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Abstract: Formation of neutrophil extracellular traps (NETs) is a two-faced innate host defense
mechanism, which, on the one hand, can counteract microbial infections, but on the other hand,
can contribute to massive detrimental effects on the host. Cholesterol depletion from the cellular
membrane by Methyl-β-cyclodextrin (MβCD) is known as one of the processes initiating NET
formation. Since neutrophils mainly act in an inflammatory environment with decreased, so-called
hypoxic, oxygen conditions, we aimed to study the effect of oxygen and the oxygen stress regulator
hypoxia-inducible factor (HIF)-1α on cholesterol-dependent NET formation. Thus, murine bone
marrow-derived neutrophils from wild-type and HIF-knockout mice or human neutrophils were
stimulated with MβCD under normoxic (21% O2) compared to hypoxic (1% O2) conditions, and
the formation of NETs were studied by immunofluorescence microscopy. We found significantly
induced NET formation after treatment with MβCD in murine neutrophils derived from wild-type
as well as HIF-1α KO mice at both hypoxic (1% O2) as well as normoxic (21% O2) conditions. Similar
observations were made in freshly isolated human neutrophils after stimulation with MβCD or
statins, which block the HMG-CoA reductase as the key enzyme in the cholesterol metabolism. HPLC
was used to confirm the reduction of cholesterol in treated neutrophils. In summary, we were able to
show that NET formation via MβCD or statin-treatment is oxygen and HIF-1α independent.

Keywords: neutrophil extracellular traps; hypoxia; statin; HIF-knock-out mice

1. Introduction

Neutrophils are the well-known first-line defenders of the innate immune system,
which migrate to the site of infection and use a set of different antimicrobial actions against
invading pathogens. The formation of neutrophil extracellular traps (NETs) has drawn
a lot of attention since their discovery [1]. Meanwhile, it is well described that NETs are
formed in response to bacterial [2], fungal [3], parasitical [4], and also viral infections [5,6].
Despite their host defending characteristics, over the years, more and more evidence has
accumulated, showing detrimental effects of NET formation in diseases like thrombosis [7],
autoimmune diseases, such as lupus [8,9], or cystic fibrosis [10,11]. It is apparent that over-
shooting NET formation and insufficient clearance of NETs play a crucial role during acute
respiratory distress syndrome (ARDS), acquired for example, by severe influenza [6,12]
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or SARS-CoV-2 infections [13,14]. Without a doubt, neutrophils and their extracellular
traps are involved in a variety of actions in diseases of different origins. However, despite
their substantial role in these processes, the mechanism of NET formation is yet to be fully
understood in all its facets. The literature describes NET formation to be distinct from
necrosis and apoptosis [15], requiring specific cellular processes such as reactive oxygen
species (ROS) dependent disruption of the nuclear membrane, and mixing of nuclear com-
ponents and cytoplasmic granules, a process called NETosis. Nonetheless, NETosis can
be initiated by different enzymes like myeloperoxidase (MPO), neutrophil elastase, and
peptidyl arginases (PAD), which lead to histone degradation and decondensation of the
nucleus [15–17]. In addition, cholesterol, as an important molecule for cellular membrane
composition and signaling, was shown to be involved in the process of NET formation,
since its depletion from the cellular membrane by MβCD led to strong NET formation
associated with the death of the cell, a phenomenon called NETosis [18,19]. Nevertheless,
the role of oxygen in this process remains to be elucidated. The widely used stimulation of
NET formation in vitro via PMA (Phorbol-12-myristat-13-acetat) was shown to be not only
ROS dependent, but also to require the presence of dissolved oxygen in the surrounding
medium [20], which highlights the necessity to involve oxygen as a factor of interest during
investigation of cellular processes. Most in vitro experiments are carried out under atmo-
spheric oxygen levels of 21% (normoxia), despite the fact that already in the healthy host,
these oxygen levels are not reached in vivo in the different tissues [21–23]. Moreover, infec-
tion sites may show strongly reduced oxygen levels (hypoxia) due to high oxygen demand
of active immune cells. Therefore, we performed NET formation assays in this study under
normoxic (18–21% O2) and hypoxic (1% O2) conditions in parallel, to also assess the influ-
ence of oxygen on cholesterol-dependent NET formation. Additionally, we were interested
in the role of HIF-1α as oxygen-dependent cellular regulator, which we addressed with a
mouse breed that showed reduced HIF-1α function in the myeloid cell linage due to cutting
off the hif-1α exon 2 by a heterozygously expressed Cre-recombinase [24,25]. HIF-1α is a
cytosolic protein, which is continuously degraded under the presence of oxygen due to
post-translational modification via hydroxylation and ubiquitination. However, without
oxygen, HIF-1α is stabilized, transmigrates to the nucleus where it dimerizes with the
HIF-1β subunit and functions as a transcription factor [26,27]. Interestingly, a link between
NET formation and the activity of HIF-1α is found in the literature [28,29]. Including these
aspects, we wanted to investigate the role of oxygen and HIF-1α on the cholesterol deple-
tion derived NET formation as described by Neumann et al., 2014a. Thus, for this study,
we investigated freshly isolated neutrophils of murine origin from wild-type compared to
HIF-1α-deficient mice for their NET formation behavior in response to MβCD under both
normoxia and hypoxia. Moreover, we investigated NET formation and cellular cholesterol
levels in human neutrophils after treatment with MβCD or statins under altering oxygen
conditions.

2. Results
2.1. Establishment of Hypoxia Conditions and HIF-1α-Deficient Neutrophils to Study
NET Formation

To study the role of HIF-1α in the MβCD-induced NET formation, we isolated bone
marrow-derived neutrophils via antibody-dependent negative selection from wild-type
and HIF-1α-deficient mice [24,25]. The purity of isolated cells was confirmed by flow
cytometry (Supplementary Material, Supplementary Figure S1). As a control experiment to
confirm HIF-1α-deficiency, we investigated the expression of hif-1α exon 2 in comparison
to exon 4–5 expression. We confirmed a significantly reduced transcript expression by
around 50% of the targeted exon 2 in the knockout mice (KO) under both normoxic (N) and
hypoxic (H) conditions (Figure 1A). Additionally, the transcript expression of the HIF-1α
target gene slc2a1, a glucose transporter, was examined via RT-qPCR. We could show that
the expression of slc2a1 was distinctly (p = 0.057) increased in the wild-type (WT) mice
under hypoxia relative to normoxic expression levels, whereas the expression in the KO
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mice remained unchanged compared to normoxia (Figure 1B). These data confirm that this
mouse model is appropriate to study the effect of HIF-1α in neutrophils.
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normoxia and 55% under hypoxia, compared to the WT samples (straight dashed pattern). Signifi-
cance was analyzed via 2-way-ANOVA with multiple comparisons. (B): Here, the fold change of 
hif-1α exon 4-5 expression and HIF-1α target gene slc2a1 is shown in untreated hypoxia samples, 
which were normalized to expression levels under normoxia. No upregulation of HIF-1α target 
gene in KO samples can be observed. Significance was analyzed via the Man–Whitney test. (C): 

Figure 1. (A): The graph shows fold change of hif-1α exon 2 expression normalized to hif-1α exon
4-5 expression in KO mice (slanted dashed pattern). The KO shows expression reduced by 42%
under normoxia and 55% under hypoxia, compared to the WT samples (straight dashed pattern).
Significance was analyzed via 2-way-ANOVA with multiple comparisons. (B): Here, the fold change
of hif-1α exon 4-5 expression and HIF-1α target gene slc2a1 is shown in untreated hypoxia samples,
which were normalized to expression levels under normoxia. No upregulation of HIF-1α target gene
in KO samples can be observed. Significance was analyzed via the Man–Whitney test. (C): Oxygen
levels in hypoxia and normoxia samples during 3 h incubation revealed that PMA stimulation under
normoxia led to slightly reduced oxygen levels. Overall, sample oxygen levels remained stable during
the incubation time. (D): NET formation analysis after 3 h incubation of neutrophils under hypoxia
or normoxia. Under normoxia, PMA induced NET formation in both WT and KO cells, while no
NET formation was observed under hypoxia. Significance was analyzed via 1-way-ANOVA with
multiple comparisons. (E): Representative immune fluorescence images of NET formation under
different oxygen conditions in the WT mice. Left images show NET formation under normoxia, right
images show NET formation under hypoxia, with inhibited NET formation after PMA treatment
under hypoxia. Blue: DAPI, green: DNA/Histone1 complexes. Scale bar: 100 µm. N = 3/4 (WT/KO)
for all shown data sets. (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

To study NET formation under altering oxygen levels, a continuous application of
hypoxic conditions was necessary. Via non-invasive measurement of oxygen levels in the
medium, we were able to confirm that the hypoxic conditions were applied over the course
of the experiment. The oxygen levels measured under normoxic conditions remained
unchanged at 19–21% O2, while the samples incubated under hypoxia showed low levels
of oxygen of 1–1.5% O2 (Figure 1C). PMA treatment of cells was used as a control since
PMA is known to efficiently induce NET formation in an oxygen-dependent manner [20].
Using immunofluorescence microscopy, we quantified NET-formation in control versus
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PMA-stimulated cells and confirmed that PMA triggered NET formation in the bone
marrow-derived mouse neutrophils after 3 h stimulation. Additionally, we could show
that PMA-induced NET formation in this murine model was significantly inhibited under
hypoxic conditions in both WT and KO, which goes in line with the findings described for
human neutrophils in a previous study [20]. We did not observe a significant difference
in NET formation upon PMA treatment under normoxia or hypoxia between wild-type
and HIF-1α-deficient mice, indicating that HIF-1α does not influence this NET formation
pathway initiated by PMA (Figure 1D,E).

In summary, the initial control experiments show that the model is functionally valid to
study the effect of oxygen and the oxygen stress regulator HIF-1α on cholesterol-dependent
NET formation.

2.2. NET Formation via Cholesterol Depletion Is Independent of HIF-1α Expression in Murine
Neutrophils and Independent of Oxygen

The formation of NETs by depletion of cholesterol via MβCD is well described [18].
Thus, we wanted to know if this mechanism is altered under hypoxia or influenced by the
function of HIF-1α. Therefore, we isolated neutrophils from the murine bone marrow of
WT and KO mice, incubated them with MβCD for 3 h, and subsequently evaluated the
rate of NET formation via immune fluorescence microscopy. We could show that MβCD
induced NET formation to a high extent in murine neutrophils (Figure 2) under normoxic
as well as hypoxic conditions in both genotypes. Altering oxygen conditions did not lead to
significant differences in NET formation values (Figure 2A) within the genotypes (MβCD
hypoxia vs. MβCD normoxia, p ≥ 0.99 for WT, p = 0.07 for KO). Moreover, also between WT
and KO, no significant differences were observed when the cells were stimulated (hypoxia:
WT vs. KO p ≥ 0.99, normoxia: WT vs. KO p ≥ 0.99). Figure 2B shows representative images
of NET formation induced by MβCD in the KO mice under both oxygen conditions, where
it is observable that NET formation efficiently occurs under hypoxia as well as normoxia.
These findings led to the hypothesis that NET formation via cholesterol depletion happens
in a HIF-1α independent manner. To further investigate the influence of oxygen and to
confirm the findings from the murine model, we repeated the experiments in the human
model with peripheral blood-derived neutrophils.

2.3. NET Formation via Cholesterol Depletion Is Oxygen Independent in Human Neutrophils

As the following step, we performed NET assays with neutrophils freshly isolated
from peripheral human blood to see if MβCD induced NET formation under hypoxia and
normoxia in a similar manner in human cells. We triggered NET formation in human
neutrophils by both stimuli, PMA as control substance, and MβCD (Figure 3). As expected,
we observed the inhibition of PMA induced NET formation under hypoxia (Figure 3A),
whereas PMA efficiently induced NETs under normoxia. The stimulation by MβCD with
10 mM resulted in a significant NET-induction under normoxia as well as hypoxia. When
comparing hypoxia with normoxia, a tendency for a reduced rate of NET formation un-
der hypoxia is seen, but not statistically significant (p > 0.73). Since MβCD-dependent
increase of NET formation is concentration-dependent [18], we chose to include a two-
fold increased concentration of MβCD in the human NET formation assays of 20 mM
(MβCD+) to allow more efficient or faster cholesterol depletion. With higher concentrations
of MβCD, NET formation increased even higher, reaching similar levels in hypoxia and
normoxia. In summary, we could observe that hypoxic and normoxic neutrophils, stim-
ulated with MβCD+, showed strong significance in NET formation under both hypoxia
and normoxia (Figure 3A), supporting the findings of the murine model, suggesting an
oxygen-independent NET formation pathway by cholesterol depletion.
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Figure 2. (A): Murine neutrophils of WT and KO mice were stimulated with cholesterol-depleting
agent MβCD for 3 h under normoxia and hypoxia. Neither low oxygen conditions nor the genotype
of the mice had a significant influence on the rate of NET formation. Significance was analyzed
via the Kruskal–Wallis test with multiple comparisons. (B): Representative immune fluorescence
images of KO mice. Left side, hypoxia incubated neutrophils after control or MβCD stimulation.
Right side, normoxia incubated neutrophils after control or MβCD stimulation. Blue: DAPI, green:
DNA/Histone1 complexes. Scale bars: 100 µm. N = 3. (** p < 0.01, **** p < 0.0001).
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stimulation resulted in NET formation under hypoxia and normoxia. Significance was analyzed via 
1-way ANOVA with multiple comparisons. (B): Representative immune fluorescence images. The 
upper row shows NET formation with respective stimulus under hypoxia, bottom row for 

Figure 3. (A): Human neutrophils incubated under hypoxia and normoxia after stimulation with
either PMA, MβCD, or MβCD+. NET formation by PMA was inhibited under hypoxia, MβCD+
stimulation resulted in NET formation under hypoxia and normoxia. Significance was analyzed via
1-way ANOVA with multiple comparisons. (B): Representative immune fluorescence images. The
upper row shows NET formation with respective stimulus under hypoxia, bottom row for normoxia.
Blue: DAPI, green: DNA/Histone1 complexes, red: myeloperoxidase (MPO). Scale bars: 100 µm.
N = 4, (=3 for MβCD+). (* p < 0.05, *** p < 0.001, **** p < 0.0001).
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2.4. Statins Induce NET Formation in Human Neutrophils in an Oxygen Independent Manner

Finally, we used statins as they are a physiologically relevant NET inducer via the
manipulation of cellular cholesterol. Statins are a set of drugs widely used especially in the
elderly population, as a treatment to reduce cholesterol levels and were already shown to
induce NET formation [19]. In our experiments, we used the statins Simva- and Mevastatin
as solitary stimuli.

Freshly isolated neutrophils were incubated for 3 h with Simva- and Mevastatin to
investigate NET formation and the influence of oxygen. Again, PMA served as positive
and oxygen-dependent control. We found that both statins alone were able to trigger NET
formation (Figure 4A). As expected, PMA induced NET formation in an oxygen-dependent
manner, with high levels of NETs under normoxia and strongly reduced levels under
hypoxia. Both statins significantly induced higher NET formation compared to negative
control and vehicle control samples, showing their respective capability to induce NET
formation alone and to a similar extent as PMA or MβCD (Figures 3A and 4A). Thereby,
the phenotype of NETs induced by statins was observed to be similar to what was seen
for MβCD induced NET formation with long, fine NET fibers, observable by immune
fluorescence microscopy as well as on single-cell level via scanning electron microscopy
(Figures 3B, 4B and 5). Importantly, we could show that NET formation rates between
neutrophils stimulated with Simvastatin (p = 0.11) or Mevastatin (p > 0.99) did not differ
significantly between hypoxia and normoxia. Thus, we conclude that both effects of Simva-
and Mevastatin are oxygen-independent, which goes in line with similar data shown for
MβCD(+).

2.5. MβCD Leads to Strongly Reduced Cellular Cholesterol Levels in Murine Bone Marrow-Derived
as Well as Human Blood-Derived Neutrophils after 3 h, Independent of Oxygen Level

As a final step, we measured cellular cholesterol levels in murine and human neu-
trophils after respective stimulation with either MβCD or statins and incubation under
normoxia or hypoxia to confirm the actual reduction of cholesterol levels. We incubated
neutrophils isolated from the bone marrow of WT and KO mice for 3 h with either medium
or MβCD under normoxic or hypoxic conditions. Afterward, lipids were extracted and
quantified via High Performance Liquid Chromatographie (HPLC) for changes in total
cellular cholesterol (Figures 6 and 7). We could show in the KO mice that MβCD signifi-
cantly reduced cellular cholesterol levels under hypoxia while normoxia samples revealed
a tendency to reduce cholesterol levels after treatment (Figure 6). In the WT samples, a
statistical determination was not feasible since cholesterol levels were below the limit of
detection of 10 ng (indicated by # in Figure 6) in all 3 samples of WT cells, stimulated with
MβCD under hypoxia and 2/3 of the samples under normoxia. However, a reduction
of cholesterol levels below the limit of detection is a clear sign of the strong and oxygen
independent activity of MβCD in these samples. Moreover, murine neutrophils did not
show significant differences between hypoxic or normoxic conditions (MβCD hypoxia vs.
MβCD normoxia, p = 0.97 for KO) and genotypes (Ctr hypoxia: WT vs. KO p = 0.78, Ctr
normoxia: WT vs. KO p = 0.26). These data suggest that cholesterol depletion via MβCD
works independently of oxygen and HIF-1α in murine neutrophils.
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Figure 4. (A): Simvastatin and Mevastatin strongly induce NET formation in human neutrophils
under hypoxia and normoxia. PMA showed the already described oxygen dependency, while both
statins did not differ significantly between the altering oxygen conditions. Significance was analyzed
via 1-way ANOVA with multiple comparisons. (B): Representative immune fluorescence images of
statin-induced NET formation under hypoxia and normoxia, as well as respective negative controls.
Both statins showed a similar phenotype of long distinct NET fibers under both oxygen conditions.
In addition, both stimuli showed strong positive staining for myeloperoxidase (MPO). Blue: DAPI,
green: DNA/Histone1 complex, red: MPO. Scale bars: 100 µm. N = 3. (** p < 0.01, **** p < 0.0001).
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Figure 6. Cellular cholesterol levels of bone marrow-derived murine neutrophils after incubation
under hypoxia. In the KO samples, MβCD stimulation resulted in a significant reduction of the
cellular cholesterol level. Cellular cholesterol levels after incubation under normoxia revealed a
tendency to reduce cholesterol levels in the KO after MβCD treatment, “#” indicates values were
below the detection limit of 10 ng thus statistical analysis was not possible for these samples. However,
a strong reduction of cellular cholesterol levels seems apparent. Statistical analysis was performed
via mixed-effect-analysis with subsequent multiple comparisons. N = 3. (* p < 0.05).
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bation under hypoxia for 3 h. All stimuli significantly reduced cellular total cholesterol levels within
the incubation time. Cellular cholesterol levels after incubation under normoxia were significantly
reduced by all stimuli. Statistical analysis was performed via mixed-effect-analysis with subsequent
multiple comparison. N = 4. (*** p < 0.001, **** p < 0.0001).

Similarly, in the human model, we could additionally confirm that MβCD, MβCD+,
and Simvastatin were able to significantly reduce the cellular cholesterol content under
both oxygen conditions (Figure 7).

3. Discussion

The formation of NETs is mainly initiated as a reaction of the innate immune system
to an ongoing infection and mediating entrapment of pathogens. New evidence shows
that NETs efficiently boost the phagocytosis of bacterial pathogens by macrophages [30].
However, as described in the introduction, NETs can cause severe damage to host tissue
and worsen the outcome of different diseases. Cholesterol is an important membrane
component and involved in numerous cell signaling pathways as well as alterations of
cellular functions, such as NET formation [18]. At the site of infections, neutrophils act
under reduced oxygen conditions in the inflammatory environment due to increased
oxygen consumption by the active cells and insufficient oxygen supply [31,32]. Thus,
it is important to investigate neutrophil behavior under respective oxygen conditions.
To conduct this, we chose a set of approaches to investigate whether hypoxia itself and
HIF-1α have an influence on cholesterol-dependent NET formation. Therefore, in this
study, we aimed to clarify the following questions: (I) is HIF-1α involved in NET formation
triggered via cholesterol depletion? (II) Is cholesterol depletion triggered NET formation
independent of oxygen?

To answer these questions, as a first step, we showed that we had established a setup
for hypoxic in vitro experiments with murine and human neutrophils. We were able to
monitor the oxygen values over the course of the experiment to ensure the application of
hypoxic conditions over all time points of the experiment (Figure 1C). This establishment
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was necessary for bringing the in vitro settings one step closer to the actual in vivo situation
and thereby enabling us to set our data in closer contact with the processes in the living
host.

At a first instance, we were able to show for the first time that neutrophils isolated
from murine bone marrow showed the same phenotype of oxygen dependence when
stimulated with PMA to release NETs, as it was described for human neutrophils [20].
We observed that murine neutrophils stimulated with PMA released NETs under normoxia
but not under hypoxia and independent of HIF-1α (Figure 1D).

Next, we were interested in the role of cholesterol on NET formation under hypoxia.
Thus, we performed NET assays with cholesterol-depleting agent MβCD under hypoxia
and normoxia with neutrophils of WT and KO mice, which showed independence of
HIF-1α expression and oxygen content (Figure 2A). For further confirmation, we went
over to the human model, where we, on the one hand, reproduced and confirmed findings
on the oxygen dependency of PMA stimulated NET formation in human neutrophils
(Figure 3A) [20] and, on the other hand, showed that cholesterol depletion triggered
NET formation in an oxygen-independent manner (Figure 3A). Statins, a group of drugs
widely used in human medicine for the treatment of hypercholesterolemia, were used
as the physiological stimulus of high relevance to confirm the findings of the previous
experiments since statins inhibit the activity of HMG-CoA-reductase, a rate-limiting enzyme
in cholesterol biosynthesis. It was shown in previous studies that these drugs are able to
efficiently induce NET formation when they were paired with PMA. At the same time, statin
treatment reduced the overall production of reactive oxygen species (ROS) in neutrophils,
suggesting that statins may predispose cells to enter the NET cell death pathway in response
to a lower threshold level of ROS signal [19]. Here, in this study, we investigated whether
statins alone were able to induce relevant NET formation independent of available oxygen.
Our data showed that human neutrophils at 1% oxygen still exhibit efficient NET formation
as a response to statin treatment (Figure 4A). Thus, we conclude that NET formation
via statins and MβCD(+) works oxygen-independent in human neutrophils. However,
it remains to be elucidated how exactly statins and MβCD can induce NET formation.
MβCD rapidly removes large amounts of cellular cholesterol mainly from the cell surface,
and at longer time points (>120 min) also from intracellular compartments, such as recycling
endosomes and/or late endosomes/lysosomes [33,34]. Reduced cell viability due to strong
cholesterol depletion should be considered, but it seemed not problematic in this study, as
there were still intact nuclei with typical respective staining for MPO in intact granules,
visible during immune fluorescence microscopy (Figure 3B). Moreover, it was described
that MβCD treatment of HL-60 cells did not reduce cell viability when treated with 20 mM
MβCD for 45 min [33].

We could show in the murine and human model (Figures 6 and 7) that MβCD treat-
ment results in a strong reduction of cholesterol after 3 h and that this effect appears in
both hypoxic and normoxic conditions. This leads to the conclusion that MβCD depletes
cholesterol from cellular membrane independent of the oxygen level and is more efficient at
higher concentrations (MβCD+, Figure 7). In contrast, it is well known that statin-mediated
inhibition of cholesterol synthesis will require several days to manifest in significantly
lower cellular cholesterol levels. We expected that a 3 h statin incubation would most likely
just block the flux of newly synthesized cholesterol into the ER-pool of cholesterol, which
makes only 1–2% of total cellular cholesterol. Surprisingly, Simvastatin treatment resulted
in a significant reduction of cellular cholesterol levels in the human neutrophils under
both hypoxia and normoxia. To our knowledge, this phenotype was not yet described
in neutrophils. However, possible additional off-target effects independent of cholesterol
alterations cannot be excluded for the statin-treated group and need to be additionally
evaluated in future work.

Furthermore, it remains to be determined if the statin or MβCD-mediated NET-
formation is associated with NETosis or if a vital pathway of NET formation is involved.
During vital NET formation, in contrast to the suicidal NET formation, the cell releases
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NETs quickly and remains mostly intact by extruding NETs into the extracellular space
via small vesicles, while the cell itself remains able to perform other functions, such as
phagocytosis [35,36]. Interestingly, based on a recent proteomic analysis, it was described
that NETs released in response to different stimuli are heterogeneous in its appearance [37].
Thus, future work should aim to characterize the detailed mechanisms and subsequent
composition of NETs under hypoxia versus normoxia.

Independent of the mode of action or efficiency of the cholesterol alteration in the
cell, this study shows that NET formation can occur via oxygen independent pathways
(Figures 2A, 3A and 4A). Thus, NET formation can contribute to the severity of the disease
associated with hypoxia, e.g., infections and inflammation, even though other studies
highlight the need for ROS and thus the presence of oxygen for NET formation [15,16,38].
In the context of the recent pandemic situation due to SARS-CoV-2 emergence, the multi-
faceted role of NETs on disease progression should be considered. As a detrimental factor
during strong disease progression, NETs contribute negatively to severe pneumonia and
acute respiratory distress syndrome (ARDS) after SARS-CoV-2 infection [39–41]. Patients
suffer from silent hypoxia during the course of the disease due to impaired oxygen uptake.
The fact that massive NET-formation is found in patients who suffer from severe hypoxia
during viral infections also assumes that neutrophils are still fully functionally releasing
NETs at those conditions. In addition, a direct role of HIF-1α on the pathogenesis due
to upregulation and subsequent promoter activity was described [42]. The detrimental
involvement of NETs in described diseases as ARDS, pneumonia, and COVID-19 highlights
the urgent need to deepen the knowledge of the role of oxygen during NET formation.
However, it remains to be determined what is the exact role and mode of action of NETs
during SARS-CoV-2 infections. Our data show that NET formation can also occur under
hypoxic conditions, which are a crucial factor during severe COVID-19. Taken together, this
study highlights the importance of further basic research on the mechanisms behind the
formation of neutrophil extracellular traps to gain a deeper understanding which finally
could then help to develop improved treatment strategies which either make use of the
mechanism of NET formation by boosting the host immune response or respectively to
develop targets in NET formation pathways to keep an overshooting NET formation at bay,
which would be of high relevance not only during the recent COVID-19 pandemic.

4. Materials and Methods
4.1. Transgenic Mice Breeding and Genotyping

In this study, we used a strain of mice that expressed a Cre-recombinase heterozy-
gously, which cuts out the exon 2 at loxP sites in the hif -gene, thus leading to impaired
protein function [24,25]. We confirmed the genotype of these mice via PCR. In short, tissue
was incubated in lysis buffer at 60 ◦C until complete lysis. The lysate was centrifuged
(17,000× g, 5 min), and the supernatant was transferred into a fresh tube with isopropanol,
followed by further centrifugation. Isopropanol was decanted, and residues evaporated
at 60 ◦C until no liquid was visible. The DNA was resuspended in ddH2O, incubated for
15 min at 60 ◦C, and frozen until usage for PCR. Genotypes were determined via PCR for
the expression of loxP sites and Cre Recombinase (Primer, master mix, and thermal profiles:
Supplementary Table S1).

4.2. Isolation of Murine Neutrophils from Bone Marrow

Bone marrow-derived neutrophils were isolated via negative selection using the
EasySep™ Mouse Neutrophil Enrichment Kit from STEMCELL technologies (Vancouver,
BC, Canada), according to manufacturer protocols. Beforehand, separated bones from hind
legs, collected in buffer (RPMI with phenol red, 10% FCS, 1× Pen/Strep), were shortly
washed in PBS and 3× in 70% EtOH before bone marrow from the tibia and femur was
flushed, using a 26 G canula and a 10 mL syringe, with recommended medium (RPMI
with phenol red, 10% FCS, 2 mM EDTA) through a 100 µm filter into a fresh falcon. After
centrifugation (360× g, 4 ◦C, 7 min), erythrocytes were lysed by salt lysis with 10 mL of 0.2%
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NaCl for 20 s followed by the addition of 10 mL 1.6% NaCl. After the next centrifugation
(360× g, 4 ◦C, 10 min), the supernatant was discarded, the pellet was resuspended in 1 mL
STEMCELL media buffer (PBS, 2% FCS, 1 mM EDTA) and transferred to a fresh tube.
Isolation of neutrophils was performed according to the kit’s protocol. Isolated cells were
counted in a trypan blue solution with a hemocytometer. Cells from three individuals were
pooled in 1 mL RPMI 1640 without phenol red (Gibco) after purification determination by
flow cytometry, using Ly6G, Ly6C, and CD11b as a marker.

4.3. Purity Analysis via Flow Cytometry

Determination of purity was performed by analysis of cell-specific surface marker
expression via flow cytometry. A combination of CD11b, Ly6G, Ly6GC, and respective
isotypes, coupled with either FITC or PE was used for cell staining. 2 × 105 cells were used
per staining and incubated with either CD11b FITC and Ly6G PE, Ly6GC FITC, CD11b FITC
diluted in STEMCELL media buffer for 45 min at 4 ◦C in the dark and subsequently filled
up with 1 mL cold 1× PBS. Cells were then centrifuged at 360× g at 4 ◦C for 10 min. The
supernatant was discarded, and the cells were resuspended in 250 µL RPMI for following
flow cytometry at an Attune NxT Acoustic Focusing Cytometer (Life Technologies/Thermo
Fischer Scientific, Waltham, MA, USA) at FSC 190, SSC 350, BL1 (FITC) 310 nm, BL2 (PE)
390 nm.

4.4. Neutrophil Isolation from Human Blood

Neutrophils were isolated from fresh blood, as previously described [43]. In short,
fresh blood was drawn from healthy volunteers by a physician and directly used for
isolation. Blood was layered 1:1 on Polymorphprep solution (Progen) in a 50 mL falcon
tube and centrifuged at 472× g for 30 min at RT without brake. Afterward, the monocyte
and plasma layer was removed, and with a fresh plastic Pasteur pipette, the neutrophil layer
was transferred to a new falcon tube, directly filled up with 1× PBS at RT, and centrifuged
at 472× g for 10 min with brake. The cell pellet was treated with 5 mL sterile H2O for
erythrocyte lysis for 15 s and immediately filled up with 1× PBS, maximum 2 times. After
another round of centrifugation at the same settings, the cell pellet was resuspended in
1 mL RPMI at RT. Cell count was determined as stated above.

4.5. Neutrophil Stimulation and Incubation under Normoxia and Hypoxia

Neutrophils were seeded in a density of 2 × 105 cells per well in a 48-well suspension
cell plate (Greiner bio-one) containing poly-L-lysin (0.01%, Sigma, St. Louis, MO, USA)
coated glass coverslips. Cells were stimulated with either 25 nM Phorbol-12-myristat-
13-acetate (PMA, Sigma), 10 mM Methyl-β-cyclodextrin (Sigma) for murine NET assays,
10 mM and 20 mM Methyl-β-cyclodextrin for human NET assays, Simvastatin 10 µM
(Sigma), Mevastatin 50 µM (Sigma), or RPMI 1640 without phenol red as control, for 3 h
under normoxia (18–21% O2) or hypoxia (1% O2) in a hypoxia glove box (COY Laboratories).
After incubation, plates were shortly centrifuged for 5 min at 370× g, to bring down cells
and NETs onto the coverslip. Finally, the cells were fixed with paraformaldehyde (PFA)
at 4% final concentration for 15 min at RT and afterward stored at 4 ◦C until immune
fluorescence staining.

4.6. Immune Fluorescence Staining and Confocal Laser Scanning Microscopy

Fixed coverslips were washed 3 times with 1× PBS to get rid of PFA and subsequently
permeabilized with 0.5% TritonX100 for 5 min. Blocking was performed with 100 µL
blocking buffer (PBS, 0.5% Tween20, 5% goat serum) for 20 min. Meanwhile, primary
antibodies were prepared in blocking buffer. Incubation with primary antibodies, diluted
in blocking buffer, against DNA/Histone complex (mouse monoclonal anti DNA/Histone1,
Millipore, MAB 3864) and myeloperoxidase (rabbit anti-human myeloperoxidase, Dako,
A0398) was done for 1 h at RT. After incubation, the samples were washed with 1× PBS and
incubated with respective secondary antibodies (Alexa Fluor™ Plus 488, goat anti-mouse
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IgG, Invitrogen, A32723 and Alexa Fluor™ 633, goat anti-rabbit IgG, Thermo Scientific,
Waltham, MA, USA, A21070), diluted in blocking buffer for 45 min at RT in the dark.
Thereafter, the samples were washed with 1× PBS and mounted on ProlongGold antifade
with DAPI (Thermo Fischer, Waltham, MA, USA) on a microscopy slide, which was sealed
with nail polish the next day. Samples were analyzed via confocal microscopy with a Leica
TCS SP5 confocal microscope with HCX PL APO 40× 0.75–1.25 oil immersion objective,
using the 405 nm diode, 488 nm Argon, and 633 Helium lasers for excitation. Settings
were adjusted in positive controls, and specificity was confirmed using isotype controls,
whereafter settings were not changed anymore during the imaging session. Each sample
was done in duplicate and imaged in total 6 times according to a predefined movement
pattern across the sample slide.

4.7. Scanning Electron Microscopy

Neutrophils were harvested, seeded on glass cover slips, and stimulated with either
RPMI, MβCD, or Simvastatin as stated above. After 3 h incubation under either hypoxia
or normoxia, cells were fixed in 1.5% glutaraldehyde (Sigma-Aldrich Chemie GmbH, St.
Louis, MO, USA) and 3% PFA, buffered with 0.1 M cacodylate buffer (Serva Electrophoresis,
Heidelberg, Germany) for 24 h and subsequently washed with 0.1 M cacodylate buffer. For
further processing, the samples were embedded with 1% osmium tetroxide (Science Services
GmbH, Munich, Germany) and dehydrated in a series of graded ethanol, followed by
critical-point-drying and coating with gold in a sputter-coater (SCD040, Oerlikon Balzers),
as described previously [44,45] Afterward, the samples were mounted on 0.5” Aluminum
Specimen Stubs (Agar Scientific, Stansted, Essex, UK) using 12 mm Leit-Tabs (Plano) and
examined using a Zeiss EVO 15 scanning electron microscope (Carl Zeiss Microscopy,
Oberkochen, Germany) operating with an acceleration voltage of 10 kV.

4.8. NET Analysis

NET images were counted manually by marking active and inactive cells on the image
with ImageJ cell counter plugin (Version 1.51q). Cells were defined as active when they
lost the lobular structure of the nucleus, were swollen, and showed positive staining for
the respective NET markers mentioned in the method section. In addition, cells showing
a distinct offshoot and cells touching these off shoots were considered active. The length,
thickness, or structural appearance of extracellular fibers did not impact the quantification.
Clearly, lobulated nuclei were marked as inactive. The rate of NET formation is given as a
percentage in relation to the total amount of visible cells per image.

4.9. RNA Isolation and RT-qPCR

To analyse the expression of HIF-1α and its target gene slc2a1, RNA was isolated from
bone marrow derived murine neutrophils of the aforementioned mice breed. Samples
were centrifuged and solved in RLT buffer (Qiagen), including 1% of β-mercaptoethanol.
For RNA extraction, the Qiagen RNease Mini Kit was used, according to the manufacturer’s
instructions with the addition of a lysis step of 20× up and down pipetting of the sample
through a 26 G canula at the beginning and a second elution step for a more efficient RNA
yield at the end of the isolation.

The isolated RNA was tested for quality by 2100 Bioanalyzer (Agilent) with nano-chip
according to manufacturer instructions. Subsequently, cDNA was transcribed via reverse
transcription with High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems,
ThermoFischer) as stated in the protocol, except for a reaction size, increased to double
amount. RT-qPCR was performed with 120 µL of cDNA for expression of HIF-1α exons2,
as target of the aforementioned Cre-recombinase, exon 4, and exon 5 via exon spanning
primers, as a control for genomic DNA contamination. Moreover, slc2a1 expression was
investigated as HIF-target gene. Expressions of said genes were normalized against ex-
pression of rps9 as HIF and hypoxia independent housekeeping gene (Primer, master
mix and thermal profile stated in Supplementary Table S1). The RT-qPCR was performed
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in a AriaMx Real-time PCR System (Agilent), with automated threshold determination.
∆Ct values were generated by subtraction of housekeeping gene Ct values from those of
the target genes. Afterward, fold changes were determined by subtraction of ∆Ct values
of control conditions (HIF-1α exon4/5, normoxia) from ∆Ct values from experimental
condition (HIF-1α exon 2, hypoxia).

4.10. Oxygen Measurement during In Vitro Experiments

To ensure the application of hypoxic conditions during the experiment, extracellular
oxygen levels were measured directly in the 48-well plates. Sensor spots (PreSens) were
fixed with transparent silicon inside the wells and cells and media seeded as stated above.
Oxygen levels were measured at 0, 60, and 180 min by positioning the sensor spots above a
coaster connected to OXY1-ST (PreSens) measurement device, which was controlled via
respective software from PreSens.

4.11. Neutrophil Stimulation under Hypoxia and Normoxia for Lipid Isolation and HPLC

Protocols were adapted and modified from Brogden et al., 2014, 2017 [46]. Freshly
isolated neutrophils from murine bone marrow of WT and KO mice were seeded at a
density of 1 × 106 cells in 1.5 mL and incubated for 3 h at 37 ◦C, 5% CO2, similar to negative
controls in NET stimulation assays. After incubation, samples were centrifuged at 400× g
at 4 ◦C for 10 min. After washing with 1 × PBS, the cells were resuspended in 350 µL HPLC
grade water and passaged through a 26 G canula 20 times for cell lysis. The lysate was filled
with 1.6 mL HPLC grade water and transferred to glass tubes. 4 mL of methanol were given
to the lysate, after 2 min 2 mL of chloroform was added and the tubes were rotated at RT
for 30 min. Next, the tubes were centrifuged at 1147× g at 7 ◦C for 10 min. The supernatant
was transferred to fresh glass tubes and filled up with 2 mL chloroform, shaken and further
filled with 2 mL ddH2O. After phase formation, the tubes were shaken and again rotated
for 10 min before centrifugation at same settings. The lipid containing methanol phase
was taken to dry under nitrogen, to avoid oxidation of lipids, until no liquid was left and
the precipitate was dissolved in 125 µL Acetonitril:Methanol for analysis via HPLC (VWR
HITACHI Chromaster), against an external standard from 10 ng–500 mg/mL (Supplemen-
tary Figure S2). In detail, Hitachi High-Tech High Performance Liquid Chromatograph
equipped with Chromaster UV 5410 detector was used. For cholesterol analysis, 10 µL of
each sample were separated on a VDSpher PUR C18-H (3 µm, 150 × 2.0 mm) column (VDS
Optilab, Berlin, Germany). The binary mobile phase consisted of 5 vol.% of 0.1% formic
acid in H2O(A) and 95%ACN/MeOH (1:1, v/v) (B). Isocratic elution was performed at a
flow rate of 0.2 mL/min and 12 ◦C column temperature. For measuring cholesterol, the
area under the curve was determined and measured by comparing the samples peaks with
the standard curve.

4.12. Statistical Analysis

For statistical analysis, GraphPad Prism 8 was used, as well as for graph and plot
design. Significance was analyzed as stated in respective figure legends, after determination
of Gaussian distribution. Data were given as mean with ±SD and differences are indicated
via p-value (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

4.13. Ethical Approval

Blood samples were drawn from healthy donors by a physician, in agreement with the
local ethical board. The study was approved by ethical committee of the Hannover Medical
School Nr. 3295-2016. Animal samples were acquired under approval by the ethical board
of the University of Veterinary Medicine Hanover under TiHo-T-2020-13.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23063195/s1.
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