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Abstract

Aberrant activation of the three-amino-acid-loop extension (TALE) homeobox gene MEIS1 
shortens the latency and accelerates the onset and progression of acute leukemia, yet the molecular 

mechanism underlying persistent activation of the MEIS1 gene in leukemia remains poorly 

understood. Here we used a combined comparative genomics analysis and an in vivo transgenic 

zebrafish assay to identify 6 regulatory DNA elements that are able to direct GFP expression in a 

spatiotemporal manner during zebrafish embryonic hematopoiesis. Analysis of chromatin 

characteristics and regulatory signatures suggest that many of these predicted elements are 

potential enhancers in mammalian hematopoiesis. Strikingly, one of the enhancer elements (E9) is 

a frequent integration site in retroviral induced mouse acute leukemia. The genomic region 

corresponding to enhancer E9 is differentially marked by H3K4 mono-methylation and H3K27 
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acetylation, hallmarks of active enhancers, in multiple leukemia cell lines. Decreased enrichment 

of these histone marks is associated with downregulation of MEIS1 expression during 

hematopoietic differentiation. Furthermore, MEIS1/HOXA9 transactivate this enhancer via a 

conserved binding motif in vitro, and participate in an autoregulatory loop that modulates MEIS1 
expression in vivo. Our results suggest that an intronic enhancer regulates the expression of 

MEIS1 in hematopoiesis and contributes to its aberrant expression in acute leukemia.
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Introduction

The Myeloid Ectropic viral Integration Site 1(MEIS1) gene was first identified as a common 

retroviral integration site in BXH-2 leukemic mice [1]. It encodes a homeodomain-

containing transcription factor belonging to the three-amino-acid loop extension (TALE) 

superfamily. As a cofactor of HOXA family members and PBX1, MEIS1 is critical for the 

development of hematopoietic cells and many other tissues including the central nervous 

system, vasculature, lung, and eye[2–4]. During normal hematopoiesis, the expression of the 

MEIS1 gene is tightly controlled. MEIS1 shows lineage and developmental stage specific 

expression, with high levels observed in hematopoietic stem cells and early progenitor cells. 

MEIS1 expression downregulates in later stages of hematopoietic development [5]. Meis1 
knock out mice die by embryonic day 12.5 to 14.5 due to the lack of megakaryocytes [2].

In addition to its role in normal hematopoiesis, MEIS1 is critical to leukemogenesis. In acute 

leukemia patients, persistent overexpression of MEIS1 has been consistently observed[6–

10]. The level of MEIS1 expression is inversely correlated with prognosis in human acute 

myeloid leukemia [11, 12]. Furthermore, it has been reported that overexpression of Meis1 
correlated with shorter latency and accelerated progression in various leukemogenic models, 

such as mouse MLL-associated leukemia models [13] [14], leukemogenic cells with 

NUP98-HOX translocations[15], and CD34+ NPM1-mutated acute myeloid leukemia cells 

hoho[16]. Downregulation of MEIS1 in MLL-rearranged leukemia cell lines resulted in 

decreased proliferation as well as transcriptional repression of cell cycle entry related genes 

[8, 17, 18]. Despite the essential role of MEIS1 overexpression in acute leukemia, the 

molecular mechanism underlying persistent activation of the MEIS1 gene in leukemia 

remains poorly understood.

Cellular gene expression is critically determined by DNA regulatory elements, sequence-

specific transcription factors, as well as chromatin modifications. The human MEIS1 gene is 

located on chromosome 2p13-2p14 and spans approximately 1300 Kb in length[19]. The 

strict temporal and spatial pattern of MEIS1 expression suggests that it is under the tight 

control of cis-regulatory sequences. The Meis1 promoter is regulated by ELF1 and CREB 

[20] [21]. In hematopoietic stem cells, the expression of MEIS1 gene is under the 

combinatorial control of multiple hematopoietic transcription factors. The binding of those 

factors is not limited to the promoter region and is distributed along the MEIS1 locus [22]. 
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These data suggest that hematopoietic specific regulatory elements may exist in the MEIS1 
locus. We therefore sought to determine the genetic and epigenetic mechanisms involved in 

the persistent expression of MEIS1 in leukemogenesis.

In this study, we report the systematic identification of distal enhancer sequences in the 

1300Kb genomic region of the MEIS1 locus. Traditionally, labor-intensive and time-

consuming techniques have been employed to hunt for distal regulatory elements. 

Comparative genomic strategies are based on the concept that sequences important for gene 

regulation are conserved throughout evolution [23]. When coupled with appropriate 

functional tests, this genomic strategy has proved to be a powerful approach for systematic 

discovery of enhancer sequences [24]. Using a combined comparative genomic and 

molecular characterization strategy, we identified 6 regulatory elements in the MEIS1 locus. 

These elements contributed to tissue specific gene expression of normal hematopoiesis/

vasculogenesis in a zebrafish reporter assay. One of those 6 elements, designated “E9”, 

corresponds to a common retroviral integration site in retrovirus-induced mouse leukemia 

models. We demonstrate that increased levels of histone H3K4 mono-methylation 

(H3K4me1) and H3K27 acetylation (H3K27ac) at this intronic E9 region are associated with 

active MEIS1 expression in multiple human leukemic cell lines. In an inducible MLL-ENL 

leukemia system, the levels of those histone marks diminish when the expression of MEIS1 
is downregulated during cellular differentiation. Finally, we show that HOXA9 and MEIS1 

directly bind to a conserved binding motif in the E9 region. Knock-down of HOXA9 in 

THP1 cells results in downregulation of the MEIS1 gene. These studies suggest that 

expression of MEIS1 can be driven by an autoregulatory loop mediated through a distal 

intronic enhancer.

Material and Methods

Analysis of sequence conservation

Human, mouse, rat, fugu, zebrafish, and tetraodon sequences were downloaded from the 

UCSC Genome Bioinformatics (http://genome.ucsc.edu). Based on the human May 2004 

assembly hg17, the coordinates for the analyzed MEIS1 human locus are: 

chr2:66,223,424-67,536,101. This region spans 1,312,678 bp and includes all the MEIS1 
exons and introns, as well as the entire intergenic region on each side of the gene.

We aligned the human MEIS1 locus to its orthologs in mouse, rat, fugu, zebrafish, and 

tetraodon using MLAGAN [25]. Aligned sequences were scanned for statistically significant 

evolutionarily conserved regions using Gumby [26]. We performed human-fish (human-

fugu-zebrafish-tetraodon) and human-mouse-rat comparisons, and selected top ranked 

elements from each analysis. Conserved non-coding sequences were also identified based on 

significant conservation in an alignment of 17 vertebrate genomes [27]. Selection of 14 

potential regulatory sequences tested in the transgenic zebrafish assay was based on 

prediction by more than one analysis.
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Reporter gene assay in Transgenic zebrafish

The transgenic zebrafish system were based on the Tol2 transposon [28]. Corresponding 

human sequences of predicted enhancer elements (Figure 1 and Supplemental Table S1) 

were individually cloned. Each PCR product was recombined first into the pDONR221 

vector, and then into pXIG_cfos_GW, using Gateway reagents (Invitrogen).

Approximately 100 fertilized eggs were injected for each reporter gene construct. The 

transparent embryos were then examined by fluorescence microscopy for GFP expression at 

the hematopoiesis sites of both posterior lateral mesoderm (PLM) and anterior lateral 

mesoderm (ALM) over a time period of 3 days. A functional enhancer should exhibit an 

expression pattern consistent across more than 35% of embryos.

Cell isolation and antibody staining

HSPC cells were isolated as described [29]. In brief, bone marrow cells from femurs of 4-

week-old C57/BL6 mice were incubated with the mouse Lineage Cell Depletion Kit 

(Miltenyi Biotec, 130-090-858) to obtain Lin− cells. To isolate HSPC cells which are Lin−, 

c-Kit+, and CD34+, Lin− cells were stained with an APC-conjugated anti–c-Kit antibody 

(clone 2B8) and a FITC-conjugated anti-CD34 antibody.

Cell culture

Leukemic cell lines were maintained in RPMI 1640 (Gibco, USA) with 10% fetal bovine 

serum (Hyclone, USA). Two clones of MLL-ENL inducible cell line (csh2 and csh3) were 

cultured in the presence of IL-3 (10 ng/mL), IL-6 (10 ng/mL), GM-CSF (10 ng/mL), SCF 

(100 ng/mL) [30].

Chromatin immunoprecipitation (ChIP)

The ChIP was performed as described [31]. Antibodies used were as follows, anti HOXA9 

(Upstate, 07-178), anti-MEIS1 (Santa Cruz, CA sc-10599x), anti H3K4me1 (Abcam, 

ab8895), anti H3K4me3 (Upstate, 07-473), H3K27ac3 (Abcam, ab4729) and rabbit IgG 

(Santa Cruz, CA sc2027).

The amount of purified DNA was measured using the PicoGreen system (Molecular Probes, 

Oregon), and was subjected to PCR using the Applied Biosystems SYBR Green Master mix. 

The results are shown as fold enrichment of ChIP DNA over input DNA. Primers are listed 

in Supplemental Table S3.

Transient transfection and luciferase reporter assay

The human promoter was cloned in the proper orientation upstream of the luciferase cDNA 

in the pGL3 Basic construct (Promega, Madison, WI, USA). The enhancer elements were 

PCR cloned into polylinker sites upstream of the promoter. Site-specific point mutations and 

deletions were introduced into the element E9 using QuickChangeII site-directed 

mutagenesis kit (Stratagene, La Jolla, CA, USA). The sequences were confirmed by 

sequencing (Supplemental Table S2).
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The cells were grown in 12-well plates and transfected using Fugene (Roche Molecular 

Biochemicals, USA) following the manufacturer’s protocol. Activity of luciferase and β-

galactosidase was measured using the Luciferase Assay System (Promega) and galacto-

Light Plus (Applied Biosystems), respectively. Luciferase activity for each sample was 

normalized to the β-galactosidase assay control. Transfections were carried out in 

duplicates. All experiments are representative of at least three independent transfections.

siRNA knockdown experiments

HOXA9 siRNA (Sigma) was transfected into THP1 cells with Fugene HD transfection kit 

(Roche). At 24 hrs after transfection, the total RNA was extracted by TRIZOL, and treated 

with DNaseI Turbo kit (Ambion, AM1907). The cDNA was then obtained by reverse 

transcription (Promega A3500) and real-time PCR was performed. The gene expression 

level was normalized with the expression of the PGK1 gene.

Results

Multiple hematopoietic regulatory elements in the MEIS1 gene locus identified by 
combined comparative-genomic analysis and functional assay

Based on the temporal and spatial expression pattern of MEIS1 during embryonic and adult 

hematopoiesis, we hypothesized that distal enhancer sequences are needed to control the 

expression of MEIS1. Comparative sequence analysis of the human MEIS1 locus showed 

that the evolutionary conservation of MEIS1 is not limited to exons, but also introns and 

adjacent downstream and upstream regions. To predict putative enhancer elements, we 

employed bioinformatic analytical tools including VISTA [32], GUMBY[26], PReMod [33] 

and ECR [34] (Supplemental Table S1), to scan the 1,312,678 bp MEIS1 locus. This 

scanned region includes all the MEIS1 exons and introns, as well as the entire intergenic 

region on each side of the gene. We identified 14 non-coding DNA elements that are 

conserved in vertebrate species at varying evolutionary distance, from 75 million years in 

rodents to 450 million years in zebrafish (See Methods and Supplemental Table S1, Figure 

1A, element 1 to 14). These sequences also contain clusters of binding sites for multiple 

transcription factors (data not shown), a sequence characteristic of regulatory modules [33] 

[35]. While 5 of these DNA sequences are located in the intronic regions of the gene, the 

remaining 9 elements were found at the intergenic regions between MEIS1 and its 

neighboring genes (Figure 1A). Among these conserved regions, element E6 has nervous 

system associated enhancer activity in a transgenic zebrafish system [36]; and element E13 

has been reported to exhibit hindbrain specific enhancer activity in a transgenic mouse 

model (element 831 of the VISTA enhancer browser at http://pipeline.lbl.gov/cgi-bin/

gateway2).

Using a transgenic zebrafish system [28], we tested the ability of the 14 predicted regulatory 

sequence elements to drive GFP reporter gene expression in vivo. The corresponding human 

sequence of predicted enhancer elements (Supplemental Table S1) were individually cloned 

upstream of the minimal c-fos promoter of the reporter gene construct, and then injected into 

fertilized zebrafish eggs. With a minimal c-fos promoter, the GFP reporter gene showed no 

expression in developing embryos of transgenic zebrafish (Figure 1B). When cloned 
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upstream of the minimal promoter, 6 out of 14 predicted regulatory elements showed 

hematopoietic specific gene activating activity in this in vivo transgenic zebrafish assay 

(Supplemental Table S1). The posterior lateral mesoderm (PLM) and anterior lateral 

mesoderm (ALM) are major sites of zebrafish embryonic blood development (Figure 1B). In 

our transgenic zebrafish system, the corresponding human sequence of E6 and E14 were 

able to drive GFP expression at ALM, elements E5, E7, E9 were able to drive GFP 

expression at PLM, and E8 element was able to drive GFP expression at both PLM and 

ALM at 24 hours post fertilization (Figure 1B, Supplemental Table S1). Thirty-eight out of 

95 (39%) of fertilized zebrafish eggs injected with the E9 reporter gene, and 41%, 38%, 

39%, 66%, 40% for E5, E6, E7, E8, and E14, respectively, consistently exhibited the same 

pattern of restricted GFP expression (Figure 1B). In addition, elements E6 and E9 were able 

to drive GFP expression in the heart. The transgenic zebrafish results suggest that these 

distal regulatory elements may contribute to hematopoietic expression of MEIS1 [5].

We further explored whether the enhancer elements identified in zebrafish reporter assay are 

active during mammalian hematopoiesis. Regulatory DNA elements such as enhancers and 

promoters are marked by distinct histone modification patterns, and show characteristic of 

open chromatin structure in the mammalian genome. H3K4me1 is commonly identified at 

both active and poised enhancer regions [23, 37, 38], and H3K27ac is frequently enriched at 

both active enhancers and promoters [39, 40]. We employed chromatin immunoprecipitation 

(ChIP) assay to determine the levels of acetylated H3K27 in primary mouse hematopoietic 

stem and progenitor cells (HSPCs) in which MEIS1 is actively expressed.

We isolated Lin- CD34+ c-kit+ hematopoietic stem and progenitor cells (HSPC), a 

combination of hematopoietic stem cells (HSC), common myeloid progenitors (CMP) and 

granulocyte/monocyte lineage progenitor (GMP) cells, from C57/BL6 mouse bone marrows 

by FACS sorting (Figure 2A). The sorted population had high c-kit mRNA expression, 

lacked expression of Gr-1, a marker for differentiated mature myeloid cells (Figure 2B). The 

ChIP results showed that the active histone mark H3K27ac was significantly enriched at 

genomic regions corresponding to enhancer elements E6 and E9, as well as the MEIS1 
promoter (Figure 2C), suggesting that those regulatory sequences may play a role in 

regulating MEIS1 expression in primary murine HSPCs.

The enhancer E9 region is a frequent retroviral integration site in mouse leukemia models 
and is specifically marked by active histone modifications in MEIS1-expressing leukemic 
cells

To better understand the molecular mechanism in disregulated MEIS1 expression, we 

examined whether any of the enhancers identified may be involved in leukemeogenesis. In 

mouse leukemia models, the Meis1 locus harbors frequent retrovirus intergration sites which 

result in overexpression of Meis1 leading to the development of AML. The genomic location 

of an active enhancer possesses an open chromatin structure which often renders the region 

susceptible to retroviral integration. Upregulation of the affected gene may result from 

strong regulatory element carried by the retrovirus [41]. A search in the Retrovirus Tagged 

Cancer Gene Database (RTCGD) (http://variation.osu.edu/rtcgd/) [42] revealed 12 mouse 

clones that carry proviral insertions interrupting introns or exons of Meis1. Strikingly, these 
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viral integration events formed two distinct clusters along the MEIS1 locus. In addition to an 

integration hot spot at the promoter region, 3 out 12 of the viral integrations occurred at the 

genomic sequence corresponding to enhancer E9 region (Figure 3A). Among them, the 

retroviral integration sites of clone NUP53LD PCR and 403_4_9 are located within the 

enhancer E9, whereas clone 73_4_4 is only 52bp away from enhancer E9. In contrast, none 

of the remaining 13 predicted putative enhancers harbored retroviral integration sites. A 

survey of the UCSC genomic browser indicates a high level enrichment of H3K4me1, 

H3K27ac3, and presence of DNaseI hypersensitive site (HS) at the E9 region in H1-hESC, 

K562, and GM12878 cells (Figure 3A). Altogether, these data suggest that enhancer E9 may 

be functional in mammalian hematopoiesis and is likely involved in retrovirus-induced 

leukemogenesis. We therefore focused subsequent analysis on this regulatory element.

To explore whether enhancer element E9 is active in human leukemias, we determined the 

level of mono- methylated H3K4, a hallmark of distal enhancers [39], in patient-derived 

leukemia cell lines. In MEIS1-expressing THP-1 cells, the genomic region of enhancer E9 

was marked by extensive mono-methylation of H3K4 (Fig. 3B). In contrast, no enrichment 

of H3K4me1 was observed in HL-60 cells, which have a low level of MEIS1 mRNA. We did 

not detect significant level of H3K4me1 in the genomic regions corresponding to the other 5 

identified enhancers (data not shown). MEIS1 is expressed at high levels in certain subtypes 

of AML patients. We further selected a panel of leukemic cell lines that exhibit varied levels 

of MEIS1 expression and examined the enhancer E9 region for the presence of H3K4me1. 

We found that the presence of H3K4 monomethylation is associated with the active 

expression of MEIS1 (Figure 3C). Comparing to leukemia cell line HL60, the level of 

H3K4me1 enrichment is significantly high in cells harboring MLL fusion proteins (THP1, 

RS4;11, and ML-2). U937 cells, which carry the CALM-AF10 fusion gene, also exhibit a 

high level of H3K4me1 (Figure 3C).

Considering the developmental stage-specific expression of MEIS1, we sought to determine 

the chromatin characteristics of enhancer E9 during induced differentiation of leukemic 

cells. We employed a murine Meis1-expressing myeloblast cell line, which harbors an 

oncogenic MLL-ENL gene that can be induced to terminal differentiation upon inactivation 

of the MLL-ENL fusion protein [43][44]. Consistent with reports that the level of Meis1 is 

down-regulated when myeloid progenitor cells undergo terminal differentiation to 

neutrophils [5], Meis1 expression diminishes with induced differentiation in this MLL-ENL 

cell line (Figure 4A). Using this inducible MLL-ENL cell line, we determined the levels of 

H3K4me1, H3K4me3, and H3K27ac3 enrichment at both the promoter and enhancer E9 

regions. When endogenous Meis1 expression was downregulated after inactivation of MLL-

ENL, active histone marks H3K4me1 and H3K27ac were significantly decreased across the 

E9 region (Figure 4B, 4C). In contrast, a high level of histone H3K4me3 modification, a 

marker at the promoter of actively expressed genes, remained largely unchanged at the 

promoter region upon inactivation of the MLL-ENL fusion protein (Figure 4D). As the 

presence of both H3K4me1 and H3K27ac have been associated with active enhancers, these 

data suggest that enhancer E9 is a functional regulatory sequence in controlling expression 

of Meis1 in MLL-rearranged leukemic cells.
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MEIS1/HOXA9 regulates MEIS1 expression through enhancer E9

In an effort to explore the molecular basis underlying the observed regulatory function of 

enhancer E9, we discovered several evolutionary conserved MEIS1/HOXA9 binding sites at 

the enhancer E9 region using the Genomatix tool (http://www.genomatix.de, Germany) 

(Figure 5A and 5B). To test possible recruitment of these two proteins to enhancer E9 in 
vivo, ChIP-qPCR primers were designed to amplify 8 locations across the 2.1 kb enhancer, 

with an average spacing of 200-300bp. The binding of MEIS1 and HOXA9 proteins was 

enriched both at the MEIS1 promoter (data not shown) and the primer hE5 region 

corresponding to two overlapping conserved sites (M2/M3 in Fig. 5A and 5B) in MEIS1-

expressing THP-1 cells. The MEIS1 and HOXA9 binding signals were diminished at 

flanking regions approximately 300bp in both directions (Figure 5C).

To examine whether the predicted MEIS1/HOXA9 consensus sites are critical for the 

function of enhancer E9, we mutated the MEIS1/HOXA9 binding sites and determined their 

contributions to the enhancer activity in REH cells (Fig 6A). A 14-bp deletion/mutations 

were introduced into the E9 element to destroy the two overlapping MEIS1/HOXA9 binding 

sites (M2/M3). Compared to the construct with a CMV promoter only, addition of enhancer 

E9 upstream of the promoter increased the luciferase activity in a transient transfection 

assay. Mutation of the MEIS1/HOXA9 binding sites diminished the enhancer activation 

activity (Figure 6A and Supplemental Table S2). These results suggest that the binding of 

MEIS1/HOXA9 to enhancer E9 might regulate the expression level of MEIS1 itself. 

Furthermore, siRNA knock down of HOXA9 resulted in a down-regulation of MEIS1 
expression in the THP1 cell line (Figure 6B). Altogether, these results demonstrated that 

MEIS1/HOXA9 may transactivate the MEIS1 gene through a conserved binding site in the 

enhancer E9.

Discussion

As its level of expression is inversely correlated with prognosis, MEIS1 expression is an 

important predictive marker in human acute leukemia. Furthermore, knockdown of Meis1 
delays development of overt leukemia in mouse models [8]. Despite the essential role of 

MEIS1 overexpression in acute leukemia, the underlying genetic and epigenetic mechanisms 

regulating its expression are largely unknown. Using combined comparative genomics 

analysis and functional assays, we identified multiple intronic regulatory DNA elements 

which may play a role in regulating MEIS1 expression in zebrafish and mammalian 

hematopoiesis. One of the identified enhancer elements, designated E9, may mediate the 

auto-regulation of MEIS1 through an evolutionarily conserved binding motif.

Considering the tightly controlled expression pattern of MEIS1 during embryonic and adult 

hematopoiesis, we explored the hypothesis that tissue specific distal enhancer elements exist 

in the 1300Kb genomic region of MEIS1 locus, which may participate in overexpression of 

MEIS1 during leukemogenesis. The identification of regulatory sequences embedded in the 

~98% non-coding fraction of the genome remains a challenge [35]. Regulatory elements 

such as enhancers are difficult to identify due to their degenerate nature and lack of a well-

defined signature. In this study, we employed a combined genomic sequence analysis and in 
vivo transgenic zebrafish assay to systematically discover enhancer sequences in the 1300 
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Kb of MEIS1 locus. Zebrafish uses shared genetic pathways similar to those found in 

humans to regulate the complex process of blood cell development [45, 46]. The spatio-

temporal expression patterns of many key hematopoietic genes are highly conserved 

between zebrafish and human, supporting the usage of zebrafish as an informative model to 

study transcriptional regulation of blood cell development [45, 46] .

Enhancers identified in this study were able to drive GFP expression at either ALM or PLM 

(Figure 1B and Supplemental Table S1), where primitive hematopoiesis occurs [24] [47]. 

ALM and PLM also produce the vascular progenitor cells, supporting these sites as a 

common location for both hematopoiesis and vasculogenesis [48] [49]. Consistent with the 

observation that MEIS1 is expressed in both the hematopoietic and vascular systems [2], 

enhancers E6 and E9 also drove GFP expression in the developing heart of the transgenic 

zebrafish (Supplemental Table S1), suggesting that some of these newly identified elements 

may be involved in vascular development. Two of the total 14 predicted DNA elements 

showed active chromatin modifications in murine HSPC cells (Figure 2C). However, it is 

possible that some of the remaining 12 elements may control MEIS1 expression in distinct 

hematopoietic cell populations that were not examined in this study. It is worthy to note that 

the prediction of enhancer DNA elements in this study was purely based on genomic 

sequence analysis. As a proportion of regulatory elements are not sufficiently conserved to 

be detected by comparative genomic methods [50–52], it is likely that additional blood 

specific enhancers exist in the region.

Genome wide studies have shown that genomic regions of functional regulatory sequences 

are marked by specific histone modifications [38]. The presence of such marks can be a 

strong indication of an active chromatin domain involving in regulating gene expression. In 

the genome, active enhancers are often associated with monomethylation of H3K4, while 

promoter regions are often characterized by trimethylated H3K4 [23, 37]. As a characteristic 

of active enhancers, H3K4me1 has also been shown to play a causal role in defining tissue-

specific binding patterns of hematopoietic specific transcription factor PU.1 [53]. In this 

study, the genomic region of this enhancer E9 is marked by monomethylated H3K4 in a 

series of human acute leukemic cells, and the active status of the enhancer is strongly 

associated with high level of expression of MEIS1 (Figure 3C). In addition, down-regulation 

of MEIS1 in MLL-ENL cells (Figure 4) was associated with loss of the active histone mark 

H3K4me1 at the enhancer region, but not with H3K4me3 at the promoter region, suggesting 

a more prominent role of enhancer E9 in the regulation of the gene. Taken together with the 

high frequency of retroviral integration events at this site (Figure 3A), the enhancer E9 may 

be an important regulatory element that mediates MEIS1 expression in leukemogenesis.

In this study, we found that MEIS1 and HOXA9 are bound to the E9 enhancer at a 

functional consensus binding site in vivo (Fig. 5C). Binding of MEIS1 protein was also 

identified at the promoter region of MEIS1 gene (data not shown). In addition, knockdown 

of HOXA9 resulted in decreased expression of MEIS1. Our data suggest that MEIS1, with 

its heterodimeric partner HOXA9, can regulate its own expression. This result is consistent 

with several recent studies investigating the functional role of MEIS1 and HOXA9 in normal 

hematopoiesis and leukemia development. Faber et al showed that loss of Hoxa9 causes 

downregulation of the Meis1 mRNA, while overexpression of HOXA9 upregulates Meis1 
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[54]. Suppression of HOXA9 by shRNA induced immediate downregulation of MEIS1 in 

multiple human leukemia cell lines examined [55]. Furthermore, MEIS1 binding was 

detected in the promoter and several intronic regions of the Meis1 gene in multipotent 

hematopoietic progenitor cell line 7 (HPC-7) in a recent genome wide study [22]. We note 

that MEIS1 and/or HOXA9 binding were not detected in the proximity of the MEIS1 locus 

in two ChIP sequencing analyses both of which employed HA-tagged MEIS1 and/or 

HOXA9 expression systems in mouse bone marrow cells [14, 54, 56]. The apparent 

discrepancy between these results and findings from our study may be due to differences in 

the stage of differentiation of the analyzed cells, levels of sensitivity of the assay, and the 

antibodies and biological systems used. The functional assays we performed validate the 

potential for the E9 enhancer to regulate the expression of MEIS1. Some HOXA genes are 

known to be autoregulated during development [57]. Regulation of MEIS1 by its own 

product and HOXA9 suggests that coexpression of these two genes in leukemia is 

reinforced, at least in part, by a common genetic pathway through a newly identified 

enhancer. Our data provide a mechanism for the direct regulation of MEIS1 by the MEIS1/

HOXA complex.

Taken together, our study identifies potential enhancer elements controlling the expression 

of MEIS1 in mammalian hematopoiesis. Furthermore, one of these regulatory elements 

located in an intronic region, may mediate an auto-regulatory loop that contributes to the 

sustained expression of MEIS1 in acute leukemia. This study provides important insights 

into the molecular mechanisms that underlie the regulation of MEIS1 in normal 

hematopoiesis and its aberrant activation in acute leukemia. Understanding the regulation of 

oncogenic gene expression should facilitate the development of targeted therapies with the 

potential to correct the inappropriate transcriptional regulation of MEIS1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Multiple regulatory elements within the MEIS1 gene
A). Schematic map of enhancer elements in the MEIS1 Locus. Orthologous sequences in 

the MEIS1 locus are compared between human and mouse (Vista), with human sequence as 

the base. Numbered green bars (1 to 14) correspond to predicted enhancer elements 

conserved in multiple vertebrate species. The elements showing positive expression in the 

transgenic zebrafish assay are marked in red. Hg17: chr2:66,223,424-67,536,101 

(corresponding to Hg19: 66311773-66680696)

B). Identification of enhancer activity by transgenic Zebrafish assay. The GFP reporter 

gene is under the control of a minimal promoter and the human sequence of putative 

enhancers. GFP reporter constructs were injected into fertilized zebrafish eggs. 

Representative transgenic zebrafish embryos (24 hpf) are shown, with the PLM area framed 

in blue, and ALM area circled in red. The percentage of positive embryos is marked in 

parentheses.
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Fig. 2. Chromatin characteristics of MEIS1 regulatory elements in mammalian hematopoietic 
cells
A). HSPC cells (Lin- CD34+ c-Kit+) were isolated from mouse bone marrow by FACS.

B). mRNA expression of c-Kit, Gr1, and Meis1 were detected in HSPC population.

C). H3K27ac enhancer marks of the Meis1 gene during hematopoiesis in mice. ChIP assay 

was performed with the antibody against H3K27ac in HSPC cells. The amounts of input 

DNA and ChIP DNA were normalized, and the data are shown as the relative enrichment 

ratio of precipitated DNA to input DNA. P1 is in the promoter of Meis1 gene, and D130 is 

located 140kb down stream of the 3′ of Meis1 gene.
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Fig. 3. Retroviral integration sites and enriched histone H3K4me1 at enhancer E9; correlation 
with active MEIS1 expression in acute myeloid leukemia cells
A). Retroviral integration sites in the mouse Meis1 gene. The 3′ region of the mouse 

Meis1 gene (UCSC genomic browser, NCBI36/mm9, chr11:18,780,325-18,786,183) is 

enlarged. The genomic location of the predicted enhancer E9 is marked in the gene structure 

as a black solid box. The open boxes below the gene structure represent the four genomic 

sequences recovered from the integration sites in individual leukemia mouse clones (data 

obtained from Retrovirus Tagged Cancer Gene Database). Retroviral integration site of clone 

NUP53LD PCR and 403_4_9 are located within the enhancer E9, whereas clone 73_4_4 is 

only 52bp away from enhancer E9. The DNA sequence of the enhancer E9 is aligned with 

the human MEIS1 genomic region in UCSC genomic browser. Histone modifications of 

H3K4me1, H3K4me3 and H3K27ac are the ChIP seq results from the H1-hESC, K562, and 

GM12878 cells in the UCSC genomic browser, and the DNase I HS (ENCODE project) and 

the mammalian conservation is presented for the enhancer element E9 region.

B, C). Histone H3K4me1 at enhancer E9 is associated with MEIS1 activation. 
Crosslinked chromatin from THP-1(rectangle) and HL-60 (open circle) were 

immunoprecipitated with antibodies against H3K4me1, a marker for potential enhancers. 

The precipitated DNA was amplified using 8 primer pairs (hE9-1 to hE9-8) spanning the 2.1 

Kb enhancer E9. Open bars are HL60 cells, and grey bars are THP1 cells. Data are shown as 

fold change versus input DNA. C) Crosslinked chromatin was immunoprecipitated with 
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antibodies against H3K4me1 in multiple leukemic cell lines. The precipitated DNA was 

amplified using primer hE9-4. Data are shown as fold change versus input DNA. The mRNA 

expression level of each cell line is marked under the each column, and were shown as the 

“-, +, ++, +++”, representing negative, or a graded relative expression level.
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Fig. 4. Regulatory element E9 is active in MLL-ENL leukemic cells
A). MLL-ENL-ER cells were cultured with 4-HT (MLL-ENL induced), or without 4-HT for 

72 hours (no MLL-ENL). The expression of MEIS1 was detected by real-time PCR.

(B–D). Enriched histone marks at E9 correlated with active Meis1 expression in acute 

myeloid leukemic cells. Crosslinked chromatin was immunoprecipitated with antibodies 

against H3K4me1 (B), H3K27ac (C) and H3K4me3 (D) in the MLL-ENL fusion cell line 

before and after adding 4HT. The precipitated DNA was amplified using primers spanning 

the Meis1 promoter (mP1, mP2) and the enhancer E9 region (mE9-1, mE9-2, mE9-3, 

mE9-4) using qPCR. Data are shown as fold change of precipitated DNA versus input DNA. 

Each experiment was repeated at least three times.
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Fig. 5. MEIS1/HOXA9 binds to a predicted consensus site in the enhancer E9
A). Schematic map of the enhancer E9, predicted MEIS1/HOXA9 binding sites and the 

sequence alignment of the detected PCR replicon in ChIP assay. Four HOXA9/

MEIS1binding sites (M1 to M4) were predicted by bioinformatics analysis (http://

www.genomatix.de) with the simultaneous matrix shown (Also see Supplementary Table 

S2).

B). HOXA9/MEIS1 binding motif by Genomatix and the conserved sequence of MEIS1/

HOXA9 binding sites from various vertebrate species.

C). Crosslinked chromatin from THP-1 was immunoprecipitated with antibodies to MEIS1 

and HOXA9. The precipitated DNA was amplified using the primer pairs spanning the 

enhancer E9 region. A higher binding signal was detected with the primer pair hE9-5.
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Fig. 6. MEIS1/HOXA9 transactivates the E9 enhancer
A). REH cells were transfected with a luciferase reporter gene driven by the Meis1 promoter 

only (P), Meis1 promoter together with enhancer E9 (P/E9), or the enhancer E9 with the 

designated mutations (P/Mut1, P/Mut2). The mutation sequences of Mut 1 and Mut 2 are 

shown in the supplementary data S2.

B). HOXA9 siRNA in THP1 cells. Two HOXA9 siRNA sequences were applied to 

knockdown the HOXA9, and the expression of HOXA9 and MEIS1 detected by RT-PCR.
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