
Viewpoints

Confounding by Repetitive Elements and CpG Islands
Does Not Explain the Association between
Hypomethylation and Genomic Instability
R. Alan Harris1,2, Chad Shaw2, Jian Li1,2,3, Sau Wai Cheung2, Cristian Coarfa1,2, Mira Jeong2,

Margaret A. Goodell2, Lisa D. White2, Ankita Patel2, Sung-Hae Kang2, A. Craig Chinault2,

Tomasz Gambin4, Anna Gambin5, James R. Lupski2,6,7, Aleksandar Milosavljevic1,2,3*

1 Bioinformatics Research Laboratory, Epigenome Center, Baylor College of Medicine, Houston, Texas, United States of America, 2 Department of Molecular and Human

Genetics, Baylor College of Medicine, Houston, Texas, United States of America, 3 Program in Structural and Computational Biology and Molecular Biophysics, Baylor

College of Medicine, Houston, Texas, United States of America, 4 Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland, 5 Institute of

Informatics, Warsaw University, Warsaw, Poland, 6 Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America, 7 Texas Children’s

Hospital, Houston, Texas, United States of America

In our recent article [1], we reported an

association between hypomethylation and

genomic instability. A comment by Watson

et al. [2] re-analyzes the data and claims

that our findings may represent an artifact.

We extend the methodological framework

for analyzing copy number variants (CNVs)

in the context of potential confounding

factors to address the issues raised in the

comment and to further research in this

growing area of genomic science.

Watson et al. argue that the association

we reported between hypomethylation of

genomic DNA—determined from sperm

methylomes [3]—and the density of CNVs

can be explained by a combined con-

founding effect of known correlates of

CNVs, namely repetitive elements and

CpG islands. To support their argument,

the authors eliminate many genomic

regions providing a variety of justifications

for why these regions create ‘‘spurious

association’’. Once the regions have been

removed from the genome, Watson et al.

claim the association between hypomethy-

lation and genomic instability disappears.

We would first like to point out that

the goal of our study was not to ignore

potential relevance of these other factors—

such as repetitive elements and CpG

islands—but instead to broaden the scope

of inquiry to examine possible additional

explanatory power of hypomethylation. In

deference to Watson et al., we initiated a

re-analysis that systematically examined

the purported confounding factors. Rather

than pursuing the data exclusion approach

used by Watson et al., we applied the

standard multiple regression approach.

The regression methods control for con-

founding without discarding data or oth-

erwise biasing the inquiry to particular

genomic sub-regions. Specifically, we first

asked if the variables brought up by

Watson et al. (LINE, SINE, LTR, Satellite,

and CpG island content) individually or in

combination explain the association be-

tween hypomethylation and CNV counts

within 100-Kbp windows tiling the ge-

nome. In addition, using the Akaike

information criterion (AIC) we measured

the explanatory power of each of the six

variables beyond the explanatory power of

the other five.

We first applied the Negative Binomial

regression model [4], because it is com-

monly used for overdispersed variables

and is a well-accepted and robust method

for count data such as CNV counts. We

applied the same method to all five sample

sets brought up by Watson et al.—

HapMap270 [5], HapMap450 [6],

WTCCC [7], Schizophrenia Cases, and

Schizophrenia Controls [8]. As document-

ed in Tables S1 and S2, in all five sample

sets hypomethylation remained highly

significantly associated with CNV density

after correction for all of the ‘‘confound-

ers’’ individually and in combination. As

illustrated in Figure 1, as measured by

AIC, methylation was more predictive of

CNV counts per 100-Kbp window by an

order of magnitude than any other factor.

To examine robustness of our analyses

with respect to modeling assumptions, we

repeated the same analysis by applying the

more widely used Poisson and linear

regression models. All three models gave

consistent results for all confounders in all

five sample sets. (Table S2 describes

regression models, output, and the input

data extracted from our original paper

sufficient to run a statistical program such

as R to obtain the output.) We also

employed zero-inflated negative binomial

and Poisson regression models, and found

completely concordant results. We there-

fore conclude that the assertions regarding

‘‘confounding’’ are not consistent with the

data available. This is likely because

Watson et al. resorted to an idiosyncratic

selective data elimination procedure rather

than pursuing a more standard statistical

approach.

Second, Watson et al. bring up mapp-

ability of reads as a confounding factor

while failing to mention that the original

paper [1] considered and—using bisulfite

sequencing data from embryonic stem cell

H1 as a control—ruled out ascertainment

biases due to read mappability: ‘‘We next

examined the difference in methylation

levels between sperm and H1. As illustrat-

ed in Figure S16, the difference shows

even stronger association with structural

mutability than the absolute methylation

levels in sperm. This result rules out
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possible ascertainment biases due to low

mappability of sequencing reads in po-

tentially unstable and repetitive hypo-

methylated regions. It also suggests that

structural mutability is associated with

germline-specific hypomethylation.’’ Also

quoting from our article: ‘‘We found

significant negative correlation between

the methylation scores in sperm and the

heterozygosity rates (CNVs from 400

MGL samples: r<20.15, p<1029; CNVs

from 270 HapMap samples: r<20.20,

p<10210). In contrast, no significant

correlation between the H1 methylation

scores and the CNV heterozygosity rates

was detected’’ [1].

Third, Watson et al. argue that the

higher mode with zero scores for the

Methylation Index (MI = 0) is likely an

artifact due to small SNP and CpG counts.

In this context it is surprising that Watson

et al. fail to mention that our article

considered, examined, and ruled out this

possibility: ‘‘One could expect that if the

windows with MI = 0 were due to low

probing density, the windows within the

higher mode would have fewer SNPs or

CpGs. However, we examined potential

biases in MI estimation due to variations

in the number of SNPs, CpGs, read

coverage (Figure S6CD), or sampling

events (Figure S7BD) and found no

significant difference between the two

modes, ruling out the possibility that the

two modes may be explained by variation

in mappability or shallow sampling. In

addition, a simulation experiment showed

that the statistical variance of methylation

estimates due to CpG sampling of win-

dows with MI = 0 was a relatively small

fraction of biological variance in methyl-

ation observed between the two sperm

methylomes (Figure S8). We therefore

hypothesize that the higher mode may

either indicate hypomethylation specific to

the female germline, given that male and

female germline methylation patterns are

highly dimorphic [47], or may be due to

other germline hypomethylation detected

by MI that is absent from sperm.’’

Fourth, the ‘‘confounders’’ brought up

by Watson et al. do not influence genomic

instability independently of the methyla-

tion state and therefore do not meet the

common definition of confounding [9]. In

the specific case of CpG islands, the

striking pattern where hypomethylated

CpG islands are enriched in unstable

regions (Figure 2A and 2B in Watson

et al. [2]) would in fact be expected to

occur if hypomethylation were mechanis-

tically linked to genomic instability. Wat-

son et al. ignore this possibility without

sound justification while claiming that this

pattern somehow provides evidence against

any connection of hypomethylation and

genomic instability.

Fifth, contrary to what Watson et al.

claim, our article does not state that

hypomethylation plays a causative role in

genomic instability. Specifically, in the

discussion section of our article we state

three possible mechanistic explanations for

the observed association: DNA break–

inducing germline-specific demethylation

during embryogenesis; mutagenic effects

of germline-specific gene expression in

hypomethylated loci; and mutagenic ef-

fects of transcription factor binding to

hypomethylated loci.

In summary, we thank Watson et al. for

their efforts and further examination of

our reported observations. Nevertheless,

we find that the arguments put forward in

the comment do not diminish the strength

of our reported findings. Specifically, our

analyses of the confounding factors sug-

gested by Watson et al. do not diminish

the contention that genomic correlates

may provide only a partial explanation

for the hotspots of genomic instability.

Thus, broadening inquiry to also include

the epigenome may be warranted.

Supporting Information

Table S1 CNV counts and values for

methylation and other genomic factors for

100-Kbp windows tiling the hg18 assem-

bly of the human genome.

(ZIP)

Table S2 Regression analysis of the

predictive power of methylation and other

genomic factors for CNV counts.

(XLS)

Figure 1. Predictive power of methylation and other genomic factors for CNV counts. Predictive power of methylation, CpG island
content, and repetitive element content (LINE, SINE, LTR, and Satellites) was measured using Akaike information criterion (AIC). For all five datasets,
negative binomial regression was performed using all six factors and all six combinations of five factors (one factor being removed at a time). The y-
axis represents the predictive power of a factor, as measured by the improvement of the AIC score based on all six factors relative to the AIC score
without the factor. Note that this method measures predictive power of a factor after correction for any potential confounding due to other factors.
(The detailed calculations and input data are in Supporting Information.)
doi:10.1371/journal.pgen.1003333.g001
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