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ABSTRACT: Here we describe the formation of an unexpected and unique family of hollow six-stranded helicates. The formation
of these structures depends on the coordinative flexibility of silver and the 2-formyl-1,8-napthyridine subcomponent. Crystal
structures show that these assemblies are held together by Ag4I, Ag4Br, or Ag6(SO4)2 clusters, where the templating anion plays an
integral structure-defining role. Prior to the addition of the anionic template, no six-stranded helicate was observed to form, with the
system instead consisting of a dynamic mixture of triple helicate and tetrahedron. Six-stranded helicate formation was highly sensitive
to the structure of the ligand, with minor modifications inhibiting its formation. This work provides an unusual example of mutual
stabilization between metal clusters and a self-assembled metal−organic cage. The selective preparation of this anisotropic host
demonstrates new modes of guiding selective self-assembly using silver(I), whose many stable coordination geometries render design
difficult.

Self-assembly can produce complex metal−organic archi-
tectures from simple starting materials.1−5 Such structures

have been the subject of intense recent exploration, with
applications spanning guest binding, stabilization of reactive
species, biomolecular interactions, and chemical purifica-
tion.6−9 These applications often depend on binding a target
in the pseudospherical cavity of a metal−organic cage. These
isotropic cavities can bind roughly spherical guests or guest
agglomerates10−13 but are ill-adapted to bind asymmetric and
anisotropic guests. The introduction of flexible organic
ligands14−16 or metal coordination spheres17−20 has led to
the formation of new metal−organic cages, with nonspherical
internal cavities, partially alleviating these limitations.21−25

Silver(I), in combination with dipyridyl peptidic linkers, has
recently been shown to generate a wealth of complex knotted
architectures via self-assembly.26−28 The strategy of incorpo-
rating a guest of interest into the architecture formed, as a
template29−31 or other structural element,32,33 can enhance
selectivity and sensitivity in guest binding.34−36 Furthermore, if
the guest is anionic,37−39 the diverse coordination chemistry of
anions can be used to effect the selective recognition40−42 of
targeted anions.43

We hypothesized that the flexible coordination sphere of
silver(I) ions,44−49 in combination with organic ligands that
assemble in situ around these metal-ion templates, would
provide access to new structure types that bind anions as
structural elements. Zhao and co-workers have previously
shown that nitrogen containing macrocycles can stabilize
atomically precise silver clusters with defined geometries,
supporting this hypothesis.50,51

Here we describe the formation of a family of complex six-
stranded silver helicates upon the addition of three anions:
iodide, bromide, and sulfate. This family comprises two novel
structure types, with sulfate generating a structure distinct from
those templated by halides. Key structural elements within

these architectures are unique silver(I)-anion clusters,50,51

whose geometries are molded by the central anions, which in
turn are held in an unusual, polarized, environment.
Building on the discovery that silver(I) assembles with 2-

formyl-1,8-naphthyridine (1),52 a tritopic subcomponent, and
anionic templates to form a trigonal prism with disilver
vertices,17 we investigated the use of linear ditopic anilines in
place of triangular ones. Initial experiments, involving the
mixture of benzidine (2) together with 1, various silver salts,
and prospective guests in acetonitrile (Figure 1a), gave in all
cases an intractable gel (SI Section 8).
Reasoning that increasing steric hindrance and widening the

torsion angle between the phenylene groups of the dianiline
could lead to a different outcome,53 we explored the self-
assembly of 2,2′-dimethyl-[1,1′-biphenyl]-4,4′-diamine (3)
with 1 in acetonitrile, and observed the formation of discrete
species with various silver(I) salts (Figure 1b). With silver
perchlorate, we observed a 1:1 ratio of integrals between two
species (Figure 1c). Diffusion ordered spectroscopy (DOSY)
NMR revealed that one had a significantly larger diffusion
coefficient (Figure 1c). Mass spectrometry indicated that the
smaller species had Ag4L3 composition, with the larger species
corresponding to Ag8L6 (Figures S72 and S75). Approximately
400 attempts to grow crystals of these species failed.
The observation of well-defined bands of peaks in the DOSY

spectrum is consistent with the formation of discrete species, as
opposed to poorly defined oligomers in solution.54,55 We
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modeled potential structures for the Ag8L6 architecture and
found that a tetrahedral geometry was preferred by 300−400
kcal mol−1 (SI Section 9).56 Although we cannot definitively
assign the product structures without crystallographic data, we
infer that the two species are likely to be Ag4L3 helicate 5 and
Ag8L6 tetrahedron 6, consistent with previously reported
systems,57 our modeling studies, and the solution data (SI
Section 4.4). Investigations of host−guest behavior showed
binding to a range of anionic and organic guests, with some
altering the 5:6 equilibrium (SI Section 7).58,59 When dianiline
4 was used in place of 3 we observed similar results (Figure 1b
and SI Section 10).
Having extensively screened potential guest species, we next

turned to the addition of halides to these silver(I) based
assemblies. We had initially avoided the use of halides,
anticipating precipitation of silver halide species (the solubility
product of AgI is 10−14.5 in acetonitrile).60 However, upon
addition of TBA iodide, a new species, 9, immediately formed
and, to our surprise, no precipitate was observed.
Characteristic 1H NMR signals were observed for 9 at 6

ppm, ca. 1 ppm upfield of any signals of 5 or 6 (Figure 1c).
Furthermore, a twofold desymmetrization was observed, with
two 1H NMR signals observed for each proton environment in
free ligand (Figure S1). DOSY spectroscopy gave results
consistent with the formation of a single species (Figure S8).

Mass spectrometry confirmed that a Ag8L6I2 architecture had
been formed (Figures S69 and S77).61

The X-ray crystal structure of 9 revealed its highly unusual
six-stranded helicate structure (Figure 3a,b), which is capped at
each end by a Ag4I cluster consisting of a Ag3 triangle capped
by an apical Ag on the outside and iodide on the inside (Figure
3e). The six ligand strands bridge two such Ag4I clusters,
grouped into three pairs of ligands that show aromatic stacking
interactions between naphthyridine moieties, with distances of
3.1−3.7 Å between stacked rings.
Atypical coordination environments for the Ag centers were

observed in 9. One arm of each ligand coordinates via all three
available nitrogen donors, and the other via only a single inner
naphythridine nitrogen. This differentiation leads to the
twofold desymmetrization seen in the 1H NMR spectrum
The presence of 12 uncoordinated nitrogen donors within 9

violates the principle of maximal coordinative saturation, which
has often, and successfully, been used to predict the product of
metal−organic self-assembly processes.62 The absence of
coordinative stabilization may be a consequence of the
nonchelating coordination vectors of 1, which precluded the
formation of simple structures. The lack of coordinative
saturation is compensated for by the extensive aromatic
stacking seen in the crystal structure of 9.63

Silver−silver separations were 2.96−3.00 Å between silver
atoms bridged by a single naphthyridine moiety, greater than
those observed in simpler mononuclear naphthyridine-bridged
silver complexes.63 The iodide ion coordinated to all four Ag
ions in the cluster, with Ag−I separations of 2.79−2.88 Å,
consistent with previous reports of Ag4I clusters.

50,51

Having determined the structure of 9, we investigated
whether alternative anions might lead to the generation of
further examples of this new structure type. Addition of
tetramethylammonium sulfate to a mixture of 1, 3, and silver
triflimide brought about conversion to an alternate species, 10,
as the uniquely observed product (Figure 2). This product
again showed twofold desymmetrization in the 1H NMR
(Figure S9) and a single species by DOSY NMR (Figure S14).
We initially anticipated that a structure analogous to 9 would
be formed, with Ag8L6(SO4)2 stoichiometry, based upon
similarities between 1H NMR spectra (Figure S9). However,
mass spectrometry indicated that instead a Ag12L6(SO4)4
species formed (Figures S70 and S78). Six-stranded helicate
formation was confirmed by single-crystal X-ray diffraction
(Figure 3c,d). The organic portion of the structure was similar
to 9, yet the silver clusters at the ends of both assemblies are
dramatically different. Instead of the Ag4I clusters of 9, the
vertices of 10 consist of Ag6(SO4)2 clusters composed of inner
and outer Ag3 triangles. The externally facing sulfate
coordinates to the outer triangle of silver ions via a single,
triply coordinated, oxygen atom.64 The coordination of this
sulfate is reinforced by nonclassical hydrogen bonding from
three naphthyridine CH groups (CH···O distances 2.40−2.43
Å), stabilizing the assembly (Figure 3f).65 Each silver ion of
this outer triangle is also coordinated by the internal sulfate via
a single, triply coordinated oxygen. The interior sulfate
additionally coordinates to the internal, more widely spaced,
triangle of silver ions. The two Ag triangles form pairs of silver
ions in close proximity, with each bridged by two
naphthyridine moieties. The sulfur atoms of the internal
anions are 11.58 Å apart, farther than the iodide anions in 9
(10.47 Å), and show nonclassical hydrogen bonds (CH···O
distances 2.58−2.69 Å) to internally facing CH groups (Figure

Figure 1. Self-assembly of Ag4L3 and Ag8L6 architectures. Conditions:
(a) AgNTf2 (2 equiv), 2 (1 equiv), 1 (2 equiv), d3-MeCN, 5 min; (b)
AgNTf2 (2 equiv), 3 or 4 (1 equiv), 1 (2 equiv), d3-MeCN, 5 min.
Structures of 5 and 6 are MM3-optimized models. (c) DOSY NMR of
5 and 6.
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3g). Ligand coordination again shows pairwise alternation,
here between three and two coordinating nitrogen atoms per
ligand arm. The uncoordinated donor atoms were again imine
nitrogens
We next investigated whether other anions could template

structures similar to 9 and 10. Among the 38 anions tested (SI
Sections 6.7 and 6.8), only bromide proved able to efficiently
template a six-stranded helicate (11). The 1H NMR spectrum
of 11 again exhibited a twofold desymmetrization, and a single
species was observed by DOSY spectroscopy, with a
hydrodynamic radius of 11.9 Å, similar to the cases of 9 and
10 (Figures S8, S15, and S22). Attempts to grow crystals
suitable for X-ray diffraction proved unsuccessful. However, we
inferred the Ag8L6Br2 structure of 11 to be an analogue of 9 by
comparing the 1H NMR, COSY, and HSQC spectra of 9−11.
The spectra of 9 and 11 were clearly similar, whereas that of 10
was notably different (Figure 4a and SI Section 5).
We then probed further the selectivity of the assembly

process. Silver tetrafluoroborate, hexafluorophosphate, per-
chlorate, and triflate all furnished six-stranded helicates
adopting the framework of 9 when combined with 1, 3, and
potassium iodide (Figures S38 and S39). Titration of TBA
bromide into a mixture of 5 and 6 revealed no intermediate
species (i.e., from binding a single bromide). Instead,
formation of 11 (containing two bromide anions) was seen
immediately, in the continued presence of 5 and 6 (Figures

S42 and S46), suggesting that the six-stranded helicate
assembled cooperatively (SI Sections 6.3 and 6.6). Using 2
or 4 in place of 3 led to immediate gelation (for 2) or shifts in
the equilibrium of 7 and 8 (for 4, Figures S55 and S68).
These results highlight the extent to which the subcompo-

nent self-assembly of metal−organic architectures may depend
critically upon subtle variations in subcomponent structure.
The lack of methyl groups on 2 favored polymerization over
the assembly of discrete structures. The subtle steric and
electronic differences between the methyl groups of 3 and the
trifluoromethyl groups of 4 disfavored, in the latter case, the
formation of six-stranded helicates analogous to 9−11. We
hypothesize this sensitivity to be due to the slightly weaker
ligand field in the case of ligands incorporating 4, which
disfavors structures that incorporate the more highly cationic
silver clusters incorporated into the new structure types 9−11.
This work describes the development of a system of novel

six-stranded helicates, which assemble around atomically
precise silver clusters. Specific anionic templates, in turn,
serve to shape these clusters, such that the identity of the anion
dictates the architecture observed. The ability of 2-formyl-1,8-
napthyridine to bridge silver ions enables these complex
structures to form from simple subcomponents. These new
assemblies are sensitive to the precise nature of the ligand
chosen and are selective for the templates employed, with
potential applications in sensing specific analytes.

Figure 2. (a) Synthesis of six-stranded helicates 9 and 10, formed only during self-assembly from dianiline 3. (i) Tetrabutylammonium iodide (0.34
equiv), 5 min; (ii) tetramethylammonium sulfate (1.0 equiv), 6 h. Structures of 5 and 6 are MM3 optimized models, and those of 9 and 10 are
based on crystallographic data (vide infra). Simplified representation of six-stranded helicate (b) 9 and (c) 10.
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Figure 3. (a) X-ray crystal structure of 9; (b) schematic view of 9. (c) X-ray crystal structure of 10; (d) schematic view of 10. (e) End-on view of
crystal structure of 9 showing cluster geometry. (f) End-on view of crystal structure of 10 showing the silver cluster and nonclassical hydrogen
bonds to the exterior sulfate. (g) View from within the crystal structure of 10, showing nonclassical hydrogen bonds to the internal sulfate.

Figure 4. (a) Comparison of 1H NMR spectra of 10 (top), 11 (middle), and 9 (bottom), showing the similarity between the spectra of 9 and 11.
Simplified (b) schematic and (c) cartoon views of six-stranded helicate 11.
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The ability to use atomically precise clusters in place of
mono- or dimetallic vertices in metal−organic cages has the
potential to generate a vastly increased diversity of
architectures, as we continue to uncover the principles
underpinning silver−naphthyridine self-assembly. Future
work will focus on exploring the photophysical properties of
these novel clusters66 and on expanding the range of
architectures formed by the interplay of anion templation,
ligand design, and coordinational flexibility to generate
increased structural diversity.
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Ivanovic-́Burmazovic,́ I.; Reek, J. N. H. Self-Assembled Nanospheres
with Multiple Endohedral Binding Sites Pre-Organize Catalysts and
Substrates for Highly Efficient Reactions. Nat. Chem. 2016, 8, 225−
230.
(22) Lisboa, L. S.; Findlay, J. A.; Wright, L. J.; Hartinger, C. G.;
Crowley, J. D. A Reduced Symmetry Heterobimetallic [PdPtL4]

4+

Cage: Assembly, Guest Binding and Stimulus-Induced Switching.
Angew. Chem., Int. Ed. 2020, 59, 11101−11107.
(23) Ueda, Y.; Ito, H.; Fujita, D.; Fujita, M. Permeable Self-
Assembled Molecular Containers for Catalyst Isolation Enabling

Journal of the American Chemical Society pubs.acs.org/JACS Communication

https://dx.doi.org/10.1021/jacs.0c11905
J. Am. Chem. Soc. 2021, 143, 664−670

668

https://pubs.acs.org/doi/10.1021/jacs.0c11905?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/jacs.0c11905/suppl_file/ja0c11905_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.0c11905/suppl_file/ja0c11905_si_002.cif
http://pubs.acs.org/doi/suppl/10.1021/jacs.0c11905/suppl_file/ja0c11905_si_003.cif
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jonathan+R.+Nitschke"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-4060-5122
http://orcid.org/0000-0002-4060-5122
mailto:jrn34@cam.ac.uk
mailto:jrn34@cam.ac.uk
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Charlie+T.+McTernan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-1359-0663
http://orcid.org/0000-0003-1359-0663
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tanya+K.+Ronson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-6917-3685
http://orcid.org/0000-0002-6917-3685
https://pubs.acs.org/doi/10.1021/jacs.0c11905?ref=pdf
https://dx.doi.org/10.1126/science.aal1619
https://dx.doi.org/10.1126/science.aal1619
https://dx.doi.org/10.1021/jacs.9b08484
https://dx.doi.org/10.1021/jacs.9b08484
https://dx.doi.org/10.1021/jacs.9b08484
https://dx.doi.org/10.1021/jacs.9b08484
https://dx.doi.org/10.1016/j.chempr.2016.06.007
https://dx.doi.org/10.1002/anie.202003253
https://dx.doi.org/10.1002/anie.202003253
https://dx.doi.org/10.1039/C6SC02012G
https://dx.doi.org/10.1039/C6SC02012G
https://dx.doi.org/10.1126/science.aad3087
https://dx.doi.org/10.1126/science.aad3087
https://dx.doi.org/10.1021/jacs.9b10741
https://dx.doi.org/10.1021/jacs.9b10741
https://dx.doi.org/10.1021/jacs.9b03566
https://dx.doi.org/10.1021/jacs.9b03566
https://dx.doi.org/10.1002/anie.200601351
https://dx.doi.org/10.1002/anie.200601351
https://dx.doi.org/10.1002/anie.200601351
https://dx.doi.org/10.1021/jacs.9b02207
https://dx.doi.org/10.1021/jacs.9b02207
https://dx.doi.org/10.1021/jacs.9b02207
https://dx.doi.org/10.1038/s41570-019-0085-3
https://dx.doi.org/10.1038/s41570-019-0085-3
https://dx.doi.org/10.1038/s41557-020-0455-y
https://dx.doi.org/10.1038/s41557-020-0455-y
https://dx.doi.org/10.1021/ja309031h
https://dx.doi.org/10.1021/ja309031h
https://dx.doi.org/10.1021/jacs.5b12955
https://dx.doi.org/10.1021/jacs.5b12955
https://dx.doi.org/10.1021/jacs.5b12955
https://dx.doi.org/10.1038/nchem.2452
https://dx.doi.org/10.1038/nchem.2452
https://dx.doi.org/10.1039/B916916D
https://dx.doi.org/10.1039/B916916D
https://dx.doi.org/10.1039/B916916D
https://dx.doi.org/10.1021/jacs.9b05432
https://dx.doi.org/10.1021/ja402630g
https://dx.doi.org/10.1021/ja402630g
https://dx.doi.org/10.1021/ja402630g
https://dx.doi.org/10.1021/ic048549c
https://dx.doi.org/10.1021/ic048549c
https://dx.doi.org/10.1021/ic048518h
https://dx.doi.org/10.1021/ic048518h
https://dx.doi.org/10.1021/ic048518h
https://dx.doi.org/10.1021/ic048518h
https://dx.doi.org/10.1038/nchem.2425
https://dx.doi.org/10.1038/nchem.2425
https://dx.doi.org/10.1038/nchem.2425
https://dx.doi.org/10.1002/anie.202003220
https://dx.doi.org/10.1002/anie.202003220
https://dx.doi.org/10.1021/jacs.7b02745
https://dx.doi.org/10.1021/jacs.7b02745
pubs.acs.org/JACS?ref=pdf
https://dx.doi.org/10.1021/jacs.0c11905?ref=pdf


Two-Step Cascade Reactions. J. Am. Chem. Soc. 2017, 139, 6090−
6093.
(24) Holloway, L. R.; Bogie, P. M.; Lyon, Y.; Ngai, C.; Miller, T. F.;
Julian, R. R.; Hooley, R. J. Tandem Reactivity of a Self-Assembled
Cage Catalyst with Endohedral Acid Groups. J. Am. Chem. Soc. 2018,
140, 8078−8081.
(25) Hua, B.; Shao, L.; Zhang, Z.; Liu, J.; Huang, F. Cooperative
Silver Ion-Pair Recognition by Peralkylated Pillar[5]arenes. J. Am.
Chem. Soc. 2019, 141, 15008−15012.
(26) Sawada, T.; Fujita, M. Folding and Assembly of Metal-Linked
Peptidic Nanostructures. Chem. 2020, 6, 1861−1876.
(27) Sawada, T.; Inomata, Y.; Shimokawa, K.; Fujita, M. A Metal-
Peptide Capsule by Multiple Ring Threading. Nat. Commun. 2019,
10, 5687.
(28) Inomata, Y.; Sawada, T.; Fujita, M. Metal-Peptide Torus Knots
from Flexible Short Peptides. Chem 2020, 6, 294.
(29) Barendt, T. A.; Docker, A.; Marques, I.; Feĺix, V.; Beer, P. D.
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