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Abstract
Background: Modern developmental biology relies heavily on the analysis of embryonic gene
expression patterns. Investigators manually inspect hundreds or thousands of expression patterns
to identify those that are spatially similar and to ultimately infer potential gene interactions.
However, the rapid accumulation of gene expression pattern data over the last two decades,
facilitated by high-throughput techniques, has produced a need for the development of efficient
approaches for direct comparison of images, rather than their textual descriptions, to identify
spatially similar expression patterns.

Results: The effectiveness of the Binary Feature Vector (BFV) and Invariant Moment Vector (IMV)
based digital representations of the gene expression patterns in finding biologically meaningful
patterns was compared for a small (226 images) and a large (1819 images) dataset. For each dataset,
an ordered list of images, with respect to a query image, was generated to identify overlapping and
similar gene expression patterns, in a manner comparable to what a developmental biologist might
do. The results showed that the BFV representation consistently outperforms the IMV
representation in finding biologically meaningful matches when spatial overlap of the gene
expression pattern and the genes involved are considered. Furthermore, we explored the value of
conducting image-content based searches in a dataset where individual expression components (or
domains) of multi-domain expression patterns were also included separately. We found that this
technique improves performance of both IMV and BFV based searches.

Conclusions: We conclude that the BFV representation consistently produces a more extensive
and better list of biologically useful patterns than the IMV representation. The high quality of results
obtained scales well as the search database becomes larger, which encourages efforts to build
automated image query and retrieval systems for spatial gene expression patterns.
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Background
The complexity of animal body form arises from a single
fertilized egg cell in an odyssey of gene expression and reg-
ulation that controls the multiplication and differentia-
tion of cells [1-3]. For over two decades, Drosophila
melanogaster (the fruit fly) has been a canonical model
animal for understanding this developmental process in
the laboratory. The raw data from experiments consist of
photographs (two dimensional images) of the Drosophila
embryo showing a particular gene expression pattern
revealed by a gene-specific probe in wildtype and mutant
backgrounds. Manual, visual comparison of these spatial
gene expressions is usually carried out to identify overlaps
in gene expression and to infer interactions [4-6].

Whole fruit fly embryo and other related gene expression
patterns have been published in a wide variety of research
journals since late 1980's. These efforts have now entered
a high-throughput phase with the systematic determina-
tion of patterns of gene expression [e.g., [7]]. As a result,
the amount of data currently available has doubled lead-
ing to the imminent availability of multiple expression
patterns of every gene in the Drosophila genome [7]. In
addition, the use of micro-array technology to study Dro-
sophila development has revealed additional and impor-
tant insights into changes in gene expression levels over
time and under different conditions at a genomic scale
[8,9].

With this rapid increase in the amount of available pri-
mary gene expression images, searchable textual descrip-
tions of images have become available [7,10,11].
However, a direct comparison of the gene expression pat-
terns depicted in the images is also desirable to find bio-
logically similar expression patterns, because textual
descriptions (even using a highly structured and control-
led vocabulary) cannot fully capture all aspects of an
expression pattern. In fact, there is a need for automated
identification of images containing overlapping or similar
gene expression patterns [6,12] in order to assist research-
ers in the evaluation of similarity between a given expres-
sion pattern and all other existing (comparable) patterns
in the same way that the BLAST [13] technique functions
for DNA and protein sequences. Of course, unlike the
genomes with four letters and proteomes with 20 letters,
all gene expression anatomies cannot be easily reduced to,
and thus represented by, a small number of components.

We previously proposed a binary coded bit stream pattern
to represent gene expression pattern images [6]. In this
digital representation, referred to as the Binary Feature
Vector (BFV; BSV in [6]), the unstained pixels in the
images (white regions and background) were denoted by
a value of 0 and the stained areas (colored and fore-
ground: gene expression) were denoted by a value of 1.

Based on the BFV representations of the expression pat-
tern, we proposed a Basic Expression Search Tool for
Images (BESTi) [6] with an aim to produce biologically
significant gene expression pattern matches using image
content alone, without any reference to textual descrip-
tions. We found that the BESTi approach generated bio-
logically meaningful matches to query expression patterns
[6].

In this paper, we explore how a more sophisticated Invar-
iant Moment Vectors (IMV, [14]) based digital representa-
tion of gene expression patterns performs in generating an
ordered list of best-matching images that contain similar/
overlapping gene expression patterns to that depicted in a
query image. IMV are frequently used in natural image
processing (e.g., optical character recognition [15]) and
have a number of desirable properties, including the com-
pensation for variations of scale, translation, and rotation.
If successful, IMV representations hold the promise of
producing significantly shorter computing times for
image-to-image matching compared to BFV.

Previously, we had examined the performance of the BFV
representation for a limited dataset of early stage images
[6]. Here we compare the relative performances of BFV
and IMV first using a dataset containing 226 images (from
13 research papers). Then we test for scalability of the
BESTi search by using a seven times larger dataset contain-
ing 1819 (1593 new + 226 previous) images from 262
additional research papers (list available upon request
from the authors). Both datasets contained lateral views of
early stage (1–8) embryos.

During these investigations, we also developed another
measure of image-to-image similarity for the BFV repre-
sentation. This measure is aimed at finding images that
contain as much of the query image expression pattern as
possible, but without penalizing for the presence of any
expression outside the overlap region in the target image.
In addition, we examined whether partitioning a multi-
domain expression pattern into multiple BFV representa-
tions, each containing only one domain, yields a better
result set.

Recently, Peng and Myers [16] have proposed a different
procedure involving the global and local Gaussian Mix-
ture Model (GMM) of the pixel intensities (of expression)
to identify images with similar patterns. This GMM
method is expected to find images with intensity and spa-
tial similarities. This is different from the BFV and IMV
methods examined here, which are intended to find only
spatially similar patterns. This focus is important because,
as mentioned in [6], the differences in gene expression
intensity among images in published literature can arise
simply due to use of different techniques, illumination
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conditions, or biological reasons. However, Peng and
Myers method [16] appears to be promising and we plan
to examine its effectiveness in a separate paper.

Results and discussion
Data set generation
An image database of 226 gene expression pattern images
was initially generated using data from the literature [17-
29]. All were lateral images and exhibited early stage (1–
8) expression patterns. These images were selected
because they had some commonality of gene expression
(as seen by the human eye), which allowed us to evaluate
the performance of the BESTi in finding correct as well as
false matches under controlled conditions. BESTi was also
tested for scalability on a larger dataset containing 1819
(1593 plus the 226) lateral views of early stage embryos.
These 1593 images were obtained from 262 articles.

In order to present comprehensible result sets in this
paper, we have primarily discussed the findings from the
dataset of 226 and provided information on how those
queries scaled when they were conducted for the larger
dataset. In general, our focus was to show the retrieval of
biologically significant matches based on both the visual
overlap of the spatial gene expression pattern and the
genes associated with the pattern retrieved.

Each image was standardized and the binary expression
pattern extracted following the procedures described pre-
viously [6]. These extracted patterns, their invariant
moments (φ1 through φ7), and binary feature representa-
tions were stored in a database. We also calculated and
stored the expression area (the count of the number of 1's
in the binary feature represented image), the X and Y coor-

dinates of the centroid ( , ), and the principal angle (θ)
for each extracted pattern.

To quantify the similarity of gene expressions in two
images, we computed two measures (SS, SC) based on the
BFV representation (See equations 2 and 3 in Methods).
SS is designed to find gene expression patterns with overall
similarity to the query image, whereas SC is for finding
images that contain as much of the query image expres-
sion pattern as possible without penalizing for the pres-
ence of any expression outside the overlap region in the
target image. For a given pair of gene expression patterns
(A and B), SS is the same irrespective of which image in the
pair is the query image. That is, SS(A,B) = SS (B,A). This is
not so for SC, because SC measures how much of the query
gene expression pattern is contained in the image. There-
fore, SC (A,B) ≠ SC(B,A).

For IMV representation, we computed one dissimilarity
measure (Dφ, equation 13 in Methods). Results from Dφ
should be compared to that from SS, as both of these

measurements do not depend on the reference image, i.e.,
Dφ (A,B) = Dφ(B,A) and, also they capture overall similar-
ity or dissimilarity.

Matches and their biological significance
The effectiveness of the BESTi in finding biologically sim-
ilar expression patterns was geared towards determining
the biological validity of the results obtained from the
image matching procedure. All results were based solely
on quantitative similarities between images without using
any textual descriptions. All images were lateral views
from the early stages of fruit fly embryogenesis and were
oriented anterior end to the left and dorsal to the top. We
refer to the images retrieved as the BESTi-matches.

Performance of BFV-SS search
Figure 1A shows the query image with gene expression
restricted to the anterior (left) portion of the embryo,
except that the expression is absent at the anterior termi-
nus [22]. The query image depicts the expression of the
sloppy paired (slp1) gene in a wildtype embryo. The BESTi-
matches based on the SS measure for the representations
are given in Figure 1A1–A8. BESTi retrieves images show-
ing similar expression patterns, all of which are from same
research article as the query image [22]. These images
depict the expression patterns of sloppy paired genes (slp1
and slp2) in a variety of genetic backgrounds or in combi-
nation with a head gap gene orthodentical (otd); all of these
genes are essential for the pattern formation in Drosophila
head development [30]. In fact, slp1 and slp2 are tightly
linked genes found in the slp locus of the Drosophila
genome. They are not only closely related in their primary
sequence structure, but also significantly similar in their
expression pattern (compare Figure 1A7 and 1A8).

A search was conducted using the same query image and
same distance measure (SS) on the larger dataset. Figure 2
shows the top-35 matches, which contain all 8 matches
shown in Figure 1A (images with blue colored legends).
This allowed us to directly compare the quality of matches
between the two datasets. Analysis of larger database of
images yields more matches for the same SS cut-off value,
as expected. A visual inspection reveals that these are all
relevant images (Figure 2), with the larger dataset yielding
more images for otd (20 images, Figure 2C). Images with
expression patterns from slp1, slp2 and combined otd
expression are found in Figure 2A,B, and 2D. More impor-
tantly, searches in the larger dataset provide images con-
taining expression patterns of additional genes: Kruppel
(Kr), hunchback (hb), bicoid (bcd), nanos, snail, hu-li tai shao
(hts) and hairy (Figure 2E–K). Since these images did not
exist in the smaller dataset, they were not included in the
search results in Figure 1A. All are biologically useful
matches because combinatorial input from gap genes (Kr,
hb) along with slp1 establishes the domains of segment

x y
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BESTi search results with smaller datasetFigure 1
BESTi search results with smaller dataset. Results from the BESTi-search for the same query image [22] based on (A) 
BFV [SS], (B) IMV [Dφ] and (C) BFV [SC] representations in the original dataset (226 images); and based on (D) BFV [SS] and (E) 
IMV [Dφ] representations in the domain database (in which distinct domains of the multi-domain expression patterns were 
added to the original dataset as additional data points). The search argument and the results retrieved are shown on the left 
and right of the arrow, respectively. The original data used to generate these expression patterns are shown above this row. 
BESTi-matches are arranged in descending order starting with the best hit for the given search image. Values of difference in 
centroids (∆CXY) and principal angles (∆θ) are also given. Each image is identified by the last name of the first author of the orig-
inal research article and the figure number with the following abbreviations: Ashe [19]; Casares [20]; Gaul1 [28]; Grossniklaus 
[22]; Hartmann [24]; Hulskamp1 [27]; Hulskamp3 [26].

(A) BFV-SS Search A1 A2 A3 A4 A5 A6 A7 A8 

slp1 otd, slp1 otd, slp1 otd slp1 slp1 slp1 slp1 slp2 

Grossniklaus1b Grossniklaus3b Grossniklaus3c Grossniklaus3a Grossniklaus6a Grossniklaus6b Grossniklaus5b Grossniklaus6d Grossniklaus1i 

→
SS 0.701 0.649 0.617 0.592 0.557 0.525 0.525 0.503 

Dφ 0.074 0.076 0.077 0.099 0.095 0.147 0.049 0.088 

∆CXY 7.4 5.6 9.4 9.4 10.1 4.5 10.2 10.5 

∆θ 7.0 21.4 9.7 9.1 20.1 7.8 42.3 0.7 

          

(B) IMV Search B1 B2 B3 B4 B5 B6 B7 B8 

slp1 hb,Kr tll slp1 hairy Kr Kr iab slp1 

Grossniklaus1b Hulskamp1_6b Hulskamp3_4e Grossniklaus6d Hartmann3g Hulskamp1_4b Gaul1_7c Casares4d Grossniklaus5d

→
Dφ 0.038 0.045 0.049 0.049 0.051 0.054 0.055 0.056 

SS 0.200 0.000 0.525 0.008 0.000 0.002 0.000 0.116 

∆CXY 49.2 184.6 10.2 126.0 90.6 86.2 132.6 38.8 

∆θ 21.0 25.4 42.3 34.3 22.8 14.4 22.6 17.4 
          

(C) BFV-SC Search C1 C2 C3 C4 C5 C6 C7 C8 

slp1 hb slp1 hb hb hb hb slp1 slp1 

Grossniklaus1b Hulskamp3_2f Grossniklaus8b Hulskamp3_4a Hulskamp3_2d Gaul1_7h Gaul1_7f Grossniklaus6b Grossniklaus6a

→
SC 1.000 0.999 0.999 0.999 0.992 0.959 0.939 0.937 

Dφ 0.399 0.105 4.694 0.066 0.357 0.377 0.095 0.099 

∆CXY 58.8 10.5 36.9 24.0 43.5 63.0 10.1 9.4 

∆θ 22.9 6.7 9.7 11.3 19.5 22.7 20.1 9.1 

          
(D) BFV-SS Search 
    Domain DB D1 D2 D3  D4 D5 D6  D7  D8 

slp1 otd, slp1 otd, slp1 race, sog, eve otd slp1 tll slp1 slp1 

Grossniklaus1b Grossniklaus3b Grossniklaus3c Ashe3b Grossniklaus3a Grossniklaus6a Hulskamp3_4j Grossniklaus6b Grossniklaus6h

→
SS 0.701 0.649 0.635 0.617 0.592 0.583 0.557 0.553 

Dφ 0.074 0.076 0.096 0.077 0.099 0.078 0.095 0.074 

∆CXY 7.4 5.6 10.0 9.4 9.4 7.1 10.1 11.6 

∆θ 7.0 21.4 19.8 9.7 9.1 21.9 20.1 11.7 
          

(E) IMV Search 
    Domain DB F1  F2  F3 F4 F5 F6  F7 F8 

slp1 hb,Kr hb tll slp1 hairy Kr hairy ftz 

Grossniklaus1b Hulskamp1_6b Hulskamp1_3a Hulskamp3_4e Grossniklaus6d Hartmann3g Hulskamp1_4b Hartmann2a Gaul1_8k 

→
Dφ 0.038 0.045 0.045 0.049 0.049 0.051 0.052 0.053 

SS 0.200 0.002 0.000 0.525 0.008 0.000 0.508 0.154 

∆CXY 49.21 151.55 184.64 10.20 126.01 90.63 5.83 36.24 

∆θ 21.0 31.9 25.4 42.3 34.3 22.8 6.8 30.3 
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polarity genes in the head [22]. As for the snail, hts and
hairy genes, there are no known interaction between them
and slp1 (gene in the query image) in the wildtype
embryo, but the images show overlap in gene expression
due to the genetic backgrounds used [31-33]. Therefore,
they are also biologically relevant matches.

Performance of IMV search
We used the same query image for the IMV method
applied to the smaller dataset (Dφ, results in Figure 1B)
and compared the results to the BFV-SS search. In this case,
we obtain images containing expressions of hb, Kr, tailless
(tll), slp1, hairy and infra-abdominal (iab) (type I tran-
script). It is clear that IMV search produces some biologi-
cally disconnected matches. For example, Figures 1B2,
1B4–B7 exhibit no visual overlap in gene expression pat-
tern with the query. Furthermore, even the biologically
significant matches were retrieved out of order (Figure
1B1 before 1B3). This happens because Dφ retrieves
expression patterns that are of similar shape and/or size,
regardless of the translation or rotation with respect to the
query image.

A comparison of the results from the smaller and larger
dataset for the IMV measure is given in Figure 3. Twenty-
six images were retrieved from the larger dataset when we
used the same maximum distance value for the same
query image. Of these, only two images were with expres-
sion pattern from slp1 (Figure 3 A1–A2). The expression of
bcd was found in two of the results (Figures 3 B1–B2). 13
images containing gap gene expression patterns of Kr, hb,
tll, giant (gt) and knirps (kni) (Figures 3 C1–C4, D1–D3,
E1–E2, F1–F2, I1 and 3J) were also retrieved. Images with
expression patterns of hairy, achaete-scute complex (AS-C),
iab (type I transcript), IAB5 enhancer, ventral nervous sys-
tem defective (vnd), short gastrulation (sog) and a combined
expression of bcd, nanos and cap 'n' collar (cnc) accounted
for the remaining nine (Figures 3 G1–G2, H1–H2, K1, L1,
M1, N1 and 3O1). We see that the new results also suffer
from the same problems as before. For example, images in
Figure 3 C,E,K and 3L have no common expression pat-
tern with the query image. Hence these are not biologi-
cally significant results even though few of them (Figures
3 C1–C4, E1–E2) contain expression patterns of develop-
mentally connected genes (Kr and tll with slp1).

Since both SS and Dφ measures capture the overall similar-
ity or dissimilarity, we can use Figures 2 and 3 to compare
the relative effectiveness of the BFV and IMV methods on
the larger dataset. We clearly see that the BFV method per-
forms much better in retrieving both overlapping and
similar expression patterns that are also biologically
significant.

BESTi search results for SS with larger datasetFigure 2
BESTi search results for SS with larger dataset. Com-
parison of search results from the small (226 images) and 
large (1819 images) dataset using the SS measure for the 
same query image (Figure 1A) [22]. Panels (A-K) are based 
on the genes whose expression patterns were retrieved as 
follows (A) slp1, (B) slp1 and otd, (C) otd, (D) slp2, (E) Kr, (F) 
hb, (G) hb and bcd, (H) Hb, bcd and nanos, (I) snail, (J) hts and 
(K) hairy. Images are referenced with the last name of the 
first author of the original article and its figure number: 
Grossniklaus [22]; Zhao [43]; Gao [44]; Wimmer [45]; 
Schulz1 [46]; Tsai [47]; Janody [48]; Stathopoulos [31]; Brent 
[32]; Zhang [33]. Common search results between the small 
and large dataset are indicated with dark blue image names.

(A1)Grossniklaus6a (A2)Grossniklaus6b

(A) 
slp1 (A3)Grossniklaus5b (A4)Grossniklaus6d

(B) 
slp1,otd

(B1)Grossniklaus3b (B2)Grossniklaus3c

(C1)Zhao7e (C2)Gao2d 

(C3)Gao1c (C4)Zhao7h 

(C5)Gao3d (C6)Gao2c 

(C7)Gao4b (C8)Gao4c 

(C9)Gao8c (C10)Gao4e 

(C11)Zhao7f (C12)Grossniklaus3a

(C13)Gao6b (C14)Gao1g 

(C15)Wimmer2a (C16)Gao1f 

(C17)Gao1b (C18)Gao8b 

(C) 
otd 

(C19)Gao4d (C20)Zhao7g 

(D) 
slp2 

(D1)Grossniklaus1i

(E) 
Kr 

(E1)Schulz4g 

(F) 
hb 

(F1)Schulz1b 

(G) 
hb,bcd

(G1)Tsai5d 

(H) 
Hb,bcd,
nanos

(H1)Janody1l 

(I) 
snail 

(I1)Stathopoulos5c 

(J) 
hts 

(J1)Brent1c 

(K) 
hairy 

(K1)Zhang3c (K2)Zhang3a 
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In addition to the Hu moments, one could also compute
Zernike moments, which are based on the polar coordi-
nate system. Both Hu moments and Zernike moments are
susceptible to the same problem namely expression pat-
terns showing a similar shape but translated to different
locations in the embryo would be in the same result set.
We chose to study the Hu Invariant Moment Vectors
mainly because the centroid of the image can be used to
distinguish between similarly shaped but translated
expression patterns. With Zernike moments, the image
must be inherently contained within a unit circle
anchored at the centroid [34]. Thus, there is no straight-
forward method to eliminate the translational problem.

Using the Hu moments, the spatial location problem can
be corrected by considering the Euclidean difference in
the centroid location expressed in pixels (∆CXY) of the
query and results. In the case of BFV-SS search results in
Figure 1 (A1–A8), the maximum ∆CXY is less than or only
slightly greater than the minimum ∆CXY for the IMV
search results (Figure 1 B1–B8). Therefore, in the present
case, the IMV-based BESTi search results need to be pared
down using the centroid location difference. For example,
if we consider results based on a ∆CXY lesser than or equal
to 50 pixels, images shown in Figure 1 B2, B4–B7 would
be removed producing a more meaningful result set.

Performance of BFV-SC search
Figure 1C shows the result for the same query image as
used in Figure 1A, but using the newly devised SC distance
for the BFV representation (BFV-SC search). This is
expected to retrieve images with gene expression patterns
that contain the largest amount of the overlap with the
expression pattern in the query image. The top eight hits
shown (Figure 1C1–C8) all contain over 93% of the query
expression pattern: five of the matches are to the expres-
sion of hunchback (hb; C1, C3–C6) and the remaining
three are from slp1 under different genetic backgrounds.
As mentioned above, the combinatorial input from gap
genes (including hb) along with slp1 establishes the
domains of segment polarity genes in the head [22].
Therefore, gene expression patterns found by BFV-SC
search are for developmentally connected genes. How-
ever, using the same query image, BFV-SC search yielded
only two images in common with the BFV-SS results (Fig-
ure 1; C7 and C8 are the same as A5 and A4, respectively).
This difference occurs because SS is designed to find gene
expression patterns with overall similarity to the query
image (Figure 1A), whereas SC is intended for finding
images that contain as much of the query image expres-
sion pattern as possible and exclusive of the presence of
the gene expression in the result image outside the region
of overlap with the query image. Therefore, BFV-SS and
BFV-SC have the capability of finding gene expression pat-
terns from different biological perspectives.

BESTi search results for Dφ with larger datasetFigure 3
BESTi search results for Dφ with larger dataset. Com-
parison of search results from the small (226 images) and 
large (1819 images) dataset using the Dφ measure for the 
same query image (Figure 1A) [22]. Panels (A-O) are based 
on the genes whose expression patterns were retrieved as 
follows (A) slp1, (B) bcd, (C) Kr, (D) hb(D1,D3) and Hb(D2), 
(E) tll, (F) gt, (G) hairy, (H) AS-C, (I) hb and Kr, (J) kni, (K) iab 
(type I transcript), (L) IAB5 enhancer, (M) vnd, (N) sog and 
(O) nanos, bcd and cnc. Images are referenced with the last 
name of the first author of the original article and its figure 
number: Grossniklaus [22]; Sauer[49]; Tsai[47]; 
Hulskamp1[27]; Gaul1[28]; Strunk[50]; Colas[51]; Wu[52]; 
Ghiglione[53]; Pankratz[54]; Melnick[55]; Janody[48]; 
Zhang[33]; Parkhurst[56]; Zhou[57]; Stathopoulos[31]. 
Common search results between the small and large datasets 
are indicated with dark blue image names.

(A) 
slp1 

(A1)Grossniklaus6d (A2)Grossniklaus5d

(B) 
bcd 

(B1)Sauer6b (B2)Tsai5a 

(C1)Strunk3g (C2)Hulskamp1_4b

(C) 
Kr (C3)Gaul1_7c (C4)Colas7a 

(D1)Wu2a (D2)Ghiglione5i

(D) 
hb, Hb (D3)Sauer6g

(E) 
tll 

(E1)Hulskamp3_4e (E2)Melnick3c 

(F) 
gt 

(F1)Tsai3d (F2)Tsai2f 

(G) 
hairy 

(G1)Hartmann3g (G2)Zhang3f 

(H) 
AS-C 

(H1)Parkhurst4f (H2)Parkhurst4t 

(I) 
hb,Kr 

(I1)Hulskamp1_6b

(J) 
kni 

(J1)Pankratz2A 

(K) 
iab 

(K1)Casares4d 

(L) 
IAB5 

(L1)Zhou5d 

(M) 
vnd 

(M1)Stathopoulos6d

(N) 
sog 

(N1)Stathopoulos1f

(O) 
nanos, 
bcd,cnc

(O1)Janody3g 
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Using the same minimum similarity value for the BFV-SC
in the larger dataset resulted in 55 images, given in Figure
4. Gene expression patterns of slp1 and otd accounted for
8 of these images (Figure 4A and 4B). 22 images con-
tained expression patterns of the various gap genes hb, Kr,
kni and tll (Figure 4C, 4E–F, 4I–L) that were co-expressed
with bcd and nanos (Figure 4E and 4J) or with en (Figure
4I). Five other genes, developmentally connected to the
gene, slp1, in the query image were also retrieved in this
result set (eve, twist, dpp (decapentaplegic) [35]; en
(engrailed) [36]; arm (armadillo) [37]; Figure 4M–Q).
These images were not found in the top-35 of SS result set,
which accentuates the different capabilities of the two BFV
similarity measures in retrieving biologically relevant
matches. The remaining images had expression patterns
of AS-C, sc (scute), snail, hairy, zen (zerknullt), run, Hsp83,
nmo (nemo), Tc'hb, iab, hts and sog (Figure 4D, 4G–H, 4R–
Z) which are not known to be directly related to the gene
slp1. All but seven of these images (Figures 4 D3–D4, H1–
H2, R1, X1 and 4Y1) were from a different developmental
stage than the query image. Hence, by limiting the results
to those from a specific stage, extraneous matches can be
removed. The seven images having the same stage as the
query image were retrieved because of their significant
overlap (more than 94%) with the query gene expression
pattern. Thus, we observe that the new distance measure
SC has the potential to identify images containing expres-
sion patterns of developmentally connected genes, other
than those retrieved by SS, thus improving the overall per-
formance of the BFV method and the BESTi tool.

Analysis of multi-domain gene expression patterns
Due to the presence of multiple areas of expression, some
patterns in the database that appeared to contain much
better matches (by eye and biologically) to the query
image were not found or ranked very high. Hence, we also
analyzed multi-domain expression patterns separately for
the smaller dataset. Developmental biologists are also
interested in finding such patterns as they contain over-
laps with the expression domains in the query image. In
fact, a large number of the expression patterns available
today contain multiple isolated domains of expressions
since more than one topologically distinct region of
expression may be produced by many genes, transgenic
constructs, probes or experimental techniques (multiple
staining). In such cases, we need to consider each of these
regions individually as well as in the context of the com-
posite pattern. Biologically, it is important to consider
them separately because different regions of expression
may be under the control of distinct cis-regulatory
sequences [e.g., [28,38]] or may represent the expression
of different genes in a multiply-stained embryo.

Separating multi-domain gene expression patterns into
individual components was straightforward; we simply

BESTi search results for SC with larger datasetFigure 4
BESTi search results for SC with larger dataset. Com-
parison of search results from the small (226 images) and 
large (1819 images) dataset using the Dφ measure for the 
same query image (Figure 1A) [22]. Panels (A-Z) are based 
on the genes whose expression patterns were retrieved as 
follows (A) slp1, (B) otd, (C) hb, (D) AS-C, (E) nanos, bcd and 
Hb, (F) Kr, (G) sc, (H) snail, (I) en and hb, (J) bcd and hb, (K) 
kni and hb, (L) tll, (M) eve, (N) twist, (O) dpp, (P) en, (Q) arm, 
(R) hairy, (S) zen, (T) run, (U) Hsp83, (V) nmo, (W) Tc'hb, (X) 
iab, (Y) hts and (Z) sog. Images are referenced with the last 
name of the first author of the original article and its figure 
number: Grossniklaus [22]; Gao [44]; Hulskamp1 [27]; 
Hulskamp3 [26]; Zhao [43]; Gaul1 [28]; Tsai [47]; Niessing 
[58]; Sauer [49]; Parkhurst [56]; Janody [48]; Schulz2 [46]; 
Yagi [59] Cowden [60]; Stathopoulos [31]; Miskiewicz [61]; 
Schulz1 [62]; Goff [63]; Sackerson [64]; Rusch [65]; Stein-
grimsson [66]; Hamada [67]; Zhang [33]; Klingler [68]; 
Bashirullah [69]; Verheyen [70]; Wolff [71]; Casares [20]; 
Brent [32]. Common search results between the small and 
large dataset are indicated with dark blue image names.

(A) 
slp1 

(A1)Grossniklaus8b (A2)Grossniklaus6b (A3)Grossniklaus6a

(B1)Gao_3f (B2)Gao_8d (B3)Gao_4e 

(B) 
otd (B4)Gao_1g (B5)Gao_8c 

(C1)Hulskamp3_2f (C2)Hulskamp3_2d (C3)Zhao_6d 
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hb 
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(D1)Parkhurst_4f (D2)Parkhurst_4m (D3)Parkhurst_4l 

(D) 
AS-C (D4)Parkhurst_4e (D5)Parkhurst_4t 

(E) 
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(F) 
Kr 

(F1)Schulz2_4b (F2)Schulz2_4g 

(G) 
sc 

(G1)Yagi_2f (G2)Yagi_2b 

(H1)Cowden_7a (H2)Stathopoulos_5b (H3)Stathopoulos_3e

(H) 
snail (H4)Cowden_7b 

  

(I) 
en,hb

(I1)Miskiewicz_2b (I2)Miskiewicz_2a 

(J) 
bcd,hb

(J1)Tsai_5c 

(K) 
kni,hb

(K1)Schulz1_4a 
(S) 
zen 

(S1)Goff_1f 

(L) 
tll 

(L1)Goff_6b 
(T) 
run 

(T1)Klingler_2k 

(M) 
eve 

(M1)Sackerson_5e 
(U) 

Hsp83 

(U1)Bashirullah_5c 

(N) 
twist 

(N1)Stathopoulos_6b
(V) 

nmo 

(V1)Verheyen_8a 

(O) 
dpp 

(O1)Rusch_4a 
(W) 

Tc’hb 

(W1)Wolff_3a 
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en 

(P1)Steingrimsson_2g
(X) 
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generated multiple images from the same initial image
and included them in the target dataset. This resulted in
192 additional images (418 total) in the database all of
which were components of the initial gene expression pat-
terns. The images were separated into expression regions
horizontally and/or vertically depending on the gene
expression. For this new set of images, the IMV as well as
BFV representations were re-calculated and the BESTi
query constructed as above.

Results from BFV-SS and IMV queries for this data set are
given in Figures 1D and 1E, respectively. Now, many
images with multiple regions of expression are retrieved in
the result set (Figure 1D: D1–D8) and many of them show
an even better match with the query pattern than those in
Figure 1A for the BFV-based BESTi search. For instance,
gene expression patterns are now retrieved (with more
than 55% pattern similarity) from embryos with the
expression of tailless (tll), which is known to interact with
slp1 in defining the embryonic head [22], and with a com-
posite expression of race (related to angiotensin converting
enzyme), sog (short gastrulation) and eve (even-skipped) due
to enhanced race expression in the anterior domain
caused by a transgenic construct causing ectopic expres-
sion of sog [19]. Therefore, the strategy of dividing multi-
domain expression data into individual domains provides
additional flexibility to query individual components or
sub-sets of complex expression patterns. Results also
improved for IMV (Figure 1E), but again the outcome
reinforced the need to use the difference in centroid to
limit the result set.

Next we examine the performance of SS, SC and Dφ in find-
ing BESTi matches for a query pattern with multiple
regions of expression (Figure 5A). This complex expres-
sion pattern consists of anterior and posterior domains
caused by enhanced race expression resulting from dosage
alteration of dpp in a gastrulation defective (gd) mutant
background, and a middle stripe due to misexpressed sog
using an eve stripe-2 enhancer [Figure 2d in [19]]. The
results from this query are shown in Figure 5A1–A8 (only
the original image set (226) was used as the target data-
base in this case). We again find that SS finds many images
from the same paper as well as some images from other
research articles with similar expression patterns. The
results correctly include expression pattern of eve (Figure
5A4), of another pair-rule gene (ftz: fushi tarazu; Figure
5A6), and of two other developmentally related genes
[39,40].

When Dφ is used as a search criterion, it produces some
correct matches in the result set (Figure 5B1–B8). How-
ever, it generally fails to rank biologically meaningful
matches as the best matches. Use of the centroid in this
case is also not productive, as most of the matches show

very close centroids. The principal angle (θ) value calcu-
lated does not show a significant difference in the early
stage embryos used in this study. The results using the SC
based search are given in Figure 5C1–C8. They show a
number of images in common with the SS results. How-
ever, as expected, there are significant differences between
the two searches.

The results in Figures 5D and 5E demonstrate the power
of the BESTi-search when the multi-domain expression
data are represented in their component patterns (domain
database). In this case, all the BESTi searches are based on
the use of SS as the search criterion. These searches are
based on the complete expression (Figure 5D) and on one
of its components (bottom-left domain, Figure 5E). All,
but one, BESTi-matches in Figure 5D contain both
domains of expression. In contrast, the use of only the left,
anterior, domain (Figure 5E) in the BESTi search produces
many other images in which the gene expression pattern
is similar to only the anterior-ventral query pattern. There-
fore, the use of individual expression components as
search arguments increases the potential of directly iden-
tifying different overlapping expression patterns.

Conclusions
We have found that it is possible to identify biologically
significant gene expression patterns from a dataset by first
extracting numeric signature descriptors and then using
those descriptors in a computerized search of the database
for expression patterns with similar signatures or maxi-
mum pattern similarities. We find that the BFV methodol-
ogies provide a longer and more biologically meaningful
set of expression pattern matches than IMV. Even though
IMV representations will produce much faster retrieval
speeds for large collections of embryogenesis images, the
lack of biological validity of BESTi-matches retrieved
makes IMV undesirable for the present problem. Instead,
investigations and strategies aimed at improving the real
time performance of the BFV representation will better
serve the developmental biological research.

Methods
The wide variety of input methodologies, illumination
conditions, equipment, and publication venues involved
in the acquisition and presentation of gene expression
patterns makes the available gene expression pattern data
rather diverse. Extracting a gene expression pattern from
its background requires the use of a combination of man-
ual and automatic techniques. Each image is first stand-
ardized into a binary image as described in [6]. The
standardized images are then represented using the Binary
Feature Vector (BFV) [6], and the Invariant Moment Vec-
tors (IMV) [14]. Similarity measures SS and SC are derived
from BFV of which, SS is the one's complement of the dis-
tance metric DE presented in [6] and SC is a new measure
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BESTi search results with multiple domains of expression using smaller databaseFigure 5
BESTi search results with multiple domains of expression using smaller database. Results from BESTi-search for a 
query image with multiple domains of expression. (A) BFV [SS], (B) IMV [Dφ] and (C) BFV [SC] searches for the same expression 
pattern in the original database (226 images). (D) BFV [SS] search using the complete multi-domain expression in the original 
database and (E) BFV [SS] search using only the pattern on the left in the domain database. Search argument and the results 
retrieved are shown on the left and right of the arrow, respectively. Original data used to generate these expression patterns 
are shown above this row. BESTi-matches are arranged in descending order starting with the best hit for the given search sta-
tistic. Values of difference in centroids (∆CXY) and principal angles (∆θ) are also given for panels A, B and C. Each image is iden-
tified by the last name of the first author of the original research article and the figure number; with the abbreviations as 
follows: Ashe [19]; Arnosti [17]; Borggreve [18]; Casares [20]; Gaul1 [28]; Gaul2 [29]; Grossniklaus [22]; Hartmann [24]; 
Hulskamp1 [27]; Hulskamp2 [25]; Hulskamp3 [26].

(A) BFV Search A1 A2 A3 A4 A5 A6 A7 A8 

race, sog, eve race, sog, eve race, sog, eve race, sog, eve eve kni ftz kni antp 

Ashe5a Ashe3b Ashe3c Ashe5b Gaul1_10e Arnosti1a Gaul1_8d Hulskamp2_2c Gaul1_8f 

→
SS 0.712 0.672 0.555 0.475 0.461 0.446 0.440 0.440 

Dφ 0.178 0.146 0.195 0.395 1.143 0.415 0.270 0.330 

∆CXY 12.1 11.2 1.9 9.4  8.3  11.9 4.2 12.6 

∆θ 2.0 0.3 1.6 0.9 4.3  2.1 5.9 7.4 
          

(B) IMV Search B1 B2 B3 B4 B5 B6 B7 B8 

race, sog, eve rho rho iab hairy rho,twist hb hb, ftz rho,twist 

Ashe5a Arnosti2a Arnosti2b Casares4a Hartmann2a Arnosti4a Hulskamp1_3b Gaul1_9d Arnosti4b 

→
Dφ 0.068 0.071 0.076  0.081 0.082 0.085  0.091 0.092 

SS 0.218 0.192 0.331 0.288 0.197 0.247 0.339 0.399 

∆CXY 24.1 22.7 22.1 9.6 13.4 39.8 6.0 15.8 

∆θ 11.4 7.8 3.8 1.4 2.4 5.1 4.6 3.4 
          

(C) BFV Search C1 C2 C3 C4 C5 C6 C7 C8 

race, sog, eve race, sog, eve race, sog, eve eve antp ftz kni slp1 tll 

Ashe5a Ashe3c Ashe3b Gaul1_10e Gaul1_8f Gaul1_8d Hulskamp2_2c Grossniklaus6i Hulskamp3_4j 

→
SC 0.842 0.747 0.780 0.754 0.745 0.691 0.683 0.656 

Dφ 0.146 0.178 0.395 0.330 0.415 0.270 0.231 0.214 

∆CXY 11.2  12.1 9.4 12.6 11.9 4.2 9.4 19.7 

∆θ 0.3  2.0 0.9 7.4 2.1 5.9 3.5 1.8 

          
(D) All Domains 
Search D1 D2 D3 D4 D5 D6 D7 D8 

kni kni kni kni kni race, sog, eve kni Kr race, sog, eve 

Hulskamp2_2a Hulskamp1_4c Arnosti1a Hulskamp3_4h Hulskamp1_4j Ashe3c Hulskamp2_2c Gaul2_3a Ashe5a 

→
SS 0.550 0.536  0.450 0.441  0.434 0.420  0.399 0.391 

        
(E) Single 
Domain Search E1  E2 E3  E4  E5  E6 E7 E8 

kni kni slp1 hairy, hb kni kni slp1 slp1 slp1 

Hulskamp2_2a Hulskamp1_4c Grossniklaus7a Borggreve3g Arnosti1a Hulskamp3_4h Grossniklaus6b Grossniklaus8a Grossniklaus6a

→
SS 0.611  0.557  0.552 0.500  0.497 0.474 0.456 0.451 
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introduced in this paper. The third metric Dφ is deduced
from the invariant moment vectors.

Binary Sequence Vector analysis
The binary coded bit stream pattern, in which the two pos-
sible states indicate staining over or under a threshold
value, is called as Binary Feature Vector (BFV). This is
referred to as the Binary Sequence Vector (BSV) in [6]. In
other words, we represent each image as a sequence of 1's
and 0's, where the black pixels (stained areas) are denoted
by a value of 1 and the white pixels (unstained and back-
ground) are denoted by a value of 0. This BFV holds the
gene expression and localization pattern information of
each image.

The expression patterns are ordered by evaluating a set of
difference values, DE, between the binary feature vectors
of every possible pair of images in the dataset. DE was
introduced in [6] and is formally given as,

DE = Count(A XOR B)/Count(A OR B)  (1)

The term Count(A XOR B) corresponds to the number of
pixels not spatially common to the two images and the
term Count(A OR B) provides the normalizing factor, as it
refers to the total number of stained pixels (expression
area) depicted in either of the two images being
compared. For simplicity, we use the one's complement of
DE, as a measure of similarity of gene expression patterns
between two images, SS, is given by the equation

SS = (1 - DE).  (2)

SS quantifies the amount of similarity based on the over-
lap between two expression patterns. SS is equal to 1 when
the two expression patterns are identical (DE = 0).

We introduce a new similarity measure in this paper that
does not penalize for any non-overlapping region. The
measure SC quantifies the amount of similarity based on
the containment of one expression pattern in the other
given by

SC = Count(A AND B)/Count (A)  (3)

If the entire query image is contained within the result set
images found in the database, i.e., there is complete over-
lap (with respect to the query image) SC is equal to 1. Note
that, SC(A,B) ≠ SC(B,A), because the denominator corre-
sponds to the gene expression area of the query image.

Invariant Moment Vector (IMV) analysis
Some methodologies of image analysis produce numeric
descriptors that compensate for variations of scale, trans-
lation and rotation. In the following section, we describe

the invariant moment analysis of gene expression data.
Invariant moment calculations have been used in optical
character recognition and other applications for many
years [15].

To calculate these invariant moment descriptors the
standardized binary image [6] is converted to a binary rep-
resentation of the same pattern (BFV). From this binary
sequence of the image, the invariant moments and other
descriptors are extracted using the following method
[14,41]. The continuous scale equation used is

Mpq = ��xp yq f(x, y)dxdy,  (4)

where Mpq is the two-dimensional moment of the func-
tion of the gene expression pattern, f(x, y). The order of the
moment is defined as (p + q), where both p and q are pos-
itive natural numbers. When implemented in a digital or
discrete form this equation becomes

We then normalize for image translation using  and 
which are the coordinates of the center of gravity,
centroid, of the area showing expression. They are calcu-
lated as

Discrete representations of the central moments are then
defined as follows:

A further normalization for variations in scale can be
implemented using the formula,

and  is the normalization factor. From the

central moments, the following values are calculated:
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where φ7 is a skew invariant to distinguish mirror images.
In the above, φ1 and φ2 are second order moments and φ3
through φ7 are third order moments. φ1 (the sum of the
second order moments) may be thought of as the
"spread" of the gene expression pattern; whereas the
square root of φ2 (the difference of the second order
moments) may be interpreted as the "slenderness" of the
pattern. Moments φ3 through φ7 do not have any direct
physical meaning, but include the spatial frequencies and
ranges of the image.

In order to provide a discriminator for image inversion
(and rotation), sometimes called the "6", "9" problem, it
has been suggested [14,42] that the principal angle be
used to determine "which way is up". This is extremely
important in embryo images because gene expression at
the anterior and posterior regions may simply appear to
be mirror images of each other to the invariant moments,
but biologically they are completely distinct. The princi-
pal axis of the gene expression pattern f(x, y) is the angular
displacement of the minimum rotational inertia line that

passes through the centroid ( , ) and is given as:

The slope of the principal axis is called the principal angle
θ. It is calculated knowing that the moment of inertia of f

around the line  is a line

through ( , ) with slope θ. We can find the θ value at
which the momentum is minimum by differentiating this
equation with respect to θ and setting the results equal to
zero. This produces the following equation:

Using the condition |θ| < 45° one can distinguish the "6"
from the "9" and rotationally similar gene expression
patterns.

In invariant moment analysis, our initial method of image
comparison calculates the Euclidean distance between the
images using all moments (φ1 through φ7) and combina-
tions of these moments. For example, if the first two invar-
iant moments are used, then

and the distance Dij, between a pair of images i and j
where i, j = 1, 2,...n is given by

This can be expanded to use all of the moment variables.
Here, the Euclidean distance, Dφ, between any two images
is calculated as

where i and q designate images whose distance is being
calculated and j designates the parameters used in the dis-
tance calculation and j = 1, 2, ..., 7. This assumes that all
moments have the same dimensions or that they are
dimensionless.

Using this method, it is possible to rank each of the
images in order of their similarity based on, for example,
the first two invariant moments that have clear-cut physi-
cal meanings. Expansion to include additional moments
or parameters can be performed in a number of ways. It is
possible to add additional parameters to the distance
calculation making sure that each of the parameters has
the same dimension. For example, φ1 has the dimension
of distance squared, while φ2 has the dimension of the
fourth power of distance, thus requiring the square root
function to equalize dimensions for comparable distance
calculation purposes. In general, the greater number of
invariant moments used in the distance calculation, the
more selective the ranking. We have also allowed for the
use of the centroids and principal angle as a means of list
limiting.
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