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To explore the fundamental biomechanics of sound frequency transduction in the cochlea, a two-dimensional analytical model of
the basilar membrane was constructed from first principles. Quantitative analysis showed that axial forces along the membrane are
negligible, condensing the problem to a set of ordered one-dimensional models in the radial dimension, for which all parameters
can be specified from experimental data. Solutions of the radial models for asymmetrical boundary conditions produce realistic
deformation patterns. The resulting second-order differential equations, based on the original concepts of Helmholtz and Guyton,
and including viscoelastic restoring forces, predict a frequency map and amplitudes of deflections that are consistent with classical
observations. They also predict the effects of an observation hole drilled in the surrounding bone, the effects of curvature of the
cochlear spiral, as well as apparent traveling waves under a variety of experimental conditions. A quantitative rendition of the
classical Helmholtz-Guyton model captures the essence of cochlear mechanics and unifies the competing resonance and traveling
wave theories.

1. Introduction

New data have created an opportunity to revisit central
problem of audition: the function of the cochlea as a
real-time frequency analyzer. This intellectual puzzle has
attracted a large number of thinkers over the years, who have
conducted extensive research in cochlear modeling [1–7].
Controversy continues, however, regarding which features of
the various models are essential [8–11]. Most popular today
are theories describing traveling waves that propagate longi-
tudinally along the basilar membrane. However, criticisms of
traveling wave models include suggestions that the traveling
wave focusing is not sufficiently sharp and that computed
peak displacements of the basilar membrane are on the order
of one nanometer or less, perhaps too small to effectively
stimulate hair cells [6, 12].

One path forward is to create increasingly detailed three-
dimensional computational models [3, 4, 13]. The Cal Tech
model of the cochlea, for example [3], uses the immersed
boundary method to calculate the fluid-structure interac-
tions at the San Diego Supercomputing Center. Six surfaces
of immersed material in the cochlea are partitioned into 25

computational grids comprising 750,000 points. There is a
fluid grid of 223 points [3]. In one report, the simulation of
two milliseconds of time required approximately 18 hours of
dedicated computation on a supercomputer [4].

The present paper takes a much simpler approach,
revisiting underlying concepts described by over a century
ago by 19th Century physiologist and physicist Hermann
Ludwig Ferdinand von Helmholtz [14] and elaborated in
the mid-20th century by the noted physiologist, Arthur C.
Guyton [15, 16]. Their classic descriptions are qualitative
rather than quantitative—an omission which in the modern
era is easy to remedy along the following lines.

2. Methods

2.1. The Oscillating Fluid Column Model. Consider a math-
ematically idealized model of the uncoiled human cochlea
in which the basilar membrane separates two long narrow
compartments filled with incompressible fluid, as shown
in Figure 1. Elastic membranes cover the oval and round
windows at one end. The stapes act like a piston, driving
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Figure 1: A first-principles model of an oscillating double fluid column in the cochlea. Oscillatory motion (greatly exaggerated) of a curved
fluid column is shown by double arrows and by slight bulging of the resonant segment of basilar membrane. The restoring force of the basilar
membrane working against the mass of fluid causes resonant behavior at a critical frequency.

very small volumes of fluid in and out at audio frequencies.
The distance of travel of the stapes is exceedingly small with
respect to the length of the model.

Suppose that a set of bundled, hairpin-shaped columns
of incompressible fluid along the scala vestibuli and scala
tympani is excited into sinusoidal, oscillatory motion in
response to motion of the stapes at the oval window.
Stretching of a segment of basilar membrane at the hairpin
turn creates a viscoelastic restoring force and so retards
motion of the fluid around the loop. Fluid oscillations
occur over very small distances in one dimension along this
curved path. Treatment of the parallel, one-dimensional fluid
columns as mechanically independent systems is justified
by spatial continuity and by the relatively low viscosity of
cochlear fluid (endolymph). Variable definitions for this and
related systems are listed for reference in the Nomenclature
at the end of the paper.

Let s(x) be the radial span of the basilar membrane
(perpendicular to the plane of the page in Figure 1) at
any particular distance, x, from the stapes. Span s(x) is
substantially less (∼0.3 mm) than the diameter of either scala
(∼3 mm). Imagine a curved fluid column of cross section, A,
shaded in Figure 1, extending from the oval window to the
round window through a patch of basilar membrane at axial
location, x. In this case, one can regard the fluid in the loop
as a lumped mass, m ≈ 2ρA(r + x), for water density, ρ, and
average cross section, A.

Suppose, as Guyton described [15], that this fluid column
together with the basilar membrane constitutes a spring-
mass-damper system. If the resonant frequency, f ∗, of this
system equals the driving frequency at the stapes, then the
motion of the fluid column and the corresponding local
stretching of the basilar membrane are maximized because of
resonance. Other parallel columns of substantially different
lengths do not “feel” this resonance. Since the radius of
curvature of the resonant fluid path at distance, x, is much
greater than the distance moved by fluid particles, there
is negligible angular acceleration of the fluid. Hence, fluid
motion can be regarded as one dimensional. Thus, one can
describe in a qualitative way a simple principle underlying
place coding, in which different input frequencies result in
preferential motion of the basilar membrane at different
distances, x, from the stapes. The resonant vibrations are

sensed by hair cells, connected to different 8th cranial nerve
fibers, at different locations, x, along the membrane. In this
way, the cochlea and basilar membrane could function as a
real-time frequency analyzer for the nervous system.

The goal of the present paper is to explore in a rigorous
quantitative way how such a system might operate, in
particular, whether a series of bundled hairpin-shaped fluid
columns with graded resonant frequencies would explain the
observed patterns of basilar membrane motion, including
propagation of apparent traveling waves. We can begin by
regarding a radial strip of basilar membrane, as shown in
Figure 2, having thickness, h, as an elastic plate, subject to
deformation by bending under pressure applied by the stapes
to its associated fluid column.

As shown in Appendix A, the governing equation for
dynamic deformation of the elastic strip by bending (ener-
getically much more favorable than shearing) under time
varying transverse pressure P(t) is

ρu
∂2z

∂t2
+

1
12

∂2

∂y2

(
Eh3 ∂

2z

∂y2

)
= P(t), (1a)

where ρ is the mass density of cochlear fluid and also of
basilar membrane tissue, u is the total length of fluid along
the curved path in Figure 1, z is local membrane deflection,
E is Young’s modulus, h is basilar membrane thickness, and t
is time. For an intact cochlea u ≈ 2x + 2r, for mean radius, r
of the scala tympani and scala vestibuli.

As a biomaterial, the basilar membrane is viscoelastic.
Hence, there is also damping of the oscillations by the
viscosity of the basilar membrane. When viscous damping
forces are included, we have
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(1b)

where D is the damping modulus of the membrane material,
equivalent to membrane viscosity in the radial dimension.
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Figure 2: Geometry of a viscoelastic sheet stretched between
parallel rigid supports. Dimensions x and y represent the axial
and radial dimensions of the cochlea, respectively. The unstressed
thickness of the sheet is h, and Young’s modulus in the radial
dimension is E. The radial span between supports is denoted s. A
small patch of membrane of cross-section A = ΔxΔy corresponds
to a one-dimensional fluid column in Figure 1. The deflection at any
point along the span as a function of x, y, and time, t, is denoted z.
Normally z/s� 1.

The corresponding expression for static equilibrium
under constant pressure P is

1
12

∂2

∂y2

(
Eh3 ∂

2z

∂y2

)
= P. (1c)

2.2. Two-Dimensional versus One-Dimensional Representa-
tions of the Basilar Membrane. In keeping with electron
microscopic studies of the basilar membrane [17], it is a
straightforward continuation to create a two-dimensional
model that includes both radial and axial dimensions. As
indicated in Figure 3, the basilar membrane is composed of
layers of collagen fibers disposed at right angles. Hence, we
can consider the basilar membrane as a composite in which
each patch of membrane having area Δx Δy is supported by
layered radial and axial fibers. For this assembly, we can write
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(2)

The spatial derivatives in the x-dimension reflect longi-
tudinal coupling and describe axial forces that could lead to
traveling waves. Ex, Ey , Dx, and Dy are directional material
properties.

Numerical solutions of (2) using realistic estimates for
parameter values (Table 1) show that the contributions of
the x-directed (axial) derivatives are less than one percent of
the contributions of the y-directed (radial) derivatives. This
result follows in part from the known anisotropic properties
of the basilar membrane [18], the axial Young′s modulus
being about 1/10th that of the radial modulus. Moreover,
the curvature in the axial dimension, d2z/dx2, is less than
1/10th that of the curvature in the radial dimension, d2z/dy2.
(Recall that the span, s, of the basilar membrane is ∼0.3 mm,
whereas the length of actively deformed basilar membrane
excited by a particular tone is∼3 mm or greater.) These com-
bined features make the directional derivatives substantially
less in the axial dimension than in the radial dimension.

Hence, the combined effects of stiffness and scale mean
that a practical biological model can exclude axial bending
forces and include only the terms in (1a), (1b), and (1c).
(In addition to providing simplification, this insight means
that “true” traveling waves are unlikely to occur, because the
axial bending forces are so weak. However, apparent traveling
waves can still occur, as described subsequently.)

The mechanical problem can be simplified further by
invoking the principle of condensation of degrees of freedom
or “static condensation,” in which a structure is divided
into substructures with the stiffness relations for each
substructure generated analytically. These are combined to
represent the entire structure in a condensed system of
equations [19]. Static condensation can be applied to the
system of Figure 1 and (1a), (1b), and (1c) as follows.

The density of collagen fibers and, hence, the stiffness of
the basilar membrane vary as a function of axial position,
x, but not as a function of radial position, y, as shown
in electron microscopic images [17]. In the cochlear map
problem, we are most interested in membrane deflection as a
function of x. This leads to a one-dimensional Helmholtz-
Guyton model of independent resonators as shown in
Figure 4, in which we consider the mean deflection, z, across
the radial span, namely z = (1/s)

∫ s
0 z(y)dy, as a function of

x only. At each x-level, the basilar membrane, supported by
rigid bone on one side and the spiral ligament on the other
side, acts like the equivalent mechanical system in Figure 4
with effective spring, k, and damper, μ. The equivalent spring
constant, k, is the ratio of total force F = PsΔx applied
to a Δx wide strip of basilar membrane with span, s, to
the mean membrane displacement, z. Here P is the static
condensation pressure in (1c), and mean displacement, z,
is found from integration of (1c), as shown in Section 2.3
and in Appendix B. The mass of the cochlear fluid, m ≈
2ρ(r + x)sΔx, is as shown in Figures 1 and 2. For simplicity,
we ignore temporarily the small additional mass, elastic
forces, and damping provided by the ossicles and ossicular
ligaments and also the thickness h of the basilar membrane
itself (∼20 micrometers). The lumped inertial mass, m, is
moved by a sinusoidal force, F(t) = P(t) · s · Δx applied by
the stapes at the oval window.

In this way, a series of spring-mass-damper systems
can be used to represent the average deflection of the
basilar membrane, z, as a function of distance, x, from the
stapes. When z = 0, the basement membrane is in its
quiet, resting state. Positive values of z represent movement
toward the round window. Because the stiffness, k, of the
basilar membrane varies strongly with axial position, x,
one can hypothesize that simple mass resonance of the
various curved fluid columns between the oval and round
windows is sufficient to explain the major features of cochlear
mechanics. Such one-dimensional motion along a curved
path, which was drawn years ago by Guyton [15], is usually
interpreted today in terms of travelling waves [1, 2, 5, 20].
This paper, however, explores the alternative hypothesis that
the apparent traveling waves are an epiphenomenon and
that resonance of cochlear fluid along a favored path for
any particular frequency constitutes the essential underlying
physics.
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Figure 3: Arrangement for a two-dimensional model of the uncoiled basilar membrane including orthogonal bands of axial and radial
fibers, as occurs in vivo.

It is straightforward to derive a suitable differential
equation for any one of the lumped spring-mass-damper
systems of Figure 4 and to solve it for reasonable estimates
of parameters based on standard anatomy and physiology.
A series of such solutions gives a predicted frequency
map of the cochlea, indicating at what distances from the
stapes resonance occurs for particular frequencies as well
as values for the absolute magnitude of basilar membrane
displacement at resonance. In Figure 4, the balance of forces
at each axial location, x, equals mass times acceleration for a
fluid column of cross section A(x) = s(x)Δx, or

F(t) = P(t)A− kz − μ
dz

dt
= 2ρ(r + x)A

d2z

dt2
. (3a)

Rearranging (3a), the governing differential equation in
terms of mean spatial displacement, z, of fluid around the
hairpin turn as a function of time, t, is

2ρ(r + x)
d2z

dt2
+

μ

A

dz

dt
+

k

A
z = P(t), (3b)

where we anticipate that in general that the terms k and
μ, which are constant over time, depend upon the width,
thickness, and stiffness of the basilar membrane at distance,
x, from the stapes. The mass term 2ρ(r + x)A represents
a column of incompressible fluid. The assumption of an
incompressible fluid is reasonable in view of the wavelength
of compressive sound waves in water at audio frequencies
(about 150 cm at 1 kHz), which is much longer than the
dimensions of the cochlea.

Result (3b) is a relatively simple second-order differential
equation which is linear in mathematical form and in
underlying Newtonian physics, but which includes highly
nonlinear stiffness k as a function of axial location, x.
Accordingly, it is important to give special attention to
the mechanical beam characteristics of a radial segment of
basilar membrane, as is done in the next section.

2.3. Expanded Model Parameters. The next subproblem is
to specify k and μ in (3a) and (3b) for a rectangular sheet
of membrane suspended between a bony support and the
spiral ligament having resting thickness, h, and Young’s
modulus, E, that crosses a gap of width, s, as shown in
Figure 2. The condensed spring constant is equal to (pressure

m1 m2 m3

μ1 k1 μ2 k2 μ3 k3

· · · etc

x

Figure 4: Equivalent mechanical system in one dimension, consist-
ing of lumped masses, m, springs, k, viscous dampers, μ, at various
axial locations, x, along the basilar membrane. Parameters k and μ
vary systematically as functions of x.

× area)/(mean displacement). The displacement z(y) at a
particular axial position, x, as a function of steady pressure
can be found by solving (1c) under the boundary conditions
of the problem, as shown in Appendix B. In turn, the effective
spring constant, k, from Appendix B is

k = C
EAh3

s4
, (4a)

so that

k

A
= C

Eh3

s4
. (4b)

Here, as before, A = sΔx is the area of the basilar membrane
included in the local spring-mass-damper system, and C ∼
30 is a dimensionless numerical constant that depends upon
the boundary conditions of the problem. Similarly, the
effective damping factor is

μ = Fμ

dz/dt
= C

DAh3

s4
, (5a)

where D is the damping modulus of the membrane material,
equivalent to membrane viscosity, and Fμ is the viscous force.
In turn,

μ

A
= C

Dh3

s4
. (5b)
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The constant, C, varies between about 25 and 60
depending on the ways that the ends of the membrane
are attached and supported in the radial dimension. One
possible set of boundary conditions involves “built in”
supports at both inner and outer edges, for which the values
of both displacement and slope are zero at both ends. In this
case, the constant C = 60. However, along the lines of Homer
et al. [21], a more realistic profile of displacement z(y) as
function of radial position, y, consistent with experimental
observations is obtained with a built in support at the inner
end of the basilar membrane segment and a simple support
or freely rotating end at the outer boundary. Under these
conditions the constant C = (80/3) ≈ 26.7. (Interestingly,
Bekesy (On the elasticity of the cochlear partition. J Acoust
Soc Am 1948, 20 : 227–240, (1a)–(1c)) using slightly different
assumptions calculated that C = 36 and remarked “thus the
variations in width alone of the basilar membrane from
cochlear apex to stapes would be enough to achieve the
necessary variation in rigidity of the membrane for the
analysis of frequency.”)

As shown in Appendix B, the parameter, C, can also
be used to describe the effects of radial geometry of the
cochlear spiral. For a curved basilar membrane with inner
radius r0 and outer radius r0 + s and with collagen fibers
disposed along the radial dimension from inner wall to outer
wall, the same dependence of effective spring and damping
constants directly on E and h3 and inversely on s4 obtains
as in expressions (4a)–(5b). However, the parameter C may
vary slightly with curvature. For the symmetrical boundary
conditions of built-in edges at both inner and outer edges
of the basilar membrane, C = 60 as r0 approaches zero,
and C = 60 also as r0 becomes infinitely large. However,
for the more anatomically realistic asymmetrical boundary
conditions of a built-in inner edge and a pivoting outer
edge, C = 24 as r0 approaches zero, and C = 26.7 as r0

becomes large (Appendix B). For realistic curvatures of the
cochlea (Bekesy Experiments in Hearing [22], Figures 3–10),
a value of C between 26 and 26.7 obtains for all distances,
x, from the stapes. Accordingly, the uncurved or uncoiled
model for the cochlea can be considered valid. The changes
in k and μ associated with anchoring boundary conditions
or curvature remain small, however, compared to changes
associated with the fourth power of the basilar membrane
span and the decreasing elastic modulus, E, from base to apex
of the cochlea.

2.4. Basilar Membrane Motion at Resonance. Introducing
the membrane specific spring and damping factors back
into the balance of forces (1a), (1b), and (1c), the spatial
average displacement, z, of the resonant segment of basilar
membrane can be described by the second-order differential
equation as a function of time, t,

2ρ(r + x)z̈ + C
Dh3

s4
ż + C

Eh3

s4
z = Pmax sin(ωt). (6a)

Here, the “dot” symbol over z indicates the first time
derivative, and the “double dot” symbol over z indicates
the second time derivative. The angular frequency, ω, is the

driving frequency of amplified sound pressure entering the
cochlea at the oval window. For any given point along the
axis of the cochlea, (6a) can be represented as

U z̈ + V ż + Wz = Pmax sin(ωt), (6b)

including lumped constants U , V , W , and Pmax. Lumped
constant U represents the effective mass of the double
fluid column at a particular distance, x, from the stapes.
Lumped constant V represents damping. Lumped constant
W represents elasticity. There is separate set of constants,
constants U , V , and W in (6b), for each axial location, x.
In turn, there is a separate resonant frequency for each x.
Solution of (6b) for the conditions of resonance leads to a
predicted frequency map of spatial mean displacement, z, as
a function of x.

The steady-state solution of (6b) is given, as shown in
Appendix C, by the expression

z1 = Pmax√
(Uω2 −W2) + V 2ω2

sin
(
ωt + β

)
(7)

for phase angle β. At steady state (tones longer than about
50 msec), the maximal positive basilar membrane deflection,
zmax, happens when sin(ωt + β) = 1. Resonance occurs at
angular frequency, ω∗, when U(ω∗)2 −W = 0 or

ω∗ =
√(

W

U

)
. (8)

Since W and U are functions of position along the basilar
membrane, expression (8) specifies the frequency map. At
any particular distance from the stapes, the maximal positive
membrane excursion toward the round window is given by

zmax = Pmax

Vω∗
(9)

for the conditions for resonance.
A complete solution of (6a) and (6b), however, includes

both homogenous and particular solutions. Solution of the
homogenous equation U z̈ + V ż + Wz = 0 can always
be added to the particular solution and describes transient
disturbances or “impulse responses” that may occur during
onset of continuous tones or in response to clicks or
impulses. The solution to the homogenous equation is

z2 = PiΔt

2ρ(x + r)λ
sin(λt)e−bt, (10)

where Pi is the time-averaged pressure of a transient impulse,
delivered over short duration Δt that sets the membrane in
motion, and

λ =
√

CEh3

2(x + r)s4
, b = CDh3

4(x + r)s4
. (11)

The complete solution for mean basilar membrane
displacement includes the sum of the transient and steady-
state solutions: z = z1 + z2.
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2.5. Estimates of Parameters. An important reason for revis-
iting the resonance theory of frequency coding in the cochlea
is the availability of new anatomical and biomechanical data
that allow for exact quantitative modeling. Table 1 presents
estimates for model parameters obtained from literature
sources indicated in the right hand column. Estimates for
middle ear components for damping and elasticity (not
shown) are relatively small for normal ears and are ignored
in the present analysis. The anatomic scale of the final model
represents a human cochlea. Some remaining variables are
estimated from available animal data. Detailed comparison
of species-specific models based on (6a) and (6b) is certainly
possible, but beyond the scope of the present paper.

3. Results

3.1. Frequency Map of the Cochlea. Figure 5 shows a plot of
resonant natural frequencies f ∗ = ω/(2π) from expres-
sion (8) along the basilar membrane for the human scale
mass resonance model of expression (6a) and (6b). This plot
represents the frequency map of the cochlea. The predicted
frequency map (smooth curve) is in reasonable agreement
with the experimental results [34], as shown by the solid
triangles.

The present analysis also offers a direct and simple
answer to a persistent question regarding experimental
work on cochlear mechanics, namely, the effect of the hole
drilled in the cochlear shell to allow observations of basilar
membrane movement [6, 12, 22, 35]. The first law of
instrumentation, as stated by Geddes and Baker [36], is that
the process of making a measurement should not interfere
with the phenomenon being observed. Yet to observe and
measure the amplitude of basilar membrane motions and
in turn the frequency map experimentally, it is necessary to
drill a hole in the surrounding bone. This is done in the scala
tympani near the particular turn in the spiral cochlea where
large amplitude vibrations are expected for a given frequency
[12, 22]. The presence of a hole would tend to decompress
the scala tympani at the point of observation and might alter
pressures and flows on one side of the cochlear partition.

In the present analysis, the effect of a large hole is easily
modeled in terms of shortening the overall path length in
the region of the membrane under study from approximately
2(x + r) to approximately (x + 3r), as shown in Figure 6(a).
In the idealized case of a large hole that completely vents the
cochlea near the characteristic place for maximal vibrations,
there is a minor violation of the first law of instrumentation
owing to reduced mass of the resonant fluid column. The
resulting frequency map shows slight upward shift of the
characteristic frequencies owing to reduced fluid column
mass. However, the predominant effect of the fourth power
of basilar membrane span persists.

3.2. Amplitude of Basilar Membrane Motion. Figure 7 shows
corresponding values of zmax at natural frequencies f ∗

along the axis of the basilar membrane for 0 dB, 60 dB,
and 120 dB continuous tones (Expression (9)). The absolute
value of oscillatory motion predicted by the mass resonance

100000

10000

1000

100

10
0 1 2 3 4
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(H

z)
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f ∗ experiment

Figure 5: Small signal resonant frequencies for the mass resonance
cochlear model as a function of distance from the stapes, compared
with typical experimental data (triangles) from Greenwood [34],
Figure 9. The scale is logarithmic. Stiffness constant, C, in expres-
sions (4a) and (4b) and (5a) and (5b) equals 26.7 for the cochlear
model.

model is noteworthy. 60 dB sounds characteristic of normal
speech range from about 1 to 1000 nanometers. These
theoretical findings are consistent with experimental results.
For example, Rhode (Figure 7 in [12]) found 70 dB sounds
produced membrane excursions of 1 to 1000 nanometers.
For loud 120 dB sounds, the calculated maximal basilar
membrane excursions were 1000-fold greater than for 60 dB
sounds at any particular frequency, as calculated from the
simple linear model of expression (9) that is based upon
bending deformation only. However, when both bending and
stretching forces were accounted (dashed line, methods not
detailed here), nonlinear behavior emerged which limited
basilar membrane excursion to less than 100 microns.
Nonlinear behavior emerged only under conditions when
the peak membrane excursion was greater than the thickness
of the basilar membrane. For all but these loudest sounds
at lower frequencies (<3 kHz), the stretching forces were
negligible and a simple bending model sufficed. There is
reasonable agreement between the quantitative Helmholtz-
Guyton theory and experiment.

3.3. Traveling Waves and Phase. Historically, observations
consistent with traveling waves [8, 10, 22] have been cited
as the predominant reason for discounting the resonance
theory of place coding in the cochlea as overly simplistic.
However, the quantitative evaluation of resonance in an
ordered set of spring-mass-damper systems with varying
stiffness shows that apparent traveling waves can arise as an
emergent property of the system under certain conditions.
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Table 1: Numerical estimates for model parameters.

Variable Estimate References

Length of basilar membrane (uncoiled)# 3.5 cm Keen [23], Miller [24]

Width, s, of basilar membrane
0.015 cm near base to 0.056 cm

near apex
Givelberg [3], Bronzino-2000,

Keen [23]

Radius of scala vestibuli 0.1 cm di Fiori [25]

Radius of scala tympani 0.15 cm di Fiori [25]

Average cross-section of scalae 0.05 cm2 Liu and White [18] di Fiori [25]

Average thickness of basilar membrane 0.002 cm
Liu and White [18], Naidu and

Mountain, [26], Wada et al. [27]

Viscosity of water at 37◦C 0.0065 g/(cm-sec) Lide [28]

Density of water 1.00 g/(cm)3 Lide [28]

Resting strain, ε0, of the basilar membrane ∼ 0 (0.001) Naidu and Mountain, [26]

Pressure gain from tympanic membrane to stapes 25 Puria et al. [29]

Damping ratio D/E of basilar membrane 2 × 10−6 sec∗
Summers et al. [30], Recio et al.

[31, 32], Lin Guinan [33]

Young’s modulus of basilar membrane 109 to 108 dynes/cm2 Naidu and Mountain, [26] Liu and
White [18]

Ratio of axial Young’s modulus to radial Young’s
modulus of basilar membrane (axial E/radial E)

1/10
Naidu and Mountain, [26] Liu and

White [18]

Linear decay formula for Young’s modulus, E E = 2× 10−9 (1− x/3.6)
Liu and White [18], Mammano and

Nobili [5], Wada et al. [27]
#
Anatomic dimensions in the first five rows are for human cochleae. ∗Computed as (D/E) = (2 ln(2))/(t1/2ω2), from transient displacement of the basilar

membrane in the time domain in response to clicks, where t1/2 is the half-life of the transient response and ω2 is the characteristic angular frequency of
unforced oscillation.

The traveling waves in Figure 8 were produced from
the homogenous solution (10) following a 1 msec duration
pressure impulse of 1 dyne/cm2. Young’s modulus E as a
function of distance, x, from the stapes was 2 × 109((1 −
x)/3.6) dyne/cm2. Damping was increased from 1000 to
4000 dyne-sec/cm2 to more clearly separate the waves for
plotting. To mimic the effect of the helicotrema in venting
transmembrane pressure differences near the apex of the
cochlea, the waves are scaled by the exponential function
φ(x) = 1 − e−(xmax−x)/ζ with length constant, ζ , equal to
1.0 cm. The function φ(x) sets a quiet boundary condition
at the apex without changing the frequency map. Each of the
oscillators in an array is disposed along the basilar membrane
from 0 to 3.5 cm from the stapes stimulated by pressure
Pmaxφ(x) at time zero. No physical connection between
the oscillators was modeled to allow for conventional wave
propagation. Nonetheless, apparent “traveling waves” arise.

The same effect also produces phase relationships sim-
ilar to those observed experimentally. Figure 9 illustrates
apparent phase shifts computed from numerical integration
(simple Euler method with time step of 1 microsecond
to ensure accuracy) of (6a) and (6b) describing a one-
dimensional Helmholtz-Guyton model of the basilar mem-
brane. The characteristic place of resonance in this model
is near 1.67 cm. The apparent traveling waves were observed
during the first 4 msec after onset of a continuous 1 kHz tone.
There is progressive delay in the time of arrival of the early
peaks of sine waves at positions distal to the characteristic
place, leading to the appearance of traveling waves with

a progressive shift in phase calculated on the basis of the
period of the exciting pulse (1 kHz). A very similar curve was
presented in von Bekesy’s classical paper [37] as key evidence
for the existence of traveling waves.

If the numerical simulation is continued for 100 msec or
more, the phase relationships indicated by the dashed line
in Figure 9 are obtained. The phase shifts from numerical
solutions approach those expected from analytical solutions
for steady state, ranging from zero to −π radians. Thus, the
quantitative response of the Helmholtz-Guyton resonators
to clicks gives evidence consistent with traveling waves. The
response to a pure continuous tone does not.

However, larger negative phase shifts similar to those for
responses to clicks can be expected for continuous tones
under realistic experimental conditions, if the continuous
tones contain embedded transients that stimulate repeated
impulse responses. Figure 10(a) shows a sample of such a
signal in which the amplitude of the impulse is only 1/20th
that of the continuous sinusoidal signal and occurs every
17 cycles. It is instructive to reconstruct Bekesy’s historic
experiments that seemingly rule out the resonance theory
and support the traveling wave theory using a continuous
sinusoidal input contaminated with a small amount of noise.
In Bekesy’s stroboscopic experiments [37], the cochlea was
excited by a continuous tone at the stapes and a strobe flash at
twice the driving frequency was used to illuminate the basilar
membrane at different axial positions. The delay of the strobe
was adjusted until the apparent membrane deflection at a
given axial position reached a null or minimum amount of
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Figure 6: Helmholtz-Guyton model of the path for large hole drilled for observation of the basilar membrane. (a) Oscillatory motion
(exaggerated, not to scale) of a curved fluid column is short circuited by the hole near the resonant segment of basilar membrane. (b) Effect
of shortened path length on the frequency map of a hole at x = 1.67 cm.

movement. This null was interpreted as indicating that the
traveling wave had been delayed by a multiple of the half-
cycle time.

In the present simulated reconstruction Bekesy’s exper-
iment, the basilar membrane motion was computed from
numerical integration of (6a) and (6b) describing a one-
dimensional Helmholtz-Guyton model of the basilar mem-
brane. Periodic impulses were added to the sinusoidal
driving pressure, as shown in Figure 10(a). Print-outs of the
z-axis positions of the basilar membrane were made at times
corresponding to the strobe flash in Bekesy’s experiment
and null points identified by least-squares analysis. From
the location of these successive null points, the delays
in arrival of the apparent traveling waves at particular
locations, x, along the basilar membrane were computed
under steady state conditions (>150 msec after onset of
the continuous tone). Then the corresponding phase delays
were computed, based on the driving frequency at the
stapes.

When the combined 1000 Hz tone plus 60 Hz interfer-
ence was applied to the cochlear model of (6a) and (6b),
apparent traveling waves persisted more than 50 msec after

onset of the exciting tone and did not diminish in size. In the
axial dimension, these waves traveled both toward the stapes
and toward the helicotrema, propagating outward from the
point of maximal deflection, with much greater amplitude in
the direction of the helicotrema.

The left-hand plot in Figure 10(b) shows phase results
from this computational thought experiment. Addition of
small transient signals to continuous tones can result in
apparent phase shifts characteristic of steady-state traveling
waves in this system of physically independent resonators
having graded spring constants corresponding to those of
radial strips of basilar membrane. These phase shifts are
similar to those observed by von Bekesy in human anatomic
specimens (Figure 5 in [37]) at frequencies of 200 and
300 Hz. Absolute time delays in the arrival of apparent
traveling waves, which are frequency independent, are also
compared for theory versus experiment in Figure 10(b) on
the right. Absolute time delays were calculated as phase
delay in radians divided by (2π·frequency). The agreement
between model predictions and experimental data is quite
reasonable. In this sense, a system of tuned resonators with
no energy transfer or connection in the axial dimension
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can produce experimental results heretofore interpreted as
evidence of traveling waves.

4. Discussion

Detailed calculations show that the function of the cochlea
as a real time frequency analyzer can be explained by
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Figure 9: Apparent phase shifts following onset of a 1 kHz tone in a
system of independent oscillators mimicking the basilar membrane.
Solid curve indicates transient responses to a click. Dashed curve
indicates responses to a pure continuous tone of 1 kHz.

a one-dimensional model of resonating fluid along a curved
path extending from the oval window to the round window
across a characteristic segment of basilar membrane, just as
Helmholtz and Guyton described [14–16]. The nonlinear
dependence of the resonant frequency upon the fourth power
of the basilar membrane width provides for a wide dynamic
range extending from tens to tens of thousands of cycles
per second. Cochlear coiling is not important for frequency
coding, as shown in Appendix B. However, the importance
of the spiral ligament in providing a pivoting anchor point
is suggested. The relatively modest effects of holes drilled
into the scala tympani for experimental measurements can
be modeled and indicate that such measurements are not
significantly distorted by the process of observation.

In his classic treatise, On the Sensations of Tone as a
Physiological Basis for the Theory of Music [14], Helmholtz
proposed a hypothesis of resonance, or “sympathetic vibra-
tion,” as follows: “it is probably the breadth of the membrane
basilaris in the cochlea which determines tuning [as] it
continually increases in width as it approaches the apex of
the cochlea . . . then the radial fibers of the basilar membrane
may be approximately regarded as forming a system of
stretched strings . . . consequently, any exciting tone would
set that part of the membrane into sympathetic vibration
. . . that . . . corresponds most nearly with the exciting tone
. . . with rapidly diminishing strength on . . . the adjacent
parts of the membrane . . . Under these circumstances the
parts of the membrane in unison with higher tones must
be looked for near the round window, and those with the
deeper, near the vertex of the cochlea [Further,] the fluid
in both galleries in the cochlea must also be considered as
weighting the membrane, because it cannot move without
a kind of wave motion of that fluid.” Later, Guyton [38]
suggested specifically that “the mass of fluid between oval



10 Journal of Biophysics

−1.5

−1

−0.5

0

0.5

1

1.5

0 0.005 0.01 0.015 0.02 0.025

Time (s)

So
u

n
d

pr
es

su
re

Transient
Sine + transient

(a)

−35

−30

−25

−20

−15

−10

−5

0

P
h

as
e

sh
if

t
(r

ad
ia

n
s)

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Model

Experiment

x (cm)

0 1 2 3

x (cm)

0 1 2 3
T

im
e

de
la

y
(m

s)

(b)

Figure 10: A computational thought experiment recreating von Bekesy’s stroboscopic measurements of phase delays of putative traveling
waves along the basilar membrane. (a) Periodic impulses (small rectangular pulses at 60 Hz) added to a continuous 1 kHz tone applied
to an array of independent spring-mass-damper resonators mimicking the basilar membrane. (b) Left: apparent phase shifts with the
spring-mass-damper system of Figure 4, determined by simulating von Bekesy’s stroboscopic method [22, 37]. (b) Right: absolute time
delays in milliseconds from model simulations at left, compared with Bekesy’s experimental data from Figure 5 in reference [37]. Frequency
independent absolute time delays were calculated as the phase delay in radians divided by (2π·frequency).

and round windows and the point of vibration of the basilar
membrane is the mass of the vibrating system.” These ideas
together constitute a physically testable Helmholtz-Gutyon
mechanism.

The present paper is dedicated to the proposition
that Helmholtz and Guyton’s qualitative descriptions of
the essential physics of hearing were correct. However, as
Helmholtz himself stated at the time “our present knowledge
is not sufficient to determine with accuracy the manner in
which these vibrations take place. For this purpose we require
to estimate the . . . degree of tension and flexibility, with more

precision.” New data on material properties of the basilar
membrane [6, 18, 26] make a better characterized simple
resonance model possible today, which includes complete
specification of the relevant parameters of mass, stiffness,
and damping. The present paper shows that with relatively
straightforward mathematical treatment mass resonance
along a curved path is sufficient to explain and predict
quantitatively the major features of cochlear function.

Although the simplicity and elegance of the resonance
theory of hearing has been recognized since Helmholtz’
day, twentieth century investigators felt forced to abandon
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this approach because of observations highly suggestive of
traveling waves and large phase shifts that seemed to be
impossible in a system of simple resonators akin to piano
strings [22, 37, 39]. However, quantitative modeling based on
modern data for the elastic moduli of the basilar membrane
in both radial and axial dimensions [18] shows that apparent
traveling waves and large phase shifts in response to clicks
are exactly what is expected from the solution of the
homogenous equation for radial bending of the basilar
membrane. The latency between the onset of a punctuate
acoustic stimulus at the oval window and displacement of
the basilar membrane has been taken as evidence for the
existence of traveling waves [10, 40]. However, as shown in
Figure 10, a system of independent resonators can produce
exactly this observation with zero transfer of energy in the
direction of the traveling wave. In a Helmholtz-Guyton
system, large apparent waves appear to travel from the
characteristic place toward the apex of the cochlea. Smaller
amplitude waves appear to travel from the characteristic
place toward the stapes. This theoretical prediction suggests a
possible unification of the resonance theory and the traveling
wave theory, which have been viewed for decades as difficult
to reconcile alternatives [9, 10, 22]. Traveling waves along the
basilar membrane may represent emergent properties of a
simple system rather than abstruse properties of a complex
system.

It is not immediately obvious, however, how transient
effects from the solution of the homogenous equation (10)
can explain traveling waves and phase delays observed in
response to continuous tones. Corresponding experimental
measurements vary considerably [6]. One logical possibility
is that continuous tones used as stimuli include small
transients or impulses. Indeed, Bekesy’s system for studying
phase responses may have been quite likely to include extra
signals from vibration or electrical interference from motors
in the apparatus [22, 37]. This idea can be further studied
in simulations such as in Figure 10, and in experiments in
which various types of noise are deliberately introduced.

Further refinements of a 21st century version of reso-
nance theory would include active components [6], nonzero
resting tension in the basilar membrane associated with the
spiral ligament [26], description of nonresonant motion
of the basilar membrane and overtones [6], responses to
complex sounds rather than pure tones, three-dimensional
anatomy [3], effects of the size and design of cochleae of
different animal species, and nonlinear dynamics in response
to loud sounds [41, 42]. Further research may also include
mechanical coupling of the inner ear model to a middle
ear model, in which for example, increased fluid mass in
otitis media in children or otosclerosis in older adults can be
understood biomechanically. A potentially fruitful field for
future biomechanical research is better characterization of
viscoelastic and damping characteristics of both the ossicular
ligaments and the basilar membrane.

Nevertheless, what is remarkable about Helmholtz’ cen-
tury old idea is how well it predicts the fundamental function
of the inner ear as a real-time frequency analyzer with a
wide dynamic range in terms of a set of simple second-
order differential equations. Because the mathematics is
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straightforward, it is easy to make testable predictions and
to use the model as a guide to thinking and experimentation.
One hundred twenty-five years later, Helmholtz’ resonance
theory deserves added respect. Perhaps nature has indeed
chosen a simple rather than an esoteric solution to the
problem of frequency coding in the cochlea.

Appendices

A. Bending of a Nonrigid Elastic Membrane

It is insightful to characterize forces and moments causing
membrane bending from first principles. Figure 11 shows a
short segment of nonrigid elastic sheet of dimensions Δy in
length, b in width, and h in height, undergoing deformation
by bending in the y-dimension in response to pressure P on
one side. Positive deflection, z, is downward in Figure 11.

The dashed middle surface, which follows trajectory
z(y) divides the beam into compressed (top) and stretched
(bottom) halves. Consider bending moment, m1, (force x
lever arm) about pivot, p1, produced by compression of the
top half of the elastic plate during bending. There is an
equal bending moment, m2, produced by stretching of the
bottom half. We can find the value of m1 by integration over
dimension u normal to the middle surface as the product of
Young’s modulus, strain, area, and lever arm

dm1 = E

(
u tanα

Δy

)
(Δxdu)u = ΔxE tanα

Δy
· u2du,

m1 = ΔxE tanα

Δy

∫ h/2

0
u2du = 1

24
ΔxEh3

Δy
tanα.

(A.1)

For small values of angle α, in the present problem,
tan α ≈ α. From the Figure 11 with downward positive
deflection, z, we have

α = −1
2

⎡
⎣
(
dz

dy

)
y+Δy/2

−
(
dz

dy

)
y−Δy/2

⎤
⎦ ∼= −Δy

2

(
d2z

dy2

)
.

(A.2)
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Then passing to the derivative, the bending moment asso-
ciated with compression of the top half of one end of the
segment at pivot point p1 is

m1 = − 1
48

ΔxEh3

(
d2z

dy2

)
. (A.3)

Here, the second derivative term, d2z/dy2, is negative for
positive bulging of the membrane under pressure, and
moment m1 is positive in sign. The goal is to characterize
the forces causing vertical, z-directed deformation of a point
on the surface z(y) of the elastic membrane in response to
pressure, P, which may be time-varying, under either static
or dynamic conditions. It is useful, therefore, to characterize
moment m1 in terms of the z-directed normal force required
to balance m1. Let the balancing moment be denoted m′

1.
Then, for variable distance, v, from pivot p1 along the middle
surface, we have

dm′
1 = PΔxv · dv · cosα,

m′
1 = PΔx cosα

∫ Δx

0
v dv

= 1
2
PΔx

(
Δy
)2 cosα ∼= 1

2
PΔx

(
Δy
)2,

(A.4)

for small values of α. For balancing moments with equal
absolute values m1 and m′

1, we must have P = −(1/24)(Eh3/
(Δy)2)(d2z/dy2). The positive z-directed force created by
pressure, P, and balancing moment m1 is therefore PΔxΔy =
−(1/24)(ΔxEh3/Δy)(d2z/dy2). The equal and opposite z-
directed force created by the bending of the top half of the
elastic membrane at pivot p1 and acting to balance or resist
the loading pressure P is

F1 = −PΔxΔy = 1
24

ΔxEh3

Δy

(
d2z

dy2

)
. (A.5)

To compute all relevant forces and moments, consider
three adjacent differential volumes or nodes, each spanning
Δy and having thickness, h, and depth Δx, as shown in
Figure 12.

The net z-directed force on the center node at location
y can be found by accounting for the vertical forces that
balance moments m1(y) and m2(y) produced by compres-
sion and stretching of the top and bottom halves of the
node at location y, together with the countervailing moments
m1(y + Δy) and m2(y + Δy) produced by compression and
stretching of adjacent nodes, as shown in Figure 12. The net
effect of these moments in terms of the resultant z-directed
force on the center node and the effect of pressure P gives a
net force

Fnet = PΔxΔy+
(
F1
(
y
)−F1

(
y − Δy

)
+F2

(
y
)− F2

(
y − Δy

))
− (F1

(
y
)− F1

(
y + Δy

)
+ F2

(
y
)− F2

(
y + Δy

))
.
(A.6)
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This expression can be rearranged as

Fnet = PΔxΔy − (F1
(
y + Δy

)
+ F1

(
y − Δy

)− 2F1
(
y
))

+
(
F2
(
y + Δy

)
+ F2

(
y − Δy

)− 2F2
(
y
))

= PΔxΔy −
(
d2F1

dy2

(
Δy2) +

d2F2

dy2

(
Δy2)).

(A.7)

However, from the sign convention in the Figure 12 and
the symmetry of the middle surface, F1 = F2, so that

Fnet = PΔxΔy − 2
d2F1

dy2

(
Δy2)

= PΔxΔy − d2

dy2

(
1

12
Δx Eh3

(
d2z

dy2

))
Δy,

(A.8)

where we allow in general variables E and h to be functions
of y. In terms of the classical moment of inertia, I =
(1/12)Δxh3, we have

Fnet = PΔxΔy − d2

dy2

(
EI

(
d2z

dy2

))
Δy. (A.9)

The concept of flexural rigidity [43] does not apply here,
because the elastic membrane is not rigid. Hence, Poisson’s
ratio is not included in the forgoing expression. For static
problems in which pressure P is constant in time, the net
force is zero, and

0 = PΔx − (d2/dy2)(EI(d2z/dy2)) or

(1/12)
(
d2/dy2)(Eh3(d2z/dy2)) = P.

(A.10)

For dynamic problems, in which the membrane has local
mass density, ρ, then z-directed force equals mass times
acceleration, d2z/dt2, or

Fnet = PΔxΔy − d2

dy2

(
EI

(
d2z

dy2

))
Δx = ρΔxhΔy

d2z

dt2
,

(A.11)

and so,

ρh
d2z

dt2
+

1
12

d2

dy2

(
Eh3

(
d2z

dy2

))
= P. (A.12)
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These are the fundamental differential equations for static
and dynamic deformation of an elastic membrane by
bending. If the membrane drives a column of fluid of
total length, u, including membrane thickness, h, (Guyton’s
model) having mass density, ρ, that is, the same as that of
the membrane (i.e., water density), then the static equation is
unchanged, but the dynamic equation of motion in response
to time-varying pressure P(t) becomes

ρu
d2z

dt2
+

1
12

d2

dy2

(
Eh3

(
d2z

dy2

))
= P(t). (A.13)

B. Static Deformation of the Basilar Membrane
in the Radial Dimension

Consider a section of the coiled basilar membrane forming
an elastic sheet of thickness, h, inner radius, r0, and outer
radius r0 + s, with s being the span of the membrane as
shown in Figure 13. The centerline arc length of the radial
section is denotedΔx. The radial distance from inner to outer
edge of the membrane, ranging from 0 to s, is denoted y. The
total radial distance from the center of curvature is r = r0 + y.
The membrane is subjected to transverse pressure, P. The
local transverse displacement of the membrane under P is
denoted z. The membrane bends over surface z(y) at static
equilibrium.

The fundamental equation for static bending of the
membrane (Appendix A) can be written as

1
12

d2

dy2

(
EΔxh3

(
d2z

dy2

))
= PΔx. (B.1)

For the radial geometry Δx = rd,θ where r is variable and
the local value of dθ is constant, so that

Pr = h3

12
d2

dy2

(
Er

(
d2z

dy2

))
. (B.2)

Let us assume that there is radial spreading of collagen
fibers in the membrane, so that they attach to inner and
outer supports at right angles. In this case, the local material

property, Young’s modulus E, is proportional to n/(rd)θ,
where n is the constant number of radial collagen fibers. This
means that Er is a constant, and in particular Er = E · r for
the mean value of Young’s modulus, E, measured at distance
r = r0 + (s/2) halfway between inner and outer edges of
the membrane. Then, for radial fiber spreading, we have for
constant Er

Pr = E r h3

12
d4z

dy4
, (B.3)

or

d4z

dy4
= 12

P

E

r0 + y

r0 + (s/2)
. (B.4)

A polynomial solution of (B.4) can be obtained as
follows. Suppose for constants, c,

z
(
y
) = c0 + c1y + c2y

2 + c3y
3 + c4y

4 + c5y
5. (B.5)

Then using the derivatives (dz/dy) = c1 + 2c2y + 3c3y2 +
4c4y3 + 5c5y4 through (d4z/dy4) = 24c4 + 120c5y and the
boundary conditions z(0) = z(s) = 0 and (dz/dy)y=0 =
(dz/dy)y=s = 0, together with (B.4) evaluated at y = 0 and
y = s, one can obtain six equations to solve simultaneously
for constants c0 through c5. After some algebra, and taking
E = E for short, the result is

z
(
y
) = 1

2
P

Eh3

(
r0

r0 + (s/2)

)

×
(
s2y2

(
1 +

2
5
s

r0

)
2sy3

(
1 +

3
10

s

r0

)
+ y4 +

1
5
y5

r0

)
.

(B.6)

The boundary conditions of zero slope at y = 0
and y = s describe a “built-in” supports. Alternative
and more anatomically realistic boundary conditions would
include a built-in, bony support at the inner edge of the
basilar membrane (y = 0) and a freely pivoting support
at the outer edge (y = s) corresponding to the more
flexible attachment of the spiral ligament. Then, the formal
boundary conditions become z(0) = z(s) = 0,(dz/dy)y=0 =
0 and ((d2z)/(dy2))y=s = 0.

With these boundary conditions for a freely pivoting
support at y = s, we have a similar expression

z
(
y
) = 1

2
P

Eh3

(
r0
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)

×
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(
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s
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(B.7)

The spatial mean deflection across the span is obtained
in general by integrating the polynomial in y,

z = 1
s

∫ s

0
z
(
y
)
dy = 1

C

Ps4

Eh3
, (B.8)
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where dimensionless constant, C, depends on the boundary
conditions and also on the degree of curvature, indicated
by r0. For built-in supports at both inner and outer edges
in the rectangular case (r0 → ∞), C = 60. With built-
in supports at both inner and outer edges in the case of
maximal curvature (r0 → 0), C = 60 also. For a pivoting
support at the outer edge in the rectangular case (r0 →
∞), C = 26.7. For a pivoting support at the outer edge in
the case of maximal curvature (r0 → 0), C = 24. The
pivoting boundary condition allows for substantially greater
average deflection. The radius of curvature, r0, has minimal
influence on basilar membrane deflection. (One exception
for the pivoting boundary condition is a modest increase
in the sensitivity of the basilar membrane to bending for
tight radii of curvature versus large radii (1/24 versus 1/26.7,
an 11 percent increase, other factors being equal) providing
one mechanism supporting the work of Manoussaki et al.
[44, 45], who describe lower frequency limits of hearing in
species with tightly coiled apical cochleae.)

Knowing the mean deflection allows one to compute
the “spring constant” of a segment of the basilar membrane
having area A = s · Δx. The force (pressure x area) required
to bend the membrane with a mean deflection of z into the
required shape is

PA = C
AEh3

s4
z. (B.9)

The spring constant for elastic bending of a membrane
bridge of area, A, with mean displacement, z, is the ratio of
force to displacement, or

k = C
AEh3

s4
, (B.10)

and the ratio

k

A
= C

Eh3

s4
. (B.11)

To represent viscous damping associated with membrane
bending, assume for simplicity a Kelvin-Voigt model with
parallel spring k and damper μ, such that that k = Eφ for
shape factor, ϕ. Then, the corresponding damper for the
same geometric shape is given by μ = Dφ = C(ADh3/s4)
with damping modulus, D, and typically D/E � 1 sec.
Then, the ratio μ /A = C(Dh3/s4).

C. Particular, Steady-State Solution for
Basilar Membrane Resonance

To solve U ẍ + V ẋ + Wx = Pmax sin(ωt) using the method
of undetermined coefficients, suppose that the solution x(t)
and its derivatives for constants a and b are

x(t) = a · sin(ωt) + b · cos(ωt),

ẋ(t) = aω · cos(ωt)− bω · sin(ωt),

ẍ(t) = −aω2 · sin(ωt)− bω2 cos(ωt).

(C.1)

Substituting into the characteristic equation, U ẍ + V ẋ +
Wx − Pmax sin(ωt) = 0, we have

−Uaω2 sin(ωt)−Ubω2 cos(ωt) + Vaω · cos(ωt)

−Vbωsin(ωt)+Wa sin(ωt)+Wb cos(ωt)− Pmax sin(ωt)

= 0.
(C.2)

Separating the sine and cosine terms, each of which must
sum to zero for all times, t,

−Uaω2 −Vbω + Wa− Pmax = 0,

−Ubω2 + Vaω + Wb = 0
(C.3)

so that

b = − VωPmax

(Uω2 −W)2 + V 2ω2
,

a = −
(
Uω2 −W

)
Pmax

(Uω2 −W)2 + V 2ω2
.

(C.4)

Using the phase angle transformation, x(t) = a sin(ωt) +
b cos(ωt) = √a2 + b2 · sin(ωt + β), where β = tan−1 (b/a), we
have

x = Pmax√
(Uω2 −W)2 + V 2ω2

sin
(
ωt + β

)
. (C.5)

Nomenclature

A: Average cross-sectional area of scala tympani
and scala vestibule

α: Local angle of radial bending of the basilar
membrane

b: Length of resonant segment of coiled basilar
membrane; also exponential constant in
homogeneous solution of a differential
equation

β: Phase angle between incident sound and
basilar membrane displacement

C: Dimensionless coefficient of Eh3/s4 reflecting
radial boundary conditions

c: Coefficients of polynomial solutions to
differential equations

D: Damping or loss modulus of basilar
membrane material

E: Young’s modulus of basilar membrane
material

F: Force applied to resonating fluid column in
the one dimensional model

f : Natural frequency of sound waves
f∗: Resonant natural frequency
h: Local thickness of basilar membrane
k: Spring constant of a dx length column of

elastic material, namely, k = AE/dx
λ: Constant in exponential decay of transient

deformations; alsonatural angular frequency
for a homogenous solution for free vibration
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m: Mass of cochlear fluid in resonating double
column; also moment of bending around a
pivot point in the basilar membrane

μ: Damping constant of a dx length column of
elastic material, namely, μ = AD/dx

ω: Angular frequency
ω∗: Resonant angular frequency
P: Pressure applied by the stapes to the oval

window and/or by moving fluid to a patch of
basilar membrane

p: A pivot point in the basilar membrane
around which bending occurs

ϕ: Exponential function describing pressure
venting by the helicotrema

π: Circle ratio (3.14. . .)
ν: Fluid viscosity
r: Mean radius of the scala tympani or scala

vestibule
ρ: Mass density of cochlear fluid or of basilar

membrane material
s: Width of the basilar membrane perpendic-

ular to the spiral axis of the cochlea as a
function of axial distance from the stapes

t: Time
U, V, W : Constants in a generalized second-order dif-

ferential equation
u: Total length of a curved column of fluid

extending from round to oval windows
u, v: Dimensions of integration of bending

moments
x: Distance along the axis of the basilar mem-

brane from the stapes
y: Radial distance from the inner bony edge of

the basilar membrane to a point along the
membrane

z: Displacement from zero pressure equilibrium
of resonant segment of basilar membrane and
curved, resonating fluid loop in the cochlea.
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