
sensors

Article

A Simple Neural Network for Collision Detection of
Collaborative Robots

Michał Czubenko 1,2,* and Zdzisław Kowalczuk 1

����������
�������

Citation: Czubenko, M.; Kowalczuk,

Z. A Simple Neural Network for

Collision Detection of Collaborative

Robots. Sensors 2021, 21, 4235.

https://doi.org/10.3390/s21124235

Academic Editor: Oscar Reinoso

Garcia

Received: 12 May 2021

Accepted: 17 June 2021

Published: 21 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Robotics and Decision Systems, Faculty of Electronics Telecommunications and Informatics,
Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; kova@pg.edu.pl

2 Intema Sp. z o. o., Siennicka 25a, 80-758 Gdańsk, Poland
* Correspondence: micczube@pg.edu.pl

Abstract: Due to the epidemic threat, more and more companies decide to automate their production
lines. Given the lack of adequate security or space, in most cases, such companies cannot use classic
production robots. The solution to this problem is the use of collaborative robots (cobots). However,
the required equipment (force sensors) or alternative methods of detecting a threat to humans are
usually quite expensive. The article presents the practical aspect of collision detection with the use
of a simple neural architecture. A virtual force and torque sensor, implemented as a neural network,
may be useful in a team of collaborative robots. Four different approaches are compared in this
article: auto-regressive (AR), recurrent neural network (RNN), convolutional long short-term memory
(CNN-LSTM) and mixed convolutional LSTM network (MC-LSTM). These architectures are analyzed
at different levels of input regression (motor current, position, speed, control velocity). This sensor was
tested on the original CURA6 robot prototype (Cooperative Universal Robotic Assistant 6) by Intema.
The test results indicate that the MC-LSTM architecture is the most effective with the regression level
set at 12 samples (at 24 Hz). The mean absolute prediction error obtained by the MC-LSTM architecture
was approximately 22 Nm. The conducted external test (72 different signals with collisions) shows that
the presented architecture can be used as a collision detector. The MC-LSTM collision detection f1 score
with the optimal threshold was 0.85. A well-developed virtual sensor based on such a network can be
used to detect various types of collisions of cobot or other mobile or stationary systems operating on
the basis of human-machine interaction.

Keywords: cooperating robots; force and tactile sensing; robot safety; neural network applications

1. Introduction

We live in times when life expectancy is significantly increasing. Rapidly developing
technology and widespread access to medicines make life easier, healthier and longer.
Moreover, society in developed countries is aging and fewer and fewer people are choosing
to work on manual production lines. As a result, there is a huge shortage of (not just
physical) employees on the European labor market. The job vacancy rate increased from
1.3% in 2013 to 2.3% in 2019 [1]. According to a Boston Consulting Group report, in Poland,
in 2030, for example, another five million employees will be needed. Due to the great
monotony that characterizes many such jobs, human-replacement production robots are
the perfect solution. In 2018, the highest concentration of production robots took place in
Singapore (831 robots per 10,000 employees), the Republic of Korea (774) and Germany
(338) [2]. The European average is 114 robots per 10,000 employees and is higher than
the American (99) and Asian (91) [2] rates. Still, there is constant demand for robotization
of enterprises.

Very often, robotic stations eliminate manual production lines and contribute to the
elimination of human presence in production areas. Robots are usually surrounded by
various types of barriers, fences and even cages. From the very beginning, manipulators

Sensors 2021, 21, 4235. https://doi.org/10.3390/s21124235 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9483-4983
https://orcid.org/0000-0001-9174-546X
https://doi.org/10.3390/s21124235
https://doi.org/10.3390/s21124235
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21124235
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21124235?type=check_update&version=1

Sensors 2021, 21, 4235 2 of 20

are designed to recreate human operations, such as pulling, pushing, pressing and lifting el-
ements. At the same time, they use great strength and speed, which makes them dangerous
to humans. This trend is now evolving, and the industry is increasingly using collaborative
robots called cobots, which first appeared in the late 1990s [3]. They are characterized by
lower load capacity, reduced speed and reduced impact force. ISO/TS 15066 states that
the maximum speed of the cobot should not exceed 250 mm/s measured in the center
of the tool, while the maximum impact force should be less than 65–210 N (depending
on the body part). Thanks to such restrictions, they are also safer for people. However,
they are not widely used enough. In 2017, only 11,000 of the 400,000 robotic units were
cobots (2.7%) [2]. This ratio increased to 3.3% in 2018. In recent years, more robots that are
friendly to humans (in the sense of interaction) have emerged. Currently, they can also
be equipped with an emotional expression system (e.g., the Baxter robot) or a dedicated
emotional system (e.g., xEmotion [4]).

In order to interact freely with people, cobots should meet a number of safety standards
(especially: ISO 10218 and ISO/TS 15066) [5]. On the basis of these standards, certain steps
important for the safety can be distinguished:

• collision (event) prediction;
• pre-collision strategies (collision avoidance);
• collision event;
• post-collision strategies (stopping the robot).

Detection of events requires the implementation of appropriate sensors and algorithms
(usually expensive). The following solutions are used to predict a collision event: optical
zone barriers, pressure mats and strips, safety keys, motion and distance sensors, and vision
sensors [6,7]. The pre-collision strategies take into account what will happen when an
intruder enters the robot space. The technical specification ISO/TS 15066 concerns the
reduction of the robot’s speed in the case of locating an intruder in the working area and
supervising the separation of the robot’s trajectory from the human trajectory. To detect a
collision event, we mostly use torque sensors. Commonly they are used for any degree of
freedom. Note that there is also a Fanuc approach with an external torque sensor located at
the mounting point between the foundation and the robot, which perfectly measures the
cumulative effect of the acting force moments. To detect collisions, we also use touch mats
(Bosch APAS system) or other sensors, such as CLS (Compliant Limb Sensor) [8], touch
sensors [9] or other types of virtual sensors [10]. The post-collision strategies dictate what
to do after a collision—it is basically a safety-related stop. Note that both strategies can be
interpreted as an unconscious reaction to a specific stimulus: distal in the case of prediction
and proximal in the event of a direct collision [11].

To reduce the costs of the pre-collision approach, one can use RGBD (Red-Green-Blue-
Depth cameras such as Intel® RealSense™ [12]. In this application, deep neural networks
(e.g., YOLO—You Look Only Once—a real-time object detection system) used to detect an
intruder provide good results. One can obtain even better results using neural networks
(e.g., OpenPose) for detecting and estimating poselets (a poselet—positioning or position
distribution—is a specific description, characteristics or structure, related to the mechanics
of the human figure based on pose markers—key marker points, such as points on the feet,
ankles, knees, hips, arms, elbows, wrists, neck and head—that suitably define a human
pose or gesture) [6,13].

1.1. Contribution

This article proposes a solution to the problem of robot collision detection using a
virtual force sensor based on neural networks. The topic of collision detection by neural
networks is discussed in the literature [14–17]. However, only in a few cases, deep neural
networks are used.

This article compares four different neural architectures. Moreover, two important
innovations can also be identified here. The first concerns the use of Mixed Convolutional—
Long Short-Term Memory layers [18], which results in the highest performance among

Sensors 2021, 21, 4235 3 of 20

the architectures tested. The second one concerns the analysis of the regression level,
i.e., the number of previous samples used to excite neural networks. Consequently, a wide
range of regression levels (4 to 32 samples) will be tested for each neural network and the
experiments will show that the best accuracy in predicting the load current can be achieved
by using a moderate depth of the regression level.

According to our information, there is no report considering different levels of regres-
sion (second novelty) for predicting a robot load current signal through a neural network.
There is also no mention of a neural network based on a mixed convolutional LSTM layer
(MC-LSTM) in the wide literature (the first novelty). Our tests prove that such a solu-
tion (MC-LSTM) is the best neural architecture for the considered load current prediction
modeling task.

It should be emphasized that the presented dataset comes from the real-world pro-
totype of the CURA6 production robot. The collisions will be triggered by appropriate
real human-robot interactions. As the robot is a hand-assembled prototype, it is very
difficult to determine its actual parameters (such as the center of gravity of each joint) with
high accuracy. Hence, there is a fundamental problem in applying the classical modeling
approach. Therefore, before it will be possible to compare white-box and black-box models,
in our article, we analyze the influence of the type of neural network architecture and the
regression level for the input data in solving the load current prediction task.

1.2. The Structure

Section 2 provides a mathematical formulation of the problem and an overview of
the available solutions. Next, Section 3 presents the proposed black box approach to
modeling the behavior of the cooperative CURA6 (Cooperative Universal Robotic Assis-
tant 6) robot, equipped with a manipulator with six degrees of freedom. In particular,
the black box predicts motor currents using artificial neural networks (ANNs). Four dif-
ferent approaches are tested: AR (Auto-Regressive), RNN (Recurrent Neural Network),
CNN-LSTM (Convolutional Neural Network—Long Short-Term Memory) and MC-LSTM
(Mixed Convolutional—Long Short-Term Memory). Then, a system for detecting failures
(robot collisions) based on predictions and measurements of motor currents is proposed.
Note that our system uses the aggregate detection and isolation effect, while the threshold
method is used in further identification. The results obtained are discussed in Section 4. The
last Section 5 presents the conclusions.

2. Problem Formulation

The main issue considered here is fast collision detection between a robot and a solid
or moving body (obstacle or human). In the research reported here, the CURA6 industrial
manipulator shown in Figure 1 with 6 DoF (Degrees of Freedom) developed by Intema was
taken into account, the kinematic chain of which is characterized in Table 1 using the Denavit–
Hartenberg notation. It is the original prototype of a new generation of cobots capable of
moving a wide variety of objects weighing up to 5 kg over short distances (1200 mm).

In order to effectively handle such a manipulator, the inverse dynamics of the robot
must first be determined. Although this task can be based on the analytical considera-
tions [19], in most practical cases, it may turn out to be very difficult, and sometimes even
impossible to carry out.

In the case of the CURA6 prototype, it is impossible to accurately assess the standard
parameters required for the inverse dynamics problem (such as exact link mass, mass
centers, and the exact model of the link itself). This difficulty is mainly due to the manual
assembly of a single copy of this robot. In addition, when modeling the manipulator, it
is difficult to take into account the weight of the connecting elements and cabling, not
always routed along the link’s cross-section axis. The resulting error in estimating the
model parameters significantly affects the problem of the manipulator’s inverse dynamics.
Therefore, in this paper, we only cite research related to convenient modeling of robot
behavior using neural networks.

Sensors 2021, 21, 4235 4 of 20

(a) The photo.

0

1

2

34

5 6

a2

a1

d4

d5

d3

d0

(b) The model.

Figure 1. The CURA6 robot.

Table 1. DH parameters of CURA6.

i ai αi di τi θi

0 0 π
2 0.105 τ0 θ0

1 0.4 0 - τ1 θ1
2 0.4 0 - τ2 θ2
3 0 π

2 0.22 τ3 θ3
4 0 −π

2 0.2 τ4 θ4
5 0 0 0.14 τ5 θ5

Moreover, it is easier to obtain the parameters of such a dynamic model on the basis of
an experiment with appropriate excitation and using an appropriate numerical algorithm
(e.g., ABC—Artificial Bee Colony; GA—Genetic Algorithms, etc. [20,21]). It is worth noting
that the visual identification method can also be used for this task [22]. There are a number of
works that focus on determining the appropriate trajectories that trigger robot movements,
whereby such a trajectory is a setpoint signal that stimulates system dynamics so that we
obtain an over-determined system [23].

2.1. Dynamic Model of a Robot

The dynamic model of an industrial robot is given as:

M(q)q̈ + C(q, q̇)q̇ + g(q) + τf = τd (1)

where q(t) = [q0(t), q1(t), . . . , qn−1(t)] ∈ Rn encompasses the positions of each joint (n = 6
in our robot), q̇(t) ∈ Rn and q̈(t) ∈ Rn represent the velocity and acceleration vector,
respectively. While M(q) ∈ Rn×n describes the robot inertia matrix, C(q, q̇) ∈ Rn×n

presents the effect of Coriolis and centrifugal force, g(q) ∈ Rn describes the gravity force,
τf ∈ Rn expresses friction forces (sum of viscous and Coulomb friction) and τd ∈ Rn is the
joint torque vector [21,24].

With the Newton–Euler parameters, this model can be presented in the following
affine (linear) form:

τd = Φ(q, q̇, q̈)θ (2)

where Φ ∈ Rn×mn is a Jacobian matrix and θ ∈ Rmn is a vector of manipulator dynamics
parameters. As mentioned in the previous section, Equation (2) is commonly used to identify
dynamics parameters using excitation trajectories based on Fourier series [20,21,25].

Sensors 2021, 21, 4235 5 of 20

2.2. Collision Monitoring Methods

The virtual sensor concept is used in various approaches to detect manipulator colli-
sions [26,27]. All such methods based on a virtual sensor, however, relate to the estimation
of the external torque. Estimation of the external torque τext can be made using an energy,
velocity or torque observer. It can be determined directly by estimating the Φ matrix (Φ̂) or
by using the inverse dynamics approach.

An excellent example of a force/torque sensor application for collision detection is
given in [28]. The authors use filters of current signals (CF) to identify the type of collision
along with statistically determined thresholds for the processed torque signal. While in the
work of [29] a method based on low-pass and band-pass filtering was proposed.

There are also generalized momentum observer (GMO) methods that analyze the
robot’s momentum change for collision detection [30,31]. Another method based on the
momentum observer can be found in [32,33]. However, this is a model-based approach
that is highly dependent on the quality of the dynamic robot model. For collision detection
for robots with 6 DoF [26,30], the nonlinear noise observer (NDO) method can also be used.

A comparison of classical dynamic modeling (DM) with simple artificial neural net-
work (ANN) modeling (and thresholding) is presented in [34]. There, the authors show that
the respective threshold values applied to the torque error (in the range 1–2.5 Nm) lead to
quite good performance when the torque calculated by the KUKA environment is used as
a baseline. Their simple neural network (with 14 hidden neurons) is slightly more accurate,
at the same time, it requires a well-prepared dataset. The article also presents a collision
location method, but based on a larger neural network. In this case, the joint torque can be
easily analyzed (in any context and without a model) for any abnormalities [35].

Another approach based on the use of neural networks for collision detection is
presented in [17,36]. The authors present a simple neural network with 90 hidden neurons,
which can estimate the robot’s torque for only one joint (with a fixed trajectory). Their
neural network predicts torque with an average absolute error of about 0.09 Nm, and the
accuracy of collision detection reaches almost 84%.

An interesting example of the use of artificial intelligence techniques can be found
in [37], in which the authors use fuzzy residual evaluation (FRE) to detect faults.

In [32], the authors introduce a collision detection method based on the Yumi robot
dynamics model to estimate the external force. The collision detector is implemented there as
a single trigger based on the L2 norm of force estimation. On the other hand, [38] proposed
a simple time-series approach (TSA) where the authors achieved 100% accuracy for two
different trajectories (linear and arc).

Yet another approach is external proprioception based on an Integrated Measurement
Unit (IMU) sensor [39]. Many other methods based on external complex physical or virtual
sensors, such as cameras, 3d cameras, vibration analyzers and other [40–42], are also
heading in this direction.

A short summary of selected features of the most popular methods in the context of
collision detection is presented in Table 2.

Table 2. Comparison of collision detection methods, where CC is a computational complexity.

Method Crucial Issues Requirements Limitations CC

CF filters design current signal different filers low
GMO friction disturbances dynamics model load high
NDO better sensitivity than GMO friction estimation load medium

τth constant collision force torque sensor high price low
DM precise parameters medium
Φ̂ precise parameters adequate dataset medium

Sensors adequate skin sensor sensor frequency medium
TSA torque signal robot trajectory medium
FRE expert knowledge expert rules low

ANNs learning dummy dataset high
MC-LSTM-12 learning dummy dataset lack of localization high

Sensors 2021, 21, 4235 6 of 20

2.3. Torque Estimation

Anticipating the possibility of a collision affecting robot segments, one should add
the appropriate external moment to the robot dynamics Equation (2). The estimation of
external torque can be written as the difference between the motor torque measured on the
robot and its estimate:

τ̂ext ≈ τd − τ̂d (3)

The manipulator torque estimator τ̂d can be determined according to the robot dy-
namics model (calculated as a black box or using inverse dynamics). In practice, the above
equation can be approximated as:

τ̂ext ≈ Kt·
(

I − Î
)

(4)

where I is the motor current, Î represents the current estimate, and Kt is a motor torque
constant (which is different for different motors). In our case, the three main robot motors
have Kt = 0.19, while the others have Kt = 0.11 (since CURA6 motors have a gear ratio of
1:100, the motor torque constant has to be multiplied by 100).

3. Black Box Model

Due to the high complexity of the problem of determining the robot dynamic parame-
ters, we decided to model the robot using ANNs. Note that ANNs are commonly used in
more advanced tasks [43]. A brief overview of the collision detection problem presented
in the previous section indicates the legitimacy of using such a universal tool as ANN.
In addition, it is well known that neural networks are effective in modeling time series
(current waveforms of robot motors), although an appropriate set of data for ANN training
is always needed.

3.1. Dataset—Experimental Setup

As training data, 15 slices of random movements of the robot were prepared, each
containing about 10,000 samples (7 min of movement). Each motion trajectory was prepared
by a trajectory solver that randomly selected a target point from the allowable work area.
The speed of each joint was designed safely by the solver to be within 25% of the maximum
speed of the motors.

Three slices were collected without any load, and the others with the load from the
following list {782, 1016, 1282, 2298, 2757, 4039} in grams, with two slices for each load
(approximate load range was 500 g to 4000 g). These data were divided into learning (90%)
and validation (10%) data. In addition, another set of test data (7 slices, one slice for each load)
was prepared to determine hyper-parameters. Note that in our case the most important hyper-
parameters are the order of regression and the ANN structure, while the less important are the
batch size, number of epochs, and the optimizer and its parameters. Each slice contained four
types of data: position (in rad), velocity (in rad/s), motor current (in A), input/controlling
velocity (in rad/s), downloaded directly from the controllers of each degree of freedom (joint,
motor) via CAN bus (Controller Area Network). The data sampling frequency was 24 Hz.
Sample data for one slice (excluding the load) are presented in Figure 2.

Based on the collected data, approximately 30 learning datasets (each with a different
regression order) were prepared. Their input dimensions (complexity) can be described as
batches× 6× 4× regr◦ (number of learning samples × degrees of freedom × dimensions
{position, velocity, motor current, input velocity} × regression order {number of time
samples}), while the output has only two dimensions: batches× 6 (the learning samples
number × the motor current predictions number). The prepared datasets differ in the
number of delayed samples depending on regr◦ (the dataset for the 15th regression order
has 162,905 samples, and for the 10th order—162,980).

Note that the concept of regr◦ used in this article represents the regression order
of prediction. Functionally, this parameter specifies the width of the time window or,
equivalently, the number of previous samples used to predict the next motor current

Sensors 2021, 21, 4235 7 of 20

sample. In practice, the parameter regr◦ can be translated into the input dimension of the
system or the number of ANN layers.

1.3 1.4 1.5 1.6 1.7 1.8 1.9
time [s]

6

4

2

0

2

cu
rre

nt
 [A

]

Joint #1

(a) Current of the engine # 1 of the analyzed robot.

1.3 1.4 1.5 1.6 1.7 1.8 1.9
time [s]

0.4

0.3

0.2

0.1

0.0

0.1

0.2

ve
lo

cit
y

[ra
d/

s]

Joint #1
robot
target

(b) The actual velocity of the robot and the set (target) speed.

1.3 1.4 1.5 1.6 1.7 1.8 1.9
time [s]

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

po
sit

io
n

[ra
d]

Joint #1

(c) The angular position of the selected joint.
Figure 2. Example of 1000 samples (about 0.7 s) of measurement data for motor/joint # 1 (bright red stripe show the stop
period while light green shows movement).

Sensors 2021, 21, 4235 8 of 20

As mentioned before, the CURA6 robot (Figure 1) performed the motions generated by
the solver to a random point in the workspace. An obstacle (aluminum profile 40 × 40 mm,
1 m long) was placed on its trajectory to obtain data on the collision. This obstacle was held
in the hand of the operator, so it can be considered static and somewhat susceptible to the
impact force. The moment of the collision was recorded using a button. The collisions in
the dataset were carried out at random points of all robot modules (all safety standards
were met during data collection).

Note that all applied measurement data have not been filtered or pre-processed in
any way. Moreover, an additional dataset with 390 collisions was prepared for external
tests, which concerns 13 different loads and 7 different values of the maximum speed of
the robot. All these datasets are publicly available at gitlab (since 2 June 2021) provided
that this article is quoted at the same time.

3.2. ANN Models

Four models based on ANN were created:

(1) AR—Auto-Regressive model (perceptron);
(2) RNN—Recurrent Neural Network (ANN with two hidden recurrent layers);
(3) CNN-LSTM—ANN with time-distributed Convolutional Network (CNN) and Long-

Short Term Memory (LSTM) layers;
(4) MC-LSTM—the ANN with a Mixed Convolutional-LSTM layer (based on [18]).

Each of the above ANN models has a different number of neurons, depending
on regr◦.

3.2.1. AR Model (Perceptron)

The first neural network (Figure 3) imitating the AR model [44] consists only of the
output layer with 6 neurons (current predictions, Î) densely connected to input nodes.

The simplest neuron equation can be written as:

o = f

(
b +

N

∑
k=1

wk · ik

)
(5)

where o is the output of the perceptron, ik is the k-th input of the neuron, b is a bias, wk is a
weight, and N is the number of inputs.

When the activation function f is linear (i.e., ineffective because then the neural
network loses its special non-linear properties), the output is assigned to the t-th time
moment, and the input ik gets the time interpretation k = t− j; then, the perceptron can be
described as a simple auto-regression model (AR):

xt = c +
N

∑
j=1

ψj · xt−j (6)

where c is the bias and ψj represents the corresponding parameter (weight) of the AR
model. Note that in the robot case all variables are vector quantities, thus, the whole model
represents a vector auto-regression model.

3.2.2. RNN Model

Recurrent neural networks (RNN) are characterized by good quality in time series
forecasting (at the expense of longer learning time) [45]. A simple recurrent neuron can be
described as

ot = f

(
b + u · ot−1 +

N

∑
k=1

wk · ik

)
(7)

where ot is the current output, ot−1 represents the previous output (state) of the neuron,
and u is its weight (which can be trained).

https://gitlab.com/intema-gdansk/cura6-dataset

Sensors 2021, 21, 4235 9 of 20

dense (6)

MC-LSTM (6 x 64 x regr)

dense (6)

output layer (6)

input layer
(6 x 4 x regr)

dense (6)

Conv (6 x 64 x regr)

MaxPool (6 x 32 x regr)

LSTM (100)

dense (6)

RNN (40 x regr)

RNN (6 x 10)

AR MC-LSTM Conv-LSTM RNN

input layer
(6 x 4 x regr)

input layer
(6 x 4 x regr)

output layer (6)

output layer (6) output layer (6)

input layer
(6 x 4 x regr)

Figure 3. Structures of tested models predicting motor current (Î) on the output layer (6 neuron nodes), with a linear
activation function.

Such a model, initially constructed only using a single hidden layer (as the so-called
vanilla model), turned out to be completely ineffective in the case of the CURA6 robot.
Therefore, in this context, two recurrent layers were used, the first with the input com-
plexity of f eatures · 10× regr◦ (40× regr◦), and the second with f eatures× joints (4× 6)
dimensions. The output layer remained unchanged (consisting of 6 densely connected
output neurons). For the sake of recursiveness, the RNN model created must remember
several samples back (in additional regression layers). The applied model is presented in
Figure 3.

3.2.3. CNN-LSTM Model

Neural networks based on a convolutional layer (state-space aspect of systems model-
ing) and a long-short term memory memory layer (recurrent part with memory) are also
great for predicting time series [46]. With the output layer similar to the above-mentioned
ANN cases, the tested CNN-LSTM network was built on one convolutional layer (64 filters
with Rectified Linear Unit, ReLU, activation function), a max pool layer (2 strides) and the
LSTM layer (100 cells).

3.2.4. MC-LSTM Model

As a fourth alternative, a neural network based on Mixed Convolution and LSTM layers
was created [18]. In this case, in addition to 64 different convolutional filters, each LSTM
cell also performs convolution on its four internal inputs (i.e., input, output, modulation
and forgetting gates).

3.3. Learning Results

To properly select the hyperparameters, including the regression order, all considered
models were trained according to prepared datasets for regr◦ ∈ 〈5; 33〉. The simple AR and
RNN networks were matched using the Stochastic Gradient Descent algorithm, and the
LSTM memory networks (CNN- and MC-LSTM models) using the Adam algorithm. In all
cases, the learning rate was 0.001, and the mean square error (MSE) was used as the loss
function. The batch size was 256, and the validation data accounted for 10% of the training
set. The condition for completing the learning process was a minimum change in losses of
10−6 for four successive epochs.

Sensors 2021, 21, 4235 10 of 20

After training, each model was tested on an external test dataset (about 73,000).
The target results for motor current predictions were calculated for each joint. To visualize
the results, the Mean Absolute Error (MAE) was calculated for the adopted test dataset:

MAE =
1
M
·
(

M

∑
i=1
|Ii − Îi|

)
(8)

where Ii is the measurement, Îi is the prediction for the relevant horizon (window), and M
is the number of test samples in the test dataset. This result was scaled by a constant
adequate for each motor to convert the motor current into motor torque. The mean torque
differences for each joint are shown in Figure 4a, and their sum for all motors is given
in Figure 4b (as solid lines). In addition, the Root Mean Square—RMS (dashed line) was
calculated in both cases. One slice of validation data and the best model forecasts are shown
in Figure 5. Note that Figure 5a presents the original current signal and its prediction,
while Figure 5b shows the difference between them, its mean value and standard deviation.
In turn, Figure 5c illustrates the ratio between the predicted and actual current signal,
where all the visible peaks result from the almost zero value of the measured current.

It should be noted that with the dominance of the proposed approach, in fact, the dif-
ferences between the analyzed methods presented in Figure 4 are very small. It should
also be emphasized that the level of absolute values of the errors presented in this figure
is not high. Apart from the fact that the data shown in Figure 4b have been accumulated
over all joints, the torques and/or currents should be referred to the nominal values for
the motors used. When we look at a single joint (e.g., # 1), the maximum MAE is below
7.5 Nm (approximately 7.4 Nm). This can be translated into a motor current value of 0.39 A
(with Kt = 0.19 and a gear ratio of 1:100). Meanwhile, the maximum current of this motor
is about 48.8 A, and the current achieved in our tests was no more than 7 A. So, the average
error when experimenting with the #1 joint was about 0.8%, and 7%—in the context of the
maximum motor current range.

8 12 16 20 24 28 32

9

10

11

12

13

to
rq

ue
 e

rro
r [

Nm
]

Joint #0

8 12 16 20 24 28 32
6

7

8

9

10

Joint #1

8 12 16 20 24 28 32

6

7

8

9
Joint #2

8 12 16 20 24 28 32
regression order (regr)

0.8

1.0

1.2

1.4

1.6

1.8

to
rq

ue
 e

rro
r [

Nm
]

Joint #3

8 12 16 20 24 28 32
regression order (regr)

0.6

0.8

1.0

1.2

1.4

1.6
Joint #4

8 12 16 20 24 28 32
regression order (regr)

0.6

0.8

1.0

1.2

1.4

1.6

Joint #5

(a) Mean error of predicting engine torque at each joint.

Figure 4. Cont.

Sensors 2021, 21, 4235 11 of 20

4 8 12 16 20 24 28 32
regression order (regr)

22

24

26

28

30

32

34

36

38
su

m
 o

f t
or

qu
e

er
ro

rs
 [N

m
]

AR
RNN
CNN-LSTM
Conv-LSTM

(b) Motor torque prediction error accumulated for all joints.

Figure 4. Experimental results for the mean absolute error—MAE (solid lines) and the root mean-square error—RMS
(dashed lines) as a function of the regression order, where the descriptive legend is common.

3.4. Summary

As can be seen in Figure 4a, there are three peculiarities: (i) the highest detectability,
due to the highest current and torque values, is associated with motor number 1; (ii) the
largest prediction error is related to motor #0 (responsible for rotation around the robot
axis); (iii) the least effective regression orders are below 8, as well as between 22 and 30
(which is evident in the LSTM models). As for (ii): This phenomenon is caused by the
nature of the robot’s main joint, whose motor is relatively evenly loaded over time and
with low dynamics of changes. As for (iii): Although a single robot movement takes about
12 s (≈300 samples), high acceleration and deceleration phases occur within a range of
less than 8 samples. Therefore, the robot motion characteristics should not be deduced
from data obtained with a regression order less than 8. On the other hand, a clear decrease
in the effectiveness of the MC- and CNN-LSTM models for regr◦ ∈ 〈22; 30〉 most likely
results from the effect of the secondary time dependence associated with the long-term
memorizing process occurring in these recurrent networks (roughly 2× regr◦ in MC-LSTM
and 3× regr◦ in CNN-LSTM).

As can be estimated from the cumulative error (Figure 4b), the best filter is MC-LSTM
with a suboptimal regr◦ = 12 (RMS error about 31 and MAE about 22.5 in Nm). It is worth
noting that this error is dominated by the effect of joint #0 (Figure 4a). As noted above (i),
from the point of view of collision detection, the first joint (motor #1) is most important,
which is the basic point of the robot lever arm and which is affected by all external torques.

It is interesting that our black-box approach gives similar accuracy (30 Nm of RMS
error) as the classic white-box approach [21], without going into the complexity of the phys-
ical mathematical model. It should also be noted that analytical procedures are preferred
by theorists, while ANN approaches can be widely practiced by industrial personnel.

In practice, according to the optimization carried out, we need the previous 12 samples
to calculate the prediction. Note that such a single prediction takes about 0.20 ms on a
standard computer (i5-8400, GTX 1070) using the CUDA library. However, on NVIDIA
Jetson (target CURA6 controller) it takes a little longer—about 0.90 ms.

Sensors 2021, 21, 4235 12 of 20

1.3 1.4 1.5 1.6 1.7 1.8 1.9
time [s]

6

4

2

0

2

4
m

ot
or

 c
ur

re
nt

 [A
]

Joint #1
I
I

(a) Measurements and predictions in ampere.

1.3 1.4 1.5 1.6 1.7 1.8 1.9
time [s]

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

bi
as

 [A
]

I

I

(b) Motor current prediction error—difference between measurement and prediction (dark blue line)—and its average in ampere
(dark purple). The purple shadows represent 2.575829 and 3 σI levels of standard deviation.

1.3 1.4 1.5 1.6 1.7 1.8 1.9
time [s]

0

2

4

6

8

10

cu
rre

nt
 ra

tio
 [A

/A
]

Joint #1

(c) Ratio of motor current prediction error and its real value.

Figure 5. Current trajectories in ampere obtained using the MC-LSTM model for regr◦ = 12 for example joint #1.

Sensors 2021, 21, 4235 13 of 20

4. Collision Detection

Based on the ANN computations of Equation (4), impact detection occurs when the
absolute value of the external torque estimate (τ̂ext) exceeds a certain threshold (τimp):

|τ̂ext | > τimp (9)

According to Equations (4) and (9), an effective collision detector is:

|I − Î| > Iimp =
τimp

Kt
(10)

The symptom of a collision with the robot can be sought in the phenomenon of a
significant increase in motor current.

Motor current measurements are discrete, which is why discrete notation in time is
appropriate, where n is the current moment. In this case, the current analysis horizon
(sampling window) containing the last regr◦ samples can be written as [n− regr◦ : n− 1].

4.1. Statistical Approach

With statistical argumentation and the assumption that the probability distribution of
the motor current can be considered a normal distribution, the collision can be detected
using the practical rule of three sigma [47]:

P(collision) ≈ P(|I[n]| > γ · σI + µI) (11)

where σI = σ(I[n− regr◦ : n− 1]) is the standard deviation of the motor current, µI =
µ(I[n− regr◦ : n− 1]) is the mean motor current, I[n] is the actual motor current and
regr◦ is the regression order. Note that γ = 2.575829 represents a 99% (probability)
confidence level.

4.2. Prediction Approach

The left side of Equation (10) means the current prediction error (bias), which at time
n can be shown as

∆̂I [n] , |I[n]− Î[n]| (12)

In a way similar to the statistical approach, Iimp, the scaled threshold of Equation (10)
can be computed as:

Iimp = γ · σ∆̂I
+ µ∆̂I

(13)

where σ∆̂I
and µ∆̂I

represent the standard deviation and the mean of the motor current
estimation error of the last regr◦ samples. It should be clear that the threshold Iimp can be
different for different types of performed movement (no movement, acceleration, uniform
motion, braking). In dynamic cases (acceleration and braking), this threshold should be
higher than in mild (semi-static) cases (as in uniform motion).

4.3. Results

Two inequality conditions are verified to detect collisions: (j) a purely statistical detector:

|I[n]− µI | > γ · σI (14)

and (jj) a prediction-based detector:

|∆̂I [n]− µ∆̂I
| > γ · σ∆̂I

. (15)

In addition, we will consider: (jjj) a reference, optimal detector based on the threshold
analysis of the current prediction error given by Equations (10) and (12), and similar to
Equation (15), with the threshold (2.0 [A]) precisely adapted to motor #1 and to the collision
case under consideration:

Sensors 2021, 21, 4235 14 of 20

|∆̂I [n]− µ∆̂I
| > 2.0. (16)

The effects of the collision detection analysis for motor #1 using the MC-LSTM model
with regr◦ = 12 are shown in Figure 6. The sub-figures (Figure 6a) show the signals without
collisions. It should be noted that near the 280th sample, there is a sudden drop in the
current signal caused by a dynamic change in the robot’s trajectory.

The sub-figures (Figure 6b) show three symptoms of collision events near samples
80, 250 and 290. It is worth noting that in the absence of a collision, there is a false signal
increase near the 200th sample, which, however, is reduced by applying the deviation from
the average.

In all upper graphs, the blue line shows the current (I) of motor #1, the red line is the
prediction (Î), while the green line shows the mean motor current (µI), and the green area
depicts the confidence level γ · σI . In the lower graphs, the deviation of the motor current
from its predictions is shown by a blue line, and its mean is presented as the purple area
corresponding to confidence γ · σ∆̂I

.
The collision detection methods work on the basis of a one-step receding horizon.

The statistical (j) detection moments are marked in Figure 6 as steel-blue dots, whereas
the prediction (jj) detection times are marked as crimson dots. For reference (Figure 6b),
the results of the optimal threshold detector (jjj) are marked as orange dots.

There are many false-positive events in both detectors (j) and (jj) (even in the collision-
free case of Figure 6a). However, when one raises the confidence level (γ) (for example,
to 3 or 5), true-negative detections will occur.

0.45 0.50 0.55 0.60 0.65 0.70 0.75
4

2

0

2

4

m
ot

or
 c

ur
re

nt
 [A

]

Motor current & collision detection
I
I

I

0.45 0.50 0.55 0.60 0.65 0.70 0.75
time [s]

2

1

0

1

2

bi
as

 [A
]

I

I

(a) Collision-free measurement and prediction.

Figure 6. Cont.

Sensors 2021, 21, 4235 15 of 20

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05

10

5

0

5

10

m
ot

or
 c

ur
re

nt
 [A

]
Motor current & collision detection

I
I

I

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05
time [s]

10

5

0

5

10

bi
as

 [A
]

I

I

(b) Measurement and prediction for three collisions.

Figure 6. Diagnostic signals using the MC-LSTM(12) model for motor #1, including motor current I (blue line) and its
prediction Î (red line), mean motor current µI (green line along with green confidence area of width γσI), and prediction
bias, I − Î (dark blue) relative to its mean (purple confidence area around zero of width γσ∆̂I

). The statistical detection
moments (j) are denoted by steel blue dots, while the prediction moments (jj) are marked as scarlet dots and the optimal
threshold detector (jjj) is denoted by orange dots.

There are two other ways to reduce false-positive detections:

• logical multiplication (AND) on all three conditions;
• filtering several (2 or 3) detections in a row.

The use of logical multiplication resulted in effective collision detection. Filtering also
gave good results, but at the cost of an additional detection delay of approximately 42 ms
(one sample). Although, in principle, both methods are acceptable, in the case of fast-moving
robots, additional filtration (depending on the sampling period) may be inconvenient.

4.4. Test on an External Dataset

Another test was performed with an external dataset (for 7 different speeds, where
the maximum programmed speed of each joint was set to 10, 20, . . . , 60% of the maximum
operating speed of the motors, and 13 different loads with the loads used in the external
dataset were taken from the following list: {0, 401, 852, 1086, 1401, 1950, 2116, 2368, 2832,
3222, 3683, 4122, 4652}). The optimal threshold detector method (jjj) works well here: Out
of 390 collisions, only 63 were not detected (and 52 false detections occurred). Note that the
f1 score in this case was 0.85. Thus, the method is slightly better than the neural network
mentioned in [36]. The method works independently for each joint, and the final collision
verdict is based on any local collision (using the OR logic function).

In order to clearly distinguish the situation of correct assessment, i.e., sensitivity or
correctly positive decisions, from incorrect assessments, i.e., specificity or false positive
decisions, we apply the so-called receiver operation characteristic (ROC) curve. With regard
to the MC-LSTM-12 model with appropriate cut-off thresholds (inscribed in markers) taken
from the interval (1.2; 2.1), such a ROC curve is shown in Figure 7. As can be seen in this
figure, for many of the considered thresholds the detector is above the random guess (i.e.,

Sensors 2021, 21, 4235 16 of 20

the diagonal: TPR = FPR), while the cut-off threshold of 2.0 [A] can be considered the
optimum on the ROC curve.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

1.5
1.6

1.71.8
1.9

2.0
2.1

2.2
2.3

2.4

Figure 7. Receiver operation characteristic (ROC) for the MC-LSTM-12 model with thresholds
(inscribed in tags) taken from the range (1, 2; 2, 1).

The error matrix has also been computed for the external dataset as shown in Table 3.
Note that the entire external dataset contains 78,000 samples in 78 different slices. Taking
into account the established degree of regression, the first 12 samples from each slice were
excluded for collision detection. Not every sample should be considered a possible collision
detection. Formally, such a true negative value (TN) should be 76,622 (the Real TN rows in
the table). However, in order to assume significant values, the mean slope of the motor
current curve was determined for the samples assessed as FP. The TN data presented in the
table using different speeds show no collision detection with a current curve slope greater
than the mean for FP detections.

Table 3. Confusion matrix when predicting collisions on the external dataset with the optimal method of collision detection
at two sub-optimal current thresholds (1.6 and 2.0 [A]), where max V is the maximum programmed speed of each joint, th is
the threshold, TP is true positive, FP is false positive, TN is true negative and FN is false negative (all values have been
rounded to two decimal places).

max V th TP FP TN FN Recall Precision Specificity Accuracy f1-Score

10%

1.6

59 29 113 6 0.91 0.67 0.80 0.83 0.77
20% 60 39 136 5 0.92 0.61 0.78 0.82 0.73
30% 56 75 137 9 0.86 0.43 0.65 0.70 0.57
40% 62 64 159 3 0.95 0.49 0.71 0.77 0.65
50% 59 89 181 6 0.91 0.40 0.67 0.72 0.55
60% 59 87 167 6 0.91 0.40 0.66 0.71 0.56

Sum 355 383 893 35 0.91 0.48 0.70 0.75 0.63

Real TN 327 52 76,622 63 0.84 0.86 1.00 1.00 0.85

10%

2.0

52 3 113 13 0.80 0.95 0.97 0.91 0.87
20% 49 3 136 16 0.75 0.94 0.98 0.91 0.84
30% 52 9 137 13 0.80 0.85 0.94 0.90 0.83
40% 57 10 159 8 0.88 0.85 0.94 0.92 0.86
50% 58 15 181 7 0.89 0.79 0.92 0.92 0.84
60% 59 12 167 6 0.91 0.83 0.93 0.93 0.87

Sum 327 52 893 63 0.84 0.86 0.94 0.91 0.85

Real TN 355 383 76,622 35 0.91 0.48 1.00 0.99 0.63

Sensors 2021, 21, 4235 17 of 20

MC-LSTM has not been learned using such difficult and changing conditions as in the
external dataset (in terms of speed and loads). As the training dataset was based on random
paths, there is no requirement for a particular robot trajectory. However, during our testing,
we discovered that the raw starting of the robot’s motors could be interpreted (mismatched)
as a collision. We assume that fine-tuning and training on a larger dataset will improve
the detection performance (ratio). It is also worth mentioning that the proposed method
can be extended with the collision recognition function (with a dynamic or static obstacle).
However, such a task will require deeper research and a different dataset.

4.5. Computing Resources and Timing

Taking into account the simple comparison of predicted and actual motor current
values, the collision detection time can be limited even to the sampling period (42 ms for
CURA6). Absolutely estimating, this time seems quite long compared to the results of other
neural networks presented in [15], where the collision detection task performed with a
MOD method takes 30 ms and 18.4 ms—in the case of CollisionNet (with a sampling period
of approx. 0.25 ms). However, taking into account the relative computation time (in relation
to the sampling period), our method outperforms the above-mentioned methods by about
a hundred times. It should also be noted that the presented neural network (MC-LSTM12)
requires 402,023 FLOPS (Floating-point Operations Per Second), mainly due to the large
number of convolutions.

It is also worth noting that without taking into account the sampling time of the robots,
the collision detection task takes about 0.20 ms on a standard computer (i5-8400, GTX 1070)
using the CUDA library. The CURA6 controller (Jetson Xavier) needs a little more of this
time to detect a collision—about 0.90 ms.

5. Conclusions

This article discusses collision detection using a virtual force sensor that processes
information about motor current with the aid of an artificial neural network with four
different architectures.

The conducted research proved (mean absolute error of prediction about 22.5 Nm) that
ConvLSTM neurons [18] are the most suitable neural structure for modeling the dynamics
of robots. It should be emphasized here that this robotic application of networks with
ConvLSTM neurons is innovative. We do not know of any other work that implements
a similar approach. The performed tests clearly showed that such a network exceeds
classical neural networks in modeling inverse dynamics, and testing various regression
horizons (stepping) shows that for the CURA6 prototype, a predictive network based on
the previous 12 samples works best. It is obvious that this parameter (regression degree) is
strongly correlated with both the sampling rate and the dynamics (speed of movement) of
the robot.

The proposed method for determining the current of CURA6 robot motors has an ac-
curacy similar to the accuracy of identifying a parameter matrix by means of evolutionary
algorithms [21]. Considering the fact that the largest prediction error is related to the robot’s
zero axis, and the error related to axis #1 (the most important from the viewpoint of de-
tectability) is relatively small, it can be argued that the presented system allows for sufficiently
effective collision detection.

The presented research proves that the monitoring of the difference between the
measured and predicted currents allows for the detection of collisions. To reduce the
number of false positives, in addition to appropriate conditioning (tuning) of the confidence
levels, additional statistical processing can be used. The analysis conditions determined
in this way allow for the detection of collisions for appropriately designed trajectories.
In the case of very dynamic trajectories (multiple forward and backward jerk movements)
the algorithm may erroneously detect collisions. The adaptive properties of the proposed
detectors (statistical and predictive) in relation to the optimal detector, which was closely
matched to the analyzed collision experiment, should be emphasized. It is also worth

Sensors 2021, 21, 4235 18 of 20

noting that optimal thresholding of the signal of the difference between the true and the
predictive current allowed us to obtain the f1 score of 0.85.

Against the background of the results of the review of collision detection methods,
MC-LSTM looks pretty good. The proposed approach only needs a well-prepared (and
labeled) dataset, while analytical methods require detailed, precise robot parameters (which
in the analyzed case of a manually assembled prototype could not be obtained). The use of
MC-LSTM requires quite a lot of computing power, but only in the learning phase. It is
also worth noting that the tool model of our robot was trained on a fairly simple dataset,
and external tests were carried out under rather extreme conditions (taking into account
the robot’s load and maximum speeds). From this point of view, it can be said that the
results obtained exceeded our expectations.

Finally, it is worth mentioning that, in this article, we considered only the detection
part, ignoring the objectives of isolation and identification included in the technical diagno-
sis or the FDI methodology [48]. In this context, isolation (and possibly identification) will
be the subject of our future research. Therefore, in addition to extending our workshop to
filtering motor current signals, we plan to develop a method of locating collisions (collision
points) based on the measurement data of the motor current. It is also worth considering
differentiating the type of obstacles into static and dynamic. Assuming the use of neural
networks in such tasks (based on new datasets), it will be necessary to extend the neural
architecture we have developed to include the analysis of the trajectory of load current
signals at individual joints (apart from prediction of the main motor current). Of course,
this approach should be related to the price and effectiveness of the “external” method of
observing the environment.

Author Contributions: M.C.: conceptualization, software, data curation, writing—original draft
preparation, visualization, investigation, Z.K.: supervision, methodology, validation, writing—
reviewing and editing. All authors have read and agreed to the published version of the manuscript.

Funding: Project co-funded by the European Union from the European Regional Development
Fund as part of the Smart Growth Program. Project implemented as part of the National Center for
Research and Development (NCBR): Fast Track, activities: R+D projects for enterprises, sub-activity:
Industrial research and development works carried out by enterprises; POIR.01.01.01-00-0074/17.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data used for the experiments are publicly available at: https:
//gitlab.com/intema-gdansk/cura6-dataset.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Eurostat. Job Vacancies between 2017 and 2019; Eurostat: Luxembourg, 2019. Available online: https://ec.europa.eu/eurostat/

statistics-explained/index.php/Job_vacancy_statistics (accessed on 1 April 2020).
2. International Federation of Robotics (IFR). Industrial Robots: Robot Investment Reaches Record 16.5 Billion USD; IFR: Frankfurt,

Germany, 2020. Available online: https://ifr.org/ifr-press-releases/news/robot-investment-reaches-record-16.5-billion-usd
(accessed on 1 April 2020).

3. Colgate, J.E.; Peshkin, M.A. Cobots. U.S. Patent 5,952,796, 14 September 1999.
4. Kowalczuk, Z.; Czubenko, M.; Merta, T. Interpretation and modeling of emotions in the management of autonomous robots

using a control paradigm based on a scheduling variable. Eng. Appl. Artif. Intell. 2020, 91, 103562. [CrossRef]
5. Villani, V.; Pini, F.; Leali, F.; Secchi, C. Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and

applications. Mechatronics 2018, 55, 248–266. [CrossRef]
6. Masłowski, D.; Czubenko, M. Safety system for an industrial cooperating robot based on depth cameras. Pomiary Autom. Robot.

2019, 23, 41–46. (In Polish) [CrossRef]

https://gitlab.com/intema-gdansk/cura6-dataset
https://gitlab.com/intema-gdansk/cura6-dataset
https://ec.europa.eu/eurostat/statistics-explained/index.php/Job_vacancy_statistics
https://ec.europa.eu/eurostat/statistics-explained/index.php/Job_vacancy_statistics
https://ifr.org/ifr-press-releases/news/robot-investment-reaches-record-16.5-billion-usd
http://doi.org/10.1016/j.engappai.2020.103562
http://dx.doi.org/10.1016/j.mechatronics.2018.02.009
http://dx.doi.org/10.14313/PAR_234/41

Sensors 2021, 21, 4235 19 of 20

7. Moe, S.; Pettersen, K.Y.; Gravdahl, J.T. Set-based collision avoidance applications to robotic systems. Mechatronics 2020, 69, 102399.
[CrossRef]

8. Miyata, C.; Chisholm, K.; Baba, J.; Ahmadi, M. A limb compliant sensing strategy for robot collision reaction. IEEE/ASME Trans.
Mechatron. 2015, 21, 674–682. [CrossRef]

9. Ceriani, N.M.; Zanchettin, A.M.; Rocco, P.; Stolt, A.; Robertsson, A. Reactive task adaptation based on hierarchical constraints
classification for safe industrial robots. IEEE/ASME Trans. Mechatron. 2015, 20, 2935–2949. [CrossRef]

10. Villagrossi, E.; Simoni, L.; Beschi, M.; Pedrocchi, N.; Marini, A.; Tosatti, L.M.; Visioli, A. A virtual force sensor for interaction tasks
with conventional industrial robots. Mechatronics 2018, 50, 78–86. [CrossRef]

11. Kowalczuk, Z.; Czubenko, M. Intelligent decision-making system for autonomous robots. Int. J. Appl. Math. Comput. Sci. 2011,
21, 621–635. [CrossRef]

12. Varhegyi, T.; Melik-Merkumians, M.; Steinegger, M.; Halmetschlager-Funek, G.; Schitter, G. A Visual Servoing Approach for a Six
Degrees-of-Freedom Industrial Robot by RGB-D Sensing. Autom. Robot. 2017. [CrossRef]

13. Cao, Z.; Hidalgo, G.; Simon, T.; Wei, S.E.; Sheikh, Y. OpenPose: Realtime multi-person 2D pose estimation using Part Affinity
Fields. arXiv 2018, arXiv:1812.08008.

14. Cho, C.N.; Hong, J.T.; Kim, H.J. Neural network based adaptive actuator fault detection algorithm for robot manipulators. J. Intell.
Robot. Syst. 2019, 95, 137–147. [CrossRef]

15. Heo, Y.J.; Kim, D.; Lee, W.; Kim, H.; Park, J.; Chung, W.K. Collision detection for industrial collaborative robots: A deep learning
approach. IEEE Robot. Autom. Lett. 2019, 4, 740–746. [CrossRef]

16. De Luca, A.; Albu-Schaffer, A.; Haddadin, S.; Hirzinger, G. Collision detection and safe reaction with the DLR-III lightweight
manipulator arm. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing,
China, 9–15 October 2006; pp. 1623–1630.

17. Sharkawy, A.N.; Aspragathos, N. Human-robot collision detection based on neural networks. Int. J. Mech. Eng. Robot. Res. 2018,
7, 150–157. [CrossRef]

18. Shi, X.; Zhourong, C.; Hao, W.; Dit-Yan, Y.; Wai-Kin, W.; Wang-chun, W. Convolutional LSTM network: A machine learning
approach for precipitation nowcasting. In Proceedings of the 29th Annual Conference on Neural Information Processing Systems
(NIPS 2015), Montreal, QC, Canada, 11–12 December 2015; pp. 802–810.

19. Kozłowski, K. Modeling and Identification in Robotics; Springer: London, UK, 1998.
20. Ding, L.; Wu, H.; Yao, Y.; Yang, Y. Dynamic model identification for 6-DOF industrial robots. J. Robot. 2015, 2015, 471478.

[CrossRef]
21. Jin, J.; Gans, N. Parameter identification for industrial robots with a fast and robust trajectory design approach. Robot. Comput.

Integr. Manuf. 2015, 31, 21–29. [CrossRef]
22. Kowalczuk, Z.; Merta, T. Estimation of DC motor parameters using a simple CMOS camera. In Proceedings of the 22nd

International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, 28–31 August 2017;
pp. 872–877. [CrossRef]

23. Wu, J.; Wang, J.; You, Z. An overview of dynamic parameter identification of robots. Robot. Comput. Integr. Manuf. 2010,
26, 414–419. [CrossRef]

24. Zeng, F.; Xiao, J.; Liu, H. Force/torque sensorless compliant control strategy for assembly tasks using a 6-DOF collaborative robot.
IEEE Access 2019, 7, 108795–108805. [CrossRef]

25. Park, K.J. Fourier-based optimal excitation trajectories for the dynamic identification of robots. Robotica 2006, 24, 625–633.
[CrossRef]

26. Haddadin, S.; De Luca, A.; Albu-Schäffer, A. Robot collisions: A survey on detection, isolation, and identification. IEEE Trans.
Robot. 2017, 33, 1292–1312. [CrossRef]

27. Indri, M.; Trapani, S.; Lazzero, I. Development of a virtual collision sensor for industrial robots. Sensors 2017, 17, 1148. [CrossRef]
28. Mariotti, E.; Magrini, E.; De Luca, A. Admittance Control for Human-Robot Interaction Using an Industrial Robot Equipped with

a F/T Sensor. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada,
20–24 May 2019; pp. 6130–6136.

29. Li, Z.; Ye, J.; Wu, H. A virtual sensor for collision detection and distinction with conventional industrial robots. Sensors 2019,
19, 2368. [CrossRef] [PubMed]

30. Xu, T.; Fan, J.; Fang, Q.; Zhu, Y.; Zhao, J. A new robot collision detection method: A modified nonlinear disturbance observer
based-on neural networks. J. Intell. Fuzzy Syst. 2020, 38, 175–186. [CrossRef]

31. He, S.; Ye, J.; Li, Z.; Li, S.; Wu, G.; Wu, H. A momentum-based collision detection algorithm for industrial robots. In Proceedings of
the 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China, 6–9 December 2015; pp. 1253–1259.

32. Han, L.; Xu, W.; Li, B.; Kang, P. Collision Detection and Coordinated Compliance Control for a Dual-Arm Robot Without
Force/Torque Sensing Based on Momentum Observer. IEEE/ASME Trans. Mechatron. 2019, 24, 2261–2272. [CrossRef]

33. Guo, M.; Zhang, H.; Feng, C.; Liu, M.; Huo, J. Manipulator residual estimation and its application in collision detection. Ind.
Robot Int. J. 2018, 45, 354–362. [CrossRef]

34. Popov, D.; Klimchik, A.; Mavridis, N. Collision detection, localization & classification for industrial robots with joint torque
sensors. In Proceedings of the 2017 26th IEEE International Symposium on Robot and Human Interactive Communication
(RO-MAN), Lisbon, Portugal, 28 August–1 September 2017; pp. 838–843.

http://dx.doi.org/10.1016/j.mechatronics.2020.102399
http://dx.doi.org/10.1109/TMECH.2015.2496553
http://dx.doi.org/10.1109/TMECH.2015.2415462
http://dx.doi.org/10.1016/j.mechatronics.2018.01.016
http://dx.doi.org/10.2478/v10006-011-0053-7
http://dx.doi.org/10.3217/978-3-85125-524-9
http://dx.doi.org/10.1007/s10846-018-0781-0
http://dx.doi.org/10.1109/LRA.2019.2893400
http://dx.doi.org/10.18178/ijmerr.7.2.150-157
http://dx.doi.org/10.1155/2015/471478
http://dx.doi.org/10.1016/j.rcim.2014.06.004
http://dx.doi.org/10.1109/MMAR.2017.8046943
http://dx.doi.org/10.1016/j.rcim.2010.03.013
http://dx.doi.org/10.1109/ACCESS.2019.2931515
http://dx.doi.org/10.1017/S0263574706002712
http://dx.doi.org/10.1109/TRO.2017.2723903
http://dx.doi.org/10.3390/s17051148
http://dx.doi.org/10.3390/s19102368
http://www.ncbi.nlm.nih.gov/pubmed/31126010
http://dx.doi.org/10.3233/JIFS-179392
http://dx.doi.org/10.1109/TMECH.2019.2934141
http://dx.doi.org/10.1108/IR-01-2018-0019

Sensors 2021, 21, 4235 20 of 20

35. Chen, S.; Luo, M.; He, F. A universal algorithm for sensorless collision detection of robot actuator faults. Adv. Mech. Eng. 2018, 10.
[CrossRef]

36. Sharkawy, A.N.; Koustoumpardis, P.N.; Aspragathos, N. Neural network design for manipulator collision detection based only
on the joint position sensors. Robotica 2020, 38, 1737–1755. [CrossRef]

37. Sneider, H.; Frank, P.M. Observer-based supervision and fault detection in robots using nonlinear and fuzzy logic residual
evaluation. IEEE Trans. Control Syst. Technol. 1996, 4, 274–282. [CrossRef]

38. Zhang, T.; Ge, P.; Zou, Y.; He, Y. Robot Collision Detection Without External Sensors Based on Time-Series Analysis. J. Dyn. Syst.
Meas. Control 2021, 143, 041005. [CrossRef]

39. Birjandi, S.A.B.; Kühn, J.; Haddadin, S. Observer-extended direct method for collision monitoring in robot manipulators using
proprioception and imu sensing. IEEE Robot. Autom. Lett. 2020, 5, 954–961. [CrossRef]

40. Min, F.; Wang, G.; Liu, N. Collision detection and identification on robot manipulators based on vibration analysis. Sensors 2019,
19, 1080. [CrossRef]

41. Wooten, J.M.; Bevly, D.M.; Hung, J.Y. Piezoelectric Polymer-Based Collision Detection Sensor for Robotic Applications. Electronics
2015, 4, 204–220. [CrossRef]

42. Pang, G.; Deng, J.; Wang, F.; Zhang, J.; Pang, Z.; Yang, G. Development of flexible robot skin for safe and natural human–robot
collaboration. Micromachines 2018, 9, 576. [CrossRef]

43. Rout, R.; Cui, R.; Han, Z. Modified Line-of-Sight Guidance Law With Adaptive Neural Network Control of Underactuated
Marine Vehicles With State and Input Constraints. IEEE Trans. Control Syst. Technol. 2020, 28, 1902–1914. [CrossRef]

44. Jiang, X. Time varying coefficient AR and VAR models. In The Practice of Time Series Analysis; Springer: Berlin/Heidelberg,
Germany, 1999; pp. 175–191.

45. Selvin, S.; Vinayakumar, R.; Gopalakrishnan, E.; Menon, V.K.; Soman, K. Stock price prediction using LSTM, RNN and CNN-
sliding window model. In Proceedings of the 2017 International Conference on Advances in Computing, Communications and
Informatics (ICACCI), Udupi, India, 13–16 September 2017; pp. 1643–1647.

46. Kim, T.Y.; Cho, S.B. Predicting residential energy consumption using CNN-LSTM neural networks. Energy 2019, 182, 72–81.
[CrossRef]

47. Grafarend, E.; Awange, J. Linear and Nonlinear Models: Fixed Effects, Random Effects, and Total Least Squares; Springer:
Berlin/Heidelberg, Germany, 2012.

48. Korbicz, J.; Kościelny, J.M.; Kowalczuk, Z.; Cholewa, W. Fault Diagnosis: Models, Artificial Intelligence, Applications; Springer Science
& Business Media: Berlin/Heidelberg, Germany, 2012.

http://dx.doi.org/10.1177/1687814017740710
http://dx.doi.org/10.1017/S0263574719000985
http://dx.doi.org/10.1109/87.491201
http://dx.doi.org/10.1115/1.4048782
http://dx.doi.org/10.1109/LRA.2020.2967287
http://dx.doi.org/10.3390/s19051080
http://dx.doi.org/10.3390/electronics4010204
http://dx.doi.org/10.3390/mi9110576
http://dx.doi.org/10.1109/TCST.2020.2998798
http://dx.doi.org/10.1016/j.energy.2019.05.230

	Introduction
	Contribution
	The Structure

	Problem Formulation
	Dynamic Model of a Robot
	Collision Monitoring Methods
	Torque Estimation

	Black Box Model
	Dataset—Experimental Setup
	ANN Models
	AR Model (Perceptron)
	RNN Model
	CNN-LSTM Model
	MC-LSTM Model

	Learning Results
	Summary

	Collision Detection
	Statistical Approach
	Prediction Approach
	Results
	Test on an External Dataset
	Computing Resources and Timing

	Conclusions
	References

