Bioinformatics, 38(9), 2022, 2633-2635
https://doi.org/10.1093/bioinformatics/btac121
Advance Access Publication Date: 23 February 2022
Applications Note

OXFORD

Structural bioinformatics
localpdb—a Python package to manage protein

structures and their annotations

Jan Ludwiczak @ *, Aleksander Winski and Stanislaw Dunin-Horkawicz © *

Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland

*To whom correspondence should be addressed.
Associate Editor: Lenore Cowen

Received on July 29, 2021; revised on January 7, 2022; editorial decision on February 19, 2022; accepted on February 21, 2022

Abstract

Motivation: The wealth of protein structures collected in the Protein Data Bank enabled large-scale studies of their
function and evolution. Such studies, however, require the generation of customized datasets combining the struc-
tural data with miscellaneous accessory resources providing functional, taxonomic and other annotations.
Unfortunately, the functionality of currently available tools for the creation of such datasets is limited and their usage
frequently requires laborious surveying of various data sources and resolving inconsistencies between their
versions.

Results: To address this problem, we developed localpdb, a versatile Python library for the management of protein
structures and their annotations. The library features a flexible plugin system enabling seamless unification of the
structural data with diverse auxiliary resources, full version control and powerful functionality of creating highly cus-
tomized datasets. The localpdb can be used in a wide range of bioinformatic tasks, in particular those involving

large-scale protein structural analyses and machine learning.

Availability and implementation:

localpdb is freely available at https:/github.com/labstructbioinf/localpdb.

Documentation along with the usage examples can be accessed at https://labstructbioinf.github.io/localpdb;.
Contact: j.ludwiczak@cent.uw.edu.pl or s.dunin-horkawicz@cent.uw.edu.pl

1 Introduction

The size of the Protein Data Bank (PDB) has been growing steadily
over the past decades (Burley et al., 2019), encouraging the develop-
ment of computational tools enabling classification (Andreeva et al.,
2020; Cheng et al., 2014; Dawson et al., 2017) and annotation
(Dana et al., 2019) of protein structures it encompasses. The wealth
of the collected data has opened up many research opportunities
ranging from studies focused on proteins of a particular function or
evolutionary position to comprehensive surveys aiming at capturing
the general aspects of the ‘protein universe’ (Alva et al., 2010;
Nepomnyachiy et al., 2014). However, these innovations came at
the cost of the dispersion of data sources, whose integration began
to require expert knowledge and the tedious process of mapping
structures to the corresponding sequence and functional informa-
tion. Another problem frequently faced during research involving
multiple PDB structures is related to the management of their ver-
sions—it is not uncommon for PDB structures to become updated,
entirely changed or even removed after deposition. Similarly, the
associated tools integrating the classifications and annotations, such
as the PDBe-KB (Varadi et al., 2020), RCSB (Rose et al., 2021),
SIFTS (Dana et al., 2019), Proteo3Dnet (Postic et al., 2021) or
ECOD (Cheng et al., 2014), are updated regularly to capture new
structures or fix errors. Consequently, the datasets obtained prior to

©The Author(s) 2022. Published by Oxford University Press.

a given study may differ substantially from those generated later.
This, in turn, makes the recreation of data at a given time point very
hard, negatively impacting the research reproducibility.

The difficulties outlined above force researchers to manually col-
lect and manage their datasets, bringing a risk of omitting important
information, for example, during the collection of protein structures
originating from a given taxonomic, evolutionary or functional
group. Also, even cosmetic changes to a few structures, their identi-
fiers or associated data may cause hard-to-track internal inconsisten-
cies that need to be amended by hand. These research-hampering
issues were partially alleviated by the development of computational
tools such as the PDB module (Hamelryck and Manderick, 2003) of
the biopython package (Cock et al., 2009), CCPDB webserver
(Agrawal et al., 2019; Singh et al., 2012) or PDB application pro-
gramming interfaces (API) (Gilpin, 2015; Rose et al., 2021).
Unfortunately, these solutions have limitations, such as the lack of
version management, the impossibility of building highly customized
datasets based on complex queries, and last but not least, the un-
availability of high-level integration with the programming tools
typically used to carry out bioinformatics analyses.

The modern data analysis pipelines rely on the general develop-
ments in the Python and R programming languages. In particular,
the so-called data frame structures, originating from the R language,
become increasingly popular among Python developers, owing to

2633

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/),
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com


https://orcid.org/0000-0002-3487-5433
https://orcid.org/0000-0002-4581-1558
https://github.com/labstructbioinf/localpdb
https://labstructbioinf.github.io/localpdb/
https://academic.oup.com/

2634

J.Ludwiczak et al.

the development of the pandas package (McKinney, 2010). The
main advantage of using data frames in data analyses stems from
their plasticity, that is, a possibility to query, sort, search, merge or
partition them with a handful of simple commands. The usefulness
of pandas data frames inspired the development of its extensions
devoted to the analyses of biological data. For example, the biopan-
das (Raschka, 2017) library enables representing the individual PDB
structures as data frames, thus greatly facilitating their investigation
at the atomic level. Another tool having pandas under the hood is
rstoolbox (Bonet et al., 2019), a Python library for the analysis of
large-scale structural data, mostly in the context of protein design
tasks.

The limitations of the currently available tools motivated us to
develop localpdb, a lightweight Python library that utilizes the ver-
satility of pandas DataFrames to offer a simple programming frame-
work for handling a local copy of the PDB and auxiliary resources,
such as ECOD (Schaeffer et al., 2017), SIFTS (Dana et al., 2019) or
DSSP (Touw et al., 2015) and thus enabling the creation of complex
and reproducible bioinformatics workflows. The requirements to
use localpdb are minimal and the package will run on any modern
PC with enough disk space (around 100 GB if the user will decide to
store PDB structures in both the PDB and mmCIF formats). In the
following section, we provide a concise overview of the package fea-
tures and functionalities. The full documentation can be accessed at
https://labstructbioinf.github.io/localpdb/.

2 Overview of the localpdb package

The overview of the localpdb package is shown in Figure 1. In its
basic functionality, it allows creating a local mirror image of the
PDB (in either PDB or mmCIF formats) accessible via the PDB ob-
ject and its entries and chains attributes (both being pandas
DataFrames) that provide direct access to the whole structures and
their components, respectively.

With the weekly releases of the PDB, the local copy can be
updated to account for added, modified or outdated entries.
Importantly, the update procedure is optional and does not have to
follow a weekly routine. Another important feature of the localpdb
is the ability to retain access to the previous versions of the data
even after performing multiple updates. This enables the work on
multiple projects concurrently without the need to store large separ-
ate datasets for each of them. Moreover, data corresponding to any
of the localpdb versions can be seamlessly shared and independently
recreated using the relatively small, exportable configuration file.

The basic functionality of the localpdb package is extendable
with a flexible plugin system. The plugins enable augmenting the

lpdb.chains

RCSB
Search API

T lpdb.entries

PDB / mmCIF
mirror
J ,

Apdb. scop { Plugins ]
lpdb.ecod - -
lpdb.cath lpdb.ec
taxonomy lpdb.pfam

version
{—“—FM”H 2021W

structural data with various annotations and making them available
to the user in a uniform, searchable DataFrame format. We imple-
mented several plugins featuring access to various resources such as
domain databases (SCOP, ECOD, CATH and Pfam) or taxonomic
and EC number mappings. While these plugins provide annotations
related to the whole structure, chain or their segments, the others en-
able also per residue annotations. For example, the current release
of the localpdb package includes plugins for DSSP (Touw et al.,
2015), a program for the annotation of secondary structure elements
and Socket (Walshaw and Woolfson, 2001), a tool for the annota-
tion of coiled-coil domains. Alike the core of the localpdb package,
also the plugins are under the control of the versioning system,
which is especially important in the context of periodically updated
resources such as ECOD or SIFTS. Finally, in parallel to the plugin
system, the localpdb package features access to the recently released
RCSB search API (Rose et al., 2021) allowing for queries based on
the text descriptors, sequence similarity metrics and sequence or
structural motifs.

In an effort to simplify the process of creation of the datasets
integrating information from multiple sources, we implemented a
filtering system that adjusts all the active DataFrames once the selec-
tion is performed on either of them. For example, performing a se-
lection on the entries DataFrame automatically adjusts all the
associated DataFrames such as chains and those related to the
plugins.

To fully demonstrate the applicability of the package, we present
two advanced use cases that accompany the manuscript and are
available at the documentation webpage (https://labstructbioinf.
github.io/localpdb/). The first example reproduces the ensemble ana-
lysis of the publicly available HIV protease structures to infer the
conformational dynamics of this enzyme (Katebi er al., 2015). We
show that coupling localpdb with other common structural bioinfor-
matics packages enables the recreation of this complex, multistep
analysis purely in Python with a handful of lines of code. The second
example focuses on the machine learning applications and describes
steps performed to derive a dataset used to train our coiled-coil do-
main prediction algorithm—DeepCoil (Ludwiczak et al., 2019). The
presented approach can be easily adapted to facilitate dataset cre-
ation for similar machine learning tasks in which sequence similarity
control and minority class oversampling are essential. Finally, the
localpdb package has been also additionally tested during various
projects conducted in our group; for example, it was used to con-
struct and maintain specialized datasets used to train machine learn-
ing models allowing the prediction of protein-ligand interactions
(Kaminski et al., 2021) and to develop a pipeline for the annotation
of coiled-coil motifs in protein structures (Szczepaniak et al., 2021).

lpdb.chains lpdb.chains
—
= ==
lpdb.entries lpdb.entries
—
I |
UPDATE
UFDATE version skipniversions version
20210208 20210508

f

TRACK: changed, modified, obsolete

* EXPORT and recreate with a configuration file

Fig. 1. General overview of the features and functionalities of the localpdb package. At its core, localpdb syncs the raw PDB data and entries (in PDB and mmCIF formats) and
makes them available to the user through the DataFrame objects. With the weekly releases of new data, the local files can be updated, however, the possibility to access the pre-
vious versions is retained through the tracking mechanism. The functionalities of the localpdb can be further extended with the configurable plugin system that allows to fetch
and track the updates from the additional data sources. localpdb also provides access to the RCSB search API that can be used for complex queries based on multiple criteria.
Finally, each version of the localpdb can be independently recreated on a different machine or by other users by exporting a small configuration file


https://labstructbioinf.github.io/localpdb/
https://labstructbioinf.github.io/localpdb/
https://labstructbioinf.github.io/localpdb/

localpdb

2635

In sum, the localpdb package unifies and extends a variety of fea-
tures offered by other tools by providing robust versioning and eas-
ily extendable plugin systems. We therefore envision that the
localpdb package can be applicable to most structural bioinformat-
ics tasks, in particular those related to building complex and repro-
ducible workflows around the PDB data and deriving datasets for
machine learning purposes.

Acknowledgements

The authors thank Kamil Kaminski, Krzysztof Szczepaniak, Adriana Bukala,
Rafal Madaj and Maciej Jasinski for testing and validation of the method and
useful comments on how to improve it.

Data availability

The underlying data are available within the article and the accompanying
supplementary materials available at: https://github.com/labstructbioinf/
localpdb, https://labstructbioinf.github.io/localpdb/.

Funding

This work was supported by the National Science Centre, Poland [2017/27/
N/NZ1/00716 to J.L.]. S.D.-H. was supported by the First TEAM program of
the Foundation for Polish Science co-financed by the European Union under
the European Regional Development Fund [POIR.04.04.00-00-5CF1/18-00
to S.D.-H.].

Conflict of Interest: none declared.

References

Agrawal,P. et al. (2019) ccPDB 2.0: an updated version of datasets created and
compiled from Protein Data Bank. Database, 2019, bay142.

Alva,V. et al. (2010) A galaxy of folds. Protein Sci., 19, 124-130.

Andreeva,A. et al. (2020) The SCOP database in 2020: expanded classification
of representative family and superfamily domains of known protein struc-
tures. Nucleic Acids Res., 48, D376-D382.

Bonet,]. et al. (2019) rstoolbox — a Python library for large-scale analysis of
computational protein design data and structural bioinformatics. BMC
Bioinformatics, 20, 240.

Burley,S.K. et al. (2019) Protein Data Bank: the single global archive for 3D
macromolecular structure data. Nucleic Acids Res., 47, D520-D528.

Cheng,H. et al. (2014) ECOD: an evolutionary classification of protein
domains. PLoS Comput. Biol., 10, e1003926.

Cock,P.J.A. et al. (2009) Biopython: freely available Python tools for compu-
tational molecular biology and bioinformatics. Bioinformatics, 25,
1422-1423.

Dana,].M. et al. (2019) SIFTS: updated Structure Integration with Function,
Taxonomy and Sequences resource allows 40-fold increase in coverage of
structure-based annotations for proteins. Nucleic Acids Res., 47,
D482-D489.

Dawson,N.L. et al. (2017) CATH: an expanded resource to predict protein
function through structure and sequence. Nucleic Acids Res., 45,
D289-D295.

Gilpin,W. (2015) PyPDB: a Python API for the Protein Data Bank.
Bioinformatics, btv543.

Hamelryck,T. and Manderick,B. (2003) PDB file parser and structure class
implemented in Python. Bioinformatics, 19, 2308-2310.

Kaminski,K. et al. (2021) Rossmann-toolbox: a deep learning-based protocol
for the prediction and design of cofactor specificity in Rossmann fold pro-
teins. Brief. Bioinf., 23, bbab371.

Katebi,A.R. et al. (2015) The use of experimental structures to model protein
dynamics. Methods Mol. Biol., 1215, 123-236.

Ludwiczak,]. et al. (2019) DeepCoil - a fast and accurate prediction of
coiled-coil domains in protein sequences. Bioinformatics, 35,2790-2795.
McKinney,W. (2010) Data structures for statistical computing in Python. In:
van der Walt,S. and Millman,]. (eds.) Proceedings of the 9th Python in

Science Conference. Austin, TX, Vol. 445, pp. 56-61.

Nepomnyachiy,S. et al. (2014) Global view of the protein universe. Proc.
Natl. Acad. Sci. USA, 111, 11691-11696.

Postic,G. et al. (2021) Proteo3Dnet: a web server for the integration of struc-
tural information with interactomics data. Nucleic Acids Res., 49,
W567-WS572.

Raschka,S. (2017) BioPandas: working with molecular structures in pandas
DataFrames. J. Open Source Softw., 2,279.

Rose,Y. et al. (2021) RCSB Protein Data Bank: architectural advances towards
integrated searching and efficient access to macromolecular structure data
from the PDB archive. J. Mol. Biol., 433, 166704.

Schaeffer,R.D. et al. (2017) ECOD: new developments in the evolutionary
classification of domains. Nucleic Acids Res., 45, D296-D302.

Singh,H. et al.; Open Source Drug Discovery Consortium. (2012) ccPDB: com-
pilation and creation of data sets from Protein Data Bank. Nucleic Acids
Res., 40, D486-D489.

Szczepaniak,K. et al. (2021) A library of coiled-coil domains: from regular
bundles to peculiar twists. Bioinformatics, 36, 5368-5376.

Touw,W.G. et al. (2015) A series of PDB-related databanks for everyday
needs. Nucleic Acids Res., 43, D364-D368.

Varadi,M. et al. (2020) PDBE-KB: a community-driven resource for structural
and functional annotations. Nucleic Acids Res., 48, D344-D353.

Walshaw,]. and Woolfson,D.N. (2001) SOCKET: a program for identifying
and analysing coiled-coil motifs within protein structures. J. Mol. Biol., 37,
4575-4577.



