups. The subclasses represent closely 
related molecular groups within individual tumor types, and a comparison of the fam-
ily and subclass labeling performance is a good surrogate for tumor relabeling. We used 
samples from GSE109379 for inductive learning. GSE109379 is a prospective cohort 
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described in [8] consisting of 1,104 patients with given diagnostic categories comprising 
64 different histopathological entities and pediatric cancers.

Semi‑supervised models for evaluation

We evaluated 11 semi-supervised learning models (Additional file  1: Table  S1) using 
five different training techniques, i.e., self-training (SELFT [36]), self-training with edit-
ing (SETRED [34]), self-training nearest-neighbor rule using cut edges (SNNRCE [35]), 
tri-training (TRITRAIN [11]), and democratic co-learning (DEMO [37]). Each train-
ing function used either of these supervised classifiers as the base learner: one nearest 
neighbor (oneNN), decision tree C5.0, and support vector machine (SVM). For SNN-
RCE, oneNN was the fixed built-in learner. For DEMO, all three base learners were used. 
The learner parameters for SVM were C-classification and radial kernel. Euclidian dis-
tances were used for SSL with oneNN base learner.

SSL models performance on tumor family classification

The train and test data for SSL models are depicted in Fig. 1. In our study, the perfor-
mance of each model was summarized and evaluated based on average accuracy, speci-
ficity, precision, and recall after predicting 75 MCFs for 842 (30% of 2801 samples) 
inductive and 986 transductive samples.

All models performed well on transductive and inductive data sets at the family clas-
sification level with an accuracy above 0.84 (Fig. 2A). Training functions with the C5.0 
decision tree as the base learner had the lowest average accuracy (< 0.87) (Fig.  2A) as 
well as precision (< 0.77) and recall (< 0.73) (Fig. 2B). Those with 1NN learners had con-
sistent accuracies above 0.93 (Fig. 2A), while their precision and recall were around 0.92 

Fig. 1  Training and testing scheme for the 11 evaluated SSL models. After preprocessing the GSE90496 
methylation data, probes with a standard deviation greater than 0.3 across all 2,801 samples were selected 
as features used in the 11 SSL models. Thirty percent of the samples were kept aside as an inductive testing 
data set to independently evaluate the performance of each SSL model. The remaining 70% of the data 
was used as training sets. The training data were proportionally partitioned into a labeled and an unlabeled 
set. Specifically, 50% (of the 70%) training data were used as labeled examples, while the remaining 50% 
(of the 70%) data were used as unlabeled examples or as a transductive test set. The partitioning process 
was bootstrapped seven times. Each molecular methylation group was proportionally selected for every 
bootstrap to ensure that the class distributions were similar to the original class distributions
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Fig. 2  Box plots summarizing SSL performance of 11 SSL models for predicting 75 methylation class families 
(MCF) of inductive and transductive testing data. A Accuracy; B Precision and recall; C Specificity across all 
models. Box plots showing the results of all 7 bootstraps. Asterisks represent the outliers. 1NN–pink; combine 
of 1NN/SVM/C5.0–green; C5.0–cyan; and SVM–purple
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and 0.87, respectively (Fig. 2B). Among the 11 models, SETRED with SVM base learner 
performed the best with mean accuracy above 0.95 (Fig. 2A), precision greater than 0.96, 
and recall above 0.91 (Fig. 2B). In addition, all models had very high specificity (above 
0.99), suggesting that SSL could identify true negative at a high rate (Fig. 2C).

SSL models performance on tumor subclass classification

The performance of the 11 SSL models was also assessed based on their prediction of 
91 methylation subclasses (MC). Figure  3 shows the prediction of the inductive and 
transductive data sets for each training function combined with different supervised-
based learners. Similar to the methylation family classification, training function with 
1NN and SVM (accuracy > 91%, precision > 91%, and recall > 83%) performed better 
than those with C5.0 decision tree (accuracy ranges from 83 to 86%, precision ranges 
from 70 to 76%, and recall ranges from 66 to 84%) (Fig. 3A and 3B). Among the 11 SSL 
models, SETRED with SVM base learner performed the best with accuracy ~ 97%, preci-
sion > 96%, and recall > 91% for inductive and transductive testing (Fig. 3A, B). All mod-
els had specificity at around 99% (Fig. 3C).

Obtaining high confidence scores from the best SSL model

After evaluating 11 SSL models, SETRED-SVM yielded the highest accuracy, precision, 
and recall and was chosen as an application model for further analysis. SETRED-SVM 
also produced the biggest AUC for methylation class and family prediction (AUC = 0.73 
and 0.94, respectively) (Additional file 1: Fig. S1A-B). This model assigned a predicted 
score to each of the 91 classes for each sample, resulting in an aggregated raw score 
(Fig. 4A). To obtain class probability estimates that can measure the confidence in the 
class assignment, we fitted a multinomial logistic regression calibration model to the raw 
scores. This calibration process produced calibrated scores that allowed us to compare 
between classes despite differences in raw score distributions (Fig. 4B).

Receiver operating characteristic (ROC) curve analysis of the maximum raw and cali-
brated scores demonstrated that calibration improved the area under the curve (AUC) 
from 0.73 to 0.855 for predicting 91 methylation classes (Fig.  5A). To obtain a cutoff 
score with high confidence for predicting a matching class, we performed a threshold 
analysis that utilized maximization of the Youden Index (balanced between sensitivity 
and specificity) [38]. The analysis suggested a threshold of 0.8 for MC calibrated scores 
with a specificity of 78.3%, sensitivity of 79.5%, and precision of 98.8% (Fig. 5B). ROC 
analysis of SETRED-SVM and the other models using raw and calibrated scores are 
shown in Additional file 1: Fig. S1A-B. The specificity and sensitivity of SETRED-SVM 
for predicting methylation family at threshold 0.8 were 95.9% and 79.8%, respectively 
(Additional file 1: Fig. S1C).

Effect of supervised classification model performance after augmenting training data 

with semi‑supervised labeled data

To demonstrate the utility of our labeling method, we tested whether adding sam-
ples labeled using SSL would improve the performance of supervised random forest 
(RF) and neural net (NN) classification models. First, we built baseline models with 
35% data from GSE90496. Then, we trained the baseline models with additional SSL 



Page 7 of 17Tran et al. BMC Bioinformatics          (2022) 23:223 	

Fig. 3  Box plots summarizing SSL performance of 11 SSL models for predicting 91 methylation subclasses 
(MC) of inductive and transductive testing data. A Accuracy; B Precision and recall; C Specificity across all 
models. Box plots showing the results of all 7 bootstraps. Asterisks represent the outliers. 1NN–pink; combine 
of 1NN/SVM/C5.0–green; C5.0–cyan; and SVM–purple
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pseudo-labels from the remaining 35% GSE90496 and the 1104 GSE109379 samples 
(Additional file 1: Fig. S2). Compared to the baseline model, all RF models showed a 
statistically significant increase in balanced accuracy (up to 7%), while the NN mod-
els showed a significant increased in balanced accuracy (0.7%) when only high con-
fidence MCF labels were included (Fig. 6A). Overall, the NN model yielded a much 
higher balanced accuracy (92.9% and 97.5%) compared to the RF classifier (70.9% 
and 72.3%) at predicting methylation subclass and family, respectively (Fig. 6 and 7). 
Unlike the RF classifier, the performance of the NN on the hold-out test set appeared 
to be very robust (Fig. 6A and 7A). The RF prediction accuracy on the hold-out test 
set closely resembled its cross-validation performance. In contrast, the accuracy of 

Fig. 4  Distributions of SETRED-SVM predicted scores for 91 methylation classes. A Before calibration B After 
calibration for correctly classifiable (true positive) cases

Fig. 5  ROC and threshold analysis of SETRED-SVM model for classifiable and non-classifiable methylation 
subclass (MC) cases. A ROC analysis of maximal raw (red) and maximal calibrated (blue) predicted scores with 
the area under the curve (AUC) and the corresponding specificity and sensitivity that maximized the Youden 
Index. B Specificity, sensitivity (recall), and precision at different thresholds using calibrated scores. The black 
vertical line represents the suggested threshold (≥ 0.8) at which we had the best balance between sensitivity 
and specificity using calibrated scores
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the NN appeared to be unchanged regardless of its cross-validation performance for 
both subclass and family levels (Fig. 6A and 7A).

To further understand how the quality of semi-supervised labels affects the supervised 
classifiers, we have defined labels predicted by SETRED-SVM with calibrated scores 
above the thresholds as high confident (HC) while the remaining would be considered 
as low confident (LC) SS labels. The numbers and their corresponding proportions to 
the referent labeled samples were categorized into low frequency (< 10 samples per 
group, LF-green bars), high frequency (3 10 samples per group, HF-red bars), as shown 
in Fig. 6B and 7B. We observed that adding more data to the original training data set 

Fig. 6  Prediction performance of random forest (RF) and neural net (NN) classifiers at family level when 
trained with different combination of reference samples and semi-supervised (SS) predicted labeled samples. 
A Balanced accuracy of RF and NN. B Proportion (left panel) and count (right panel) of high (≥ 10 samples, 
red) and low (< 10 samples, green) frequency referent labels, high confident (HC) SS labels with high 
frequency (blue) and low frequency (orange) families, and low confident (LC) SS labels in high frequency 
(yellow) and low frequency families (purple). Asterisks indicate statistically significant difference performed by 
Tukey Honest Significant Difference test at 0.05 alpha level
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showed a statistically significant improvement in the performance of the RF classifier 
(Fig. 6A and 7A). NN performance showed statistically significant improvement in the 
presence of high confident SS labels only, while its accuracy significantly decreased in 
the addition of only low confident data. This suggests that NN was more sensitive to 
the data quality than the RF classifier. In conclusion, semi-supervised labels improved 
the prediction of both RF and NN classifiers. The NN classifier had a higher accuracy 

Fig. 7  Prediction performance of random forest (RF) and neural net (NN) classifiers at sub-class level when 
trained with different combination of reference samples and semi-supervised (SS) predicted labeled samples. 
A Balanced accuracy of RF and NN. B Proportion (left panel) and count (right panel) of high (≥ 10 samples, 
red) and low (< 10 samples; green) frequency referent labels, high confident (calibrated SSL scores ≥ 0.8, HC) 
SS labels with high frequency (blue) and low frequency (orange) subclasses, and low confident (calibrated 
SSL scores < 0.8, LC) SS labels in high frequency (yellow) and low frequency (purple) subclasses. Asterisks 
indicate statistically significant difference performed by Tukey Honest Significant Difference test at 0.05 alpha 
level
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prediction; however, its performance was more sensitive to low confident labels than the 
RF classifier.

Discussion and conclusions
This study demonstrates that semi-supervised (SS) learning is a valuable and efficient 
approach to label or relabel large cohorts of unclassified samples using their DNA-meth-
ylation profiles. Further, we show that the pseudo-labels from an SSL model can effec-
tively be utilized during training to improve the performance of supervised classification 
models. This approach substantially reduces the subjectivity and effort from domain 
experts associated with class label generation.

Among the 11 SSL models (Additional file  1: Table  S1) evaluated, SETRED-SVM, a 
data editing method using support vector machine as the base learner, outperformed 
other models for labeling methylation family or subclass. SETRED utilizes an active-
learning-like technique to identify and remove mislabeled examples from the self-
labeled data and has been demonstrated to be robust to noise in self-labeled data [34]. 
While this is the first instance of SSL being applied to methylation array data, other 
investigators have also found SETRED to perform well in other biomedical SSL tasks 
such as biomedical image classification [39].

When using SSL methods to label data, one concern is the potential to spuriously label 
out-of-distribution samples with one of the provided seed labels [40]. Implementation 
of SSL for clinical classification tasks likely will require concomitant sample distribu-
tion analysis. In our instance, we calibrated the SETRED-SVM predictive scores using 
a multinomial logistic calibration model. The logistic model produced probability esti-
mates that could be used to assess the confidence in class assignment. This approach was 
previously adapted to calibrate the RF classification scores for methylation-based brain 
tumor classification [8]. We showed that this step is critical in creating a high-quality 
data set for subsequent supervised classifier training. Receiver operating characteristic 
(ROC) curve analysis of SETRED-SVM maximum raw and calibrated scores demon-
strated that calibration improved the area under the curve (AUC) from 0.73 to 0.855, 
respectively (Fig. 5A). The RF and NN classifiers showed significant degradation when 
low-confidence samples were utilized for training, even with a substantial increase in 
overall samples (Fig. 6 and 7).

One problem with the chosen method of distribution analysis was it yielded relatively 
low scores for tumors with very low representation (< 10 samples) among the seed labels. 
For instance, tumor classes such as pituitary adenoma, prolactin (PITAD, PRL) and 
low-grade glioma, desmoplastic infantile astrocytoma/ganglioglioma (LGG, DIG/DIA), 
which had representation from only eight tumors per methylation class, each failed to 
produce high-confidence pseudo-labeled tumors (Additional file 1: Figs. S3 and S4). We 
suspect that polynomial regression models may show better performance in determin-
ing the class confidence from under-represented tumor classes because they are more 
suitable for high-dimensional data [41] and provide plausible results for small sample 
size data (< 8) [42].

In this study, we evaluated 11 classical SSL models and found that they are highly effec-
tive for labeling CNS tumors using DNA-methylation profiles. Our findings prove that 
our approach is useful for our task; however, as our implementation utilized relatively 
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simple models, future studies could explore whether more recent and state-of-the-art 
SSL approaches offer additional advantages. For instance, the semi-supervised classifica-
tion with extensive knowledge exploitation (SSC-EKE) [43] and a systematic self- and 
semi-supervised learning framework, value imputation and mask estimation (VIME) 
[44] have demonstrated exemplary performance when applied to alternative tasks. SSC-
EKE can minimize the empirical risk and control the model smoothness by extensive use 
of the knowledge embedded in the entire training data, regardless of the label availabil-
ity, to construct the unbiased approximation of the true data manifold. SSC-EKE then 
facilitates the unbiased pairwise constraints to the graph Laplacian from known data 
labels with high confidence [43]. VIME includes a novel pretext task of estimating mask 
vectors from corrupted tabular data and a data augmentation step with a pre-trained 
encoder [44]. VIME has been shown to outperform ElasticNet [45], Context Encoder 
[46], and MixUp [47] when predicting six different blood cell traits of 300,000 samples 
using single nucleotide polymorphism (SNPs) information of 1,000 to 100,000 labeled 
samples [44].

In our supervised analysis, the RF and NN classifiers demonstrated variability in per-
formance when using pseudo-labeled samples. While both models benefited from the 
additional SS labeled data, the NN had at least 20% higher accuracy in all models com-
pared to the respective RF models. As our models utilized a significantly reduced set of 
samples compared to the entire training set described by Capper et al. [8], our findings 
likely reflect the NN classifier’s ability to learn with fewer total examples per class even 
at baseline. Notably, the RF models appeared less sensitive to noisy data in the train-
ing set, whereas the NN models showed degradation from baseline with only low-confi-
dence pseudo labels.

Overall, our analysis shows that SSL can be used to label or relabel methylation array 
samples for clinical diagnostics. In the clinical environment, this approach may be help-
ful to (1) improve the performance of supervised classifiers by utilizing public methyla-
tion data, (2) provide ground truth labels for validation purposes when other traditional 
approaches appear to be more costly, or (3) modify labels after more granular classifica-
tion schemes are introduced.

Methods
Processing methylation data

All semi-supervised models were trained on genome-wide DNA methylation data from 
the CNS tumor reference cohort (GSE90496), consisting of 2,801 samples from 75 meth-
ylation class families (MCF), which include 91 methylation subclasses (MC) [8]. All 
methylation data, including those from GSE90496 and GSE109379, were processed in 
R (http://​www.r-​proje​ct.​org, version 4.0.2), using several packages from Bioconductor 
and other repositories. Specifically, array data were preprocessed using the minfi pack-
age (v.1.36.0) [48]. Background correction with dye-bias normalization was performed 
for all samples using noob (normal-exponential out-of-band) with a “single” dye method 
[49] with preprocessFunNorm. Probe filtering was performed after normalization. Spe-
cifically, probes located on sex chromosomes containing a nucleotide polymorphism 
(dbSNP132 Common) within five base pairs of and including the targeted CpG-site 
or mapping to multiple sites on hg19 (allowing for one mismatch), and cross-reactive 

http://www.r-project.org
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probes were removed from the analysis. After the filtering process, 438,370 probes 
remained.

Training and validation of semi‑supervised learning (SSL) models

The ssc R package (v2.1–0) [50] was used to build and train SSL models. First, the stand-
ard deviation for each probe across all 2,801 samples from GSE90496 was calculated. 
Input features for SSL models were the 5072 probes with a standard deviation greater 
than 0.3. The train and test data for SSL models are depicted in Fig. 1. Briefly, 30% of 
DNA methylation data from GSE90496 were kept aside as an inductive testing data set 
to independently evaluate the performance of each SSL model. The remaining 70% of the 
data was used as a training set. The training data were proportionally partitioned into a 
labeled and an unlabeled set. Specifically, 50% of the training data were used as labeled 
examples, while the remaining 50% (of the 70%) were used as unlabeled examples or as 
a transductive testing set. The partitioning process was bootstrapped seven times. Each 
MC or MCF was proportionally sampled for every bootstrap to ensure that the class dis-
tributions were similar to the original class distributions.

Performance metrics

After predicting MC and MCF for both transductive and inductive testing sets, the 
one-vs-all multiclass performance for each model was evaluated based on the average 
accuracy, specificity, precision, and recall of all splits. A model with the highest balanced 
accuracy, specificity, precision, and recall in both testing data sets was selected as the 
final model for performing threshold analysis and prediction for GSE109379 samples. 
Balanced accuracy was used to compare performance across models as it is a better 
judge in the imbalanced class setting, in which some tumor classes are a lot rarer than 
others and have much smaller sample sizes (< 10 samples in a group) (Additional file 1: 
Figs. S3 and S4). Balanced accuracy is insensitive to imbalanced class distribution, and 
it gives more weight to the instances coming from minority classes. On the other hand, 
accuracy treats all instances alike and usually favors the majority class [51]. First, recall 
for the algorithm on each class was computed, then the arithmetic mean of these values 
was calculated to find the final balanced accuracy score. It is "balanced" because each 
class is represented by its recall; thus, it has the same weight and importance, regardless 
of its size [52].

Semi‑supervised classifier score calibration

Distributions of the scores generated from the best semi-supervised model (SETRED-
SVM) varied between classes, making inter-class comparisons difficult. Furthermore, 
these scores appeared to spread widely from 0 to 1 when they were used to assign the 
correct class labels (Fig.  4A), suggesting that they do not reflect well-calibrated class 
probabilities or certainties of predictions. To have comparable scores among classes 
and better estimates of the confidence of individual predictions, we performed a cali-
bration process using an L2-penalized, multinomial, logistic regression model described 
in Capper et  al. [8]. The model was fitted with the methylation class as the response 
variable and the transductive prediction scores as explanatory variables using the glm-
net (v.4.1–2) R package [53]. The penalization parameter was determined by running 
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tenfold cross-validation, and the λ that gave the minimum mean cross-validated error 
was chosen.

Threshold analysis

Finding an optimal cutoff for diagnostic tests is usually necessary to maintain confidence 
in clinical settings. For example, in brain tumor classification, the cost of false negatives 
(i.e., a tumor cannot be classified) is usually more tolerable than the cost of false posi-
tives (i.e., a tumor is falsely predicted to a methylation class). As such, high specificity 
(high true negative rate) is preferable. If there are no preferences regarding specificity 
and sensitivity, the optimal cutoff can be chosen by maximizing the Youden Index (spec-
ificity + sensitivity − 1) [38].

In this study, the goal was to demonstrate the utility of SSL in improving a super-
vised classifier performance; hence, no specific metric was preferred. To find a common 
cutoff for all MC/MCF, ROC analysis [54] was performed, and the optimal cutoff was 
chosen by maximizing the Youden Index (balance between specificity and sensitivity). 
Since ROC analysis is usually designed for binary classification problems, we converted 
the multiclassification problem here into a binary problem so that a common threshold 
could be defined for all classes instead of having 91 individual thresholds for 91 methyla-
tion classes. Based on the maximal calibrated MC/MCF scores, a binary classification 
problem was defined as follows: samples that were correctly classified at these scores 
were considered "classifiable," while samples that were incorrectly classified were consid-
ered “non-classifiable”. Under this definition, an optimal threshold (≥ 0.8) was selected, 
and the area under the curve (AUC) [55], specificity, sensitivity, and precision were eval-
uated using the pROC (v. 1.17.0.1) [56] and ROCR (v.1.0–11) [57] R packages.

Training and testing supervised and deep learning classifiers

A random forest (RF) and a neural net (NN) classifier were built using the python 
scikit-learn [58] and keras [59] libraries. The NN was constructed as a sequential 
model with three dense layers. The first and second layers contained 1000 and 500 
units, respectively, with a he_uniform kernel initializer and relu activation function. 
The last layer consisted of a softmax layer mapping to either 75 methylation families 
or 91 subclasses. NN models were fit with a batch size of 6 and 20 epochs. Addi-
tional file 1: Fig. S2 showed the four combinations of training and test sets that were 
used to build eight supervised models and provided a schematic view of the training 
and testing process for the supervised models. Briefly, 30% of GSE90496 samples (841 
samples), representing the inductive test set for the SSL models, were held out as an 
independent test set for each RF model. The first RF model was trained with the same 
35% GSE90496 data (labeled samples used during the training of the best SETRED-
SVM classifier). This model is referred to as the baseline model for evaluating SSL 
pseudo labels. All other RF models were trained using additional SSL labels from 
the 35% remaining GSE90496 samples plus SSL labels from the GSE109379 samples 
with or without threshold constraints. Balanced accuracy and weighted recall were 
computed for each RF after five repeated stratified threefold cross-validation and 
after predicting the labels of the inductive testing set at random_state = 123,456. The 
70–30 split was resampled seven times to create seven independent hold-out test sets 
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to better estimate the accuracy and errors of the supervised models. To address the 
imbalanced problem in the input data set during training, we computed the weight 
for each class and sample according to its corresponding class weight with the ‘bal-
anced’ parameter in the compute_class_weight and compute_sample_weight func-
tions within scikit-learn.
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