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The frequency characteristics of the resting-state BOLD fMRI (rs-fMRI) signal are
of increasing scientific interest, as we discover more frequency-specific biological
interpretations. In this work, we use variational mode decomposition (VMD) to precisely
decompose the rs-fMRI time series into its intrinsic mode functions (IMFs) in a data-
driven manner. The accuracy of the VMD decomposition of constituent IMFs is verified
through simulations, with higher reconstruction accuracy and much-reduced mode
mixing relative to previous methods. Furthermore, we examine the relative contribution
of the VMD-derived modes (frequencies) to the rs-fMRI signal as well as functional
connectivity measurements. Our primary findings are: (1) The rs-fMRI signal within
the 0.01–0.25 Hz range can be consistently characterized by four intrinsic frequency
clusters, centered at 0.028 Hz (IMF4), 0.080 Hz (IMF3), 0.15 Hz (IMF2) and 0.22 Hz
(IMF1); (2) these frequency clusters were highly reproducible, and independent of
rs-fMRI data sampling rate; (3) not all frequencies were associated with equivalent
network topology, in contrast to previous findings. In fact, while IMF4 is most likely
associated with physiological fluctuations due to respiration and pulse, IMF3 is most
likely associated with metabolic processes, and IMF2 with vasomotor activity. Both
IMF3 and IMF4 could produce the brain-network topology typically observed in
fMRI, whereas IMF1 and IMF2 could not. These findings provide initial evidence of
feasibility in decomposing the rs-fMRI signal into its intrinsic oscillatory frequencies in
a reproducible manner.

Keywords: resting-state fMRI, resting state functional connectivity, intrinsic mode function, frequency
dependence characteristics, variational modal decomposition, empirical mode decomposed, physiological
origins

INTRODUCTION

The frequency characteristics of the resting-state BOLD fMRI (rs-fMRI) signal are of increasing
scientific interest (Salvador et al., 2005; Niazy et al., 2011; Kalcher et al., 2014), as we discover more
frequency-specific biological interpretations within the conventional data-acquisition bandwidth
of 0–0.25 Hz (Golestani et al., 2015; Hocke et al., 2016). In particular, specific spectral content have
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been associated with physiological and vascular processes (Birn
et al., 2008; Golestani et al., 2015; Mark et al., 2015; Hocke et al.,
2016) and with the resulting brain-network measures (Nikolaou
et al., 2016). Thus, spectral analysis of the rs-fMRI signal appears
to be a compelling approach to achieving a better appreciation of
how much neurally relevant information is conveyed by rs-fMRI.
To that end, band-pass filtering has been used in the initial efforts
(Kalcher et al., 2014). However, in theory, the rs-fMRI signal does
not lend itself to conventional band-pass filtering approaches, as
it is not stationary and cannot be defined by a few frequencies in
Fourier domain. The band-pass filtering approach is inadequate
for studying non-stationary signals, as the frequency content of
such signals changes with time, while a filter bank is limited
by assumptions regarding frequency, bandwidths and the type
of filter design.

Previous studies examining the frequency characteristics of
the resting-state BOLD fMRI (rs-fMRI) signal were largely based
on the decomposition of the rs-fMRI signal into its intrinsic
mode functions (IMFs). Existing studies (Niazy et al., 2011; Song
et al., 2014) have used empirical mode decomposition (EMD)
(Huang et al., 1998) and later used complementary ensemble
empirical mode decomposition (CEEMD) (Wu and Huang, 2009;
Yeh et al., 2012; Qian et al., 2015). At the core of EMD and
CEEMD is a simple workflow. Signal local minima and maxima
are recursively detected, based on which an upper and lower
envelope are obtained through interpolation; subsequently, the
midline of the resultant envelope is removed and the high-
frequency component becomes the IMF. The same process is
then performed on the signal composed of the low-frequency
midline. Thus, each IMF can be expressed as a combination
of a low-frequency amplitude-modulated and a high-frequency
frequency-modulated signal Eq. (1),

m(t) = A(t)cos(∅(t)) (1)

Where ∅(t)modulates the carrier frequency. The total bandwidth
of this signal is described by Eq. (2),

BWIMF = 2(1f + fFM + fAM) (2)

where1f is the total deviation from the instantaneous frequency
of the IMF, while f FM represents the maximum rate of the change
of the instantaneous frequency, and f AM represent the highest
frequency of the envelope modulating the frequency-modulated
signal. The IMF frequency estimate could be dominated by either
of these, depending on noise conditions.

Previous works using EMD and CEEMD have both found
that the rs-fMRI can be approximated by 4 to 5 IMFs
covering the entire sampling bandwidth (Niazy et al., 2011;
Qian et al., 2015), and that all IMFs can be used to reproduce
similar network topologies. A fundamental assumption of EMD
and its derivatives is that each IMF occupies a well-defined
frequency range (Huang et al., 1998). In theory, the IMF-based
representation is insensitive to non-stationarity and non-linearity
in the original signal. EMD-type approaches are known to
have difficulty separating tones of similar frequencies. Moreover,
high levels of non-white noise can interfere with the accurate
identification of the instantaneous frequency, and cause the

frequency to appear to shift in a non-linear fashion, leading to
mode mixing between IMFs (Wu and Huang, 2009) as well as the
same mode to be spread across multiple IMFs. In addition, EMD-
derived methods have a tendency to attribute wider bandwidths
to IMFs occupying higher frequencies. This is likely a result of
the recursions, which present the highest degree of uncertainty to
the first (highest-frequency) IMFs, and not allowing for backward
error correction after subsequent IMFs have been extracted.
Indeed, when applied to rs-fMRI data, CEEMD resulted in visible
modal widening as frequency increased (Qian et al., 2015).

Our study incorporates the usage of the recently
proposed variational mode decomposition (VMD) method
(Dragomiretskiy and Zosso, 2014) to decompose the BOLD
rs-fMRI time series into its IMFs. Recently, the VMD method has
recently found application in the analysis of geological signals
(Liu et al., 2016; Xiao et al., 2016) and electrocardiographic data
(Lahmiri, 2014; Mert, 2016; Tripathy et al., 2016). The theory of
VMD has been described in detail elsewhere (Dragomiretskiy
and Zosso, 2014), and will not be repeated here. We will simply
point out that unlike its predecessors, VMD is non-recursive,
and can reconstruct all modes simultaneously, controlled by
a convergence criterion. The variational model assesses the
bandwidth of the modes by minimizing the Gaussian-regularized
mean-square error between the signal and its representation as a
series of Wiener filters, with the modal instantaneous frequency
being determined as the center of mass of the power-spectral
density function of each IMF. This approach increases the
robustness of the model to estimation uncertainties. VMD
provides error checking, as the VMD solution is be updated
by minimizing the mean-squared residual of all IMFs against
the estimate of any given IMF. Lastly, the VMD convergence
depends on a series of iterative optimizations, during which
the balance between overfitting and signal-estimation accuracy
can be adjusted, for instance, based on a priori knowledge
about the signal.

In this work, we hypothesize that VMD is able to more
precisely extract frequency bands from the rs-fMRI signal,
reducing the issue of mode mixing and mode spreading
demonstrated in the previous work. To verify this hypothesis, we
tested the EMD, CEEMD, and VMD techniques through a Monte
Carlo simulation. Furthermore, although prior work (using
EMD and CEEMD) have suggested that resting-state networks
(RSNs) measured through rs-fMRI are frequency independent,
we hypothesize that existing results are affected by modal mixing
and limited frequency precision as described herein. To address
this hypothesis, we re-examine the frequency dependence of
functional connectivity of RSNs using VMD.

MATERIALS AND METHODS

VMD Optimization
As documented in the original paper, the VMD technique follows
three steps: (1) estimate individual IMFs by computing the
Hilbert transform of the original signal f ; (2) shift each mode to
its base frequency using heterodyne demodulation; (3) estimate
the bandwidth of each mode as the H1 Gaussian smoothness of
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the demodulated signal. The target for the decomposition should
be that ∑

k

uk = f (3)

where k is the number of IMFs. If the signal f is
smooth, the solution could be obtained through Tikhonov
regularized minimization,

minf

{∣∣∣∣f-f0
∣∣∣∣2

2 + α
∣∣∣∣∂tf

∣∣∣∣2
2

}
(4)

where f0 is the measured signal, f is the original (clean) signal,
and α is the regularization parameter. From this, we obtained the
Euler-Lagrange equation:

f − f0 = α∂2
t f (5)

where (δtt is the partial derivative with respect to time and is the
frequency in radians.

The minimization target of the VMD algorithm can be
summarized by Eq. 6, which describes the inverse of the Gaussian
smoothness of the demodulated signal,

min
uk,wk

{∣∣∣∣∣∣∣∣∂t

[(
δ(t)+

j
π t

)
. uk(t)

]
e−jwkt
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2

}
(6)

where (δ(t) is Dirac’s delta function, ||22 is the Euclidean norm
squared,and j ( =(v−1. This is solved using the augmented
Lagrangian:

L (uk,wk, λ) = a+ b+ c (7)

where

a = α
∑

k

∣∣∣∣∣∣∣∣∂t
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δ (t)+

j
π t

)
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(8)

b =
∣∣∣∣∣∣∣∣f −∑

k

uk

∣∣∣∣∣∣∣∣2
2

(9)

c =

〈
λ, f −

∑
k

uk

〉
(10)

where (λ is the Langragian multiplier, b is the quadratic penalty
term (squared residual) and c is the inner product of and the
residual. The solution to the original variational problem is solved
as the saddle point of the augmented Lagrangian. Each IMF is
updated iteratively (by solving the VMD problem with respect to
u and to ω until convergence is reached. In this way, all modes
are extracted and optimized concurrently instead of sequentially.

In this study, we explicitly optimized the value of the
regularization parameter α to balance the bandwidths of the
spectral bands and the reconstruction error between the sum of
the bands and the original signal. This parameter was chosen to
minimize the overlap between the spectral bands in the Fourier
domain while keeping the parameter as low as possible to retain
reconstruction fidelity.

Simulated Data
To compare the performance of the VMD method in relation
to EMD and CEEMD methods, we performed a Monte Carlo
simulation involving a known, “ground-truth” signal. First, we
generated a signal composed of equal power contributions from
four frequencies (0.03, 0.08, 0.15, and 0.23 Hz). This signal was
sampled at 0. 25 Hz to emulate the typical sampling rate of
rs-fMRI data (TR = 2 s), and the constituent frequencies were
informed in part by those previously reported (Niazy et al., 2011;
Qian et al., 2015). We then generated 200 variants of signal-noise
mixtures, in which 200 different realizations of white noise time
series were added to the signal to achieve a signal-to-noise ratio
(SNR) of ∼1.2. This is representative of the lower end of the
realistic SNR range in rs-fMRI data, particularly to accommodate
the fact that the spectral signature of noise in real rs-fMRI data is
imprecise and non-stationary. All three decomposition methods
were then applied to extract the original frequencies. To quantify
the performances of the different algorithms, we computed the
fractional inter-modal overlap (mode mixing) for each, defined
as the amount of spectral power in the neighboring IMFs as a
fraction of the total spectral power of each “ground-truth” IMF.

MRI Data Acquisition
MRI data were collected from 8 healthy adults (mean
age 30 ± 6.7 years) on a 3T Siemens TIM Trio scanner
and a 32-channel head coil. Specifically, whole-brain
resting-state fMRI (rs-fMRI) data were acquired using
single-shot gradient-echo EPI. The conventional-TR scans
are later referred as “long-TR” scans: 26 slices, TR = 2 s,
flip angle = 70◦, FOV = 220 mm × 200 mm, voxel
size = 3.4 mm × 3.4 mm × 4.6 mm in 240 frames. To
enable assessment of reproducibility of our methods, the rs-fMRI
scan was performed twice for each subject (two trials per
subject) within the same session. On a subset of seven subjects,
we also acquired rs-fMRI data using simultaneous multi-slice
(SMS) acceleration on the gradient-echo EPI (Feinberg et al.,
2010) (TR = 323 ms, TE = 30 ms, flip angle = 40◦, 15 slices,
3.44 mm × 3.44 mm × mm, 2230 time points, acceleration
factor = 3, phase encoding shift factor = 2, slices ascending). The
brain coverage of these “short-TR” scans was matched to that of
the “long-TR” scans, and we only used 1486 frames of the short-
TR scans for comparison with the long-TR scan results. This
would permit us to assess the dependence of our results to fMRI
sampling rate. A 3D T1-weighted anatomical scan was acquired
using MPRAGE, with resolution 1 × 1 × 1 mm, repetition
time (TR) = 2400 ms, inversion time (TI) = 1000 ms, echo time
(TE) = 2.43 ms, flip angle = 8, field of view × 256 × 256 mm
(sagittal), matrix size = 256 × 256, 192 slices (ascending order),
bandwidth = 180 Hz/pixel, and GRAPPA acceleration factor = 2.

Image Preprocessing
The rs-fMRI data were preprocessed using FSL FEAT version
5.0.8 (Jenkinson et al., 2002). Functional data had the first 10
volumes removed and skull stripped using the Brain Extraction
Tool (BET). Data were corrected for motion (reference being
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the middle frame of each data set) and slice time then band-
pass filtered to be between 0.01 and 0.25 Hz (using fslmaths,
which implements a Gaussian filter). The cut-off of 0.25 Hz was
chosen to represent the maximum detectable frequency in typical
rs-fMRI acquisitions (i.e., TR = 2 s). Similar to prior work of
a similar nature (Niazy et al., 2011; Tong et al., 2011), we did
not actively correct physiological artifacts. The VMD technique
was then used to decompose the preprocessed BOLD signal, and
the results were compared to those obtained using the EMD
and CEEMD methods.

The T1 anatomical scans were used in defining noise regions
of interest (ROIs) for further analysis. Specifically, we used
FMRIB Automated Segmentation Tool (FAST) for segmentation
of gray matter, white matter, and cerebrospinal fluid ROIs. The
FSL-FAST segmentation routine is based on a Hidden Markov
Random Field model that is optimized using the expectation-
maximization algorithm (Zhang et al., 2001). The ROI masks
are then aligned with the fMRI data using anatomical-to-fMRI
transformation matrices determined using FSL Flirt (Jenkinson
and Smith, 2001; Jenkinson et al., 2002).

Furthermore, we performed cortical-surface reconstruction
using FreeSurfer1. The procedure includes removal of non-brain
tissue using a hybrid watershed/surface deformation procedure
(Segonne et al., 2004), automated transformation into the
MNI152 standard space, intensity normalization (Sled et al.,
1998), tessellation of the gray matter white matter boundary,
automated topology correction (Segonne et al., 2007), and surface
deformation following intensity gradients to optimally place
the gray/white and gray/CSF borders at the location where the
greatest shift in intensity defines the transition to the other tissue
class (Fischl and Dale, 2000). The subsequent segmentation of
the cortex and subcortical gray matter volumetric structures were
performed for each subject based on probabilistic models of tissue
magnetic resonance parameters and of anatomical locations
(Fischl et al., 2004). The resultant cortical models permitted
surface inflation (Fischl et al., 1999) and registration to a spherical
atlas, whereby individual cortical folding patterns were used to
match cortical geometry across subjects (Fischl et al., 1999).

IMF Clustering and Spectral Analysis
VMD was used decompose each voxel in the rs-fMRI data into
a specified number of IMFs. For each IMF in each voxel, the
frequency associated with the center of mass of the power spectral
density function of each IMF was used to define the dominant
frequency of said IMF. After this procedure was repeated for
each voxel, one challenge remained – as each voxel is associated
with a slightly different set of IMF frequencies, it was difficult to
identify any generalizable findings regarding frequency content.
To overcome this, we identified the existence of whole brain “IMF
frequency clusters” by plotting the histograms of IMF frequencies
including all IMFs of all voxels of each tissue type. In plotting
the histogram, each IMF is weighted by its normalized power
contribution (normalized by total spectral power at each voxel).

We then modeled the peaks in the histograms as Gaussian
functions (Qian et al., 2015) and identified the widths of the
IMF frequency clusters as including 95% of the areas of the fitted

1http://surfer.nmr.mgh.harvard.edu

Gaussians. Using these cluster definitions, we classified each IMF
from each voxel as belonging to an IMF cluster (named IMF 1–
4), each associated with a distinct frequency range. We repeated
this for all eight subjects, and assessed the reproducibility of
these frequency ranges in gray and white matter using the intra-
class correlation coefficient (ICC). For this purpose, each IMF
map was further masked to include only white or only gray
matter (FSL 5.0.8).

In this work, in order to arrive at the best number of IMFs
to use, we compared IMF- frequency clusters resulting from
assuming 2 IMFs, 4 IMFs, 5 IMFs and 8 IMFs. Sample IMF
histograms are shown in Appendix Figure A1. The comparison
metrics are precision and reproducibility. The precision metrics
include: (1) the group-wise standard deviation of the frequency-
cluster locations; (2) the group-wise standard deviation of the
frequency-cluster widths. The reproducibility metrics include:
(1) the percentage of subjects manifesting a particular frequency
cluster; (2) the correlation between frequency-cluster locations
estimated from 2 runs of each subject. The results are detailed
in the (Appendix Figure A2), and indicate the choice of 4 IMFs
produced the most precise and reproducible frequency-cluster
estimates. Note that there was no direct link between the number
of IMFs targeted for at the VMD stage and the number of IMF
frequency clusters detected at the clustering stage.

Note that for the short-TR data set, we first low-pass
filtered the data at 0.25 Hz in order to emulate the sampling
rate of conventional rs-fMRI. The main difference between
the data acquired at 0.25 Hz and the filtered short-TR data
is that the latter is associated with reduced aliasing in the
0–0.25 Hz range.

Amplitude Analysis
For both long- and short-TR data sets, we also computed
the fractional IMF amplitude. This is computed at each voxel
as the fractional contribution of the spectral power of each
IMF (as defined by its associated IMF cluster) to the total
spectral power of all IMFs (as defined by the remaining
IMF clusters). This parameter was defined to overcome the
limitation that the raw spectral powers of IMFs from different
subjects and different acquisitions are not directly comparable
(Zou et al., 2008), given variability in factors such as scanner
tuning and analog-to-digital conversion range. To demonstrate
the spatial distribution of the fractional IMF amplitude, we
transformed each subject’s fractional amplitude map into
MNI152 space using FSL flirt (Jenkinson et al., 2002). The
reference image for the registration was the middle frame
of the original fMRI data, and the resulting transformation
matrix was applied to the IMF amplitude and frequency
maps. Subsequently, we overlaid the group-mean fractional
amplitude map onto a cortical-surface model using FreeSurfer
(Fischl et al., 1999).

Functional Connectivity Matrices
As the fMRI data were registered with MNI152 space, we used the
automated anatomical labeling (AAL) (Tzourio-Mazoyer et al.,
2002)to divide the brain into 116 anatomical regions of interest
(ROIs), including both the cortex and the cerebellum. These
ROIs are listed in Table 1. For each subject, we averaged all
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TABLE 1 | List of regions of interest (ROIs) used when computing correlation matrices.

Index Region of Interest Index Region of Interest Index Region of Interest

1 Precentral_L 40 ParaHippocampal_R 79 Heschl_L

2 Precentral_R 41 Amygdala_L 80 Heschl_R

3 Frontal_Sup_L 42 Amygdala_R 81 Temporal_Sup_L

4 Frontal_Sup_R 43 Calcarine_L 82 Temporal_Sup_R

5 Frontal_Sup_Orb_L 44 Calcarine_R 83 Temporal_Pole_Sup_L

6 Frontal_Sup_Orb_R 45 Cuneus_L 84 Temporal_Pole_Sup_R

7 Frontal_Mid_L 46 Cuneus_R 85 Temporal_Mid_L

8 Frontal_Mid_R 47 Lingual_L 86 Temporal_Mid_R

9 Frontal_Mid_Orb_L 48 Lingual_R 87 Temporal_Pole_Mid_L

10 Frontal_Mid_Orb_R 49 Occipital_Sup_L 88 Temporal_Pole_Mid_R

11 Frontal_Inf_Oper_L 50 Occipital_Sup_R 89 Temporal_Inf_L

12 Frontal_Inf_Oper_R 51 Occipital_Mid_L 90 Temporal_Inf_R

13 Frontal_Inf_Tri_L 52 Occipital_Mid_R 91 Cerebellum_Crus1_L

14 Frontal_Inf_Tri_R 53 Occipital_Inf_L 92 Cerebellum_Crus1_R

15 Frontal_Inf_Orb_L 54 Occipital_Inf_R 93 Cerebellum_Crus2_L

16 Frontal_Inf_Orb_R 55 Fusiform_L 94 Cerebellum_Crus2_R

17 Rolandic_Oper_L 56 Fusiform_R 95 Cerebellum_3_L

18 Rolandic_Oper_R 57 Postcentral_L 96 Cerebellum_3_R

19 Supp_Motor_Area_L 58 Postcentral_R 97 Cerebellum_4_5_L

20 Supp_Motor_Area_R 59 Parietal_Sup_L 98 Cerebellum_4_5_R

21 Olfactory_L 60 Parietal_Sup_R 99 Cerebellum_6_L

22 Olfactory_R 61 Parietal_Inf_L 100 Cerebellum_6_R

23 Frontal_Sup_Medial_L 62 Parietal_Inf_R 101 Cerebellum_7b_L

24 Frontal_Sup_Medial_R 63 SupraMarginal_L 102 Cerebellum_7b_R

25 Frontal_Med_Orb_L 64 SupraMarginal_R 103 Cerebellum_8_L

26 Frontal_Med_Orb_R 65 Angular_L 104 Cerebellum_8_R

27 Rectus_L 66 Angular_R 105 Cerebellum_9_L

28 Rectus_R 67 Precuneus_L 106 Cerebellum_9_R

29 Insula_L 68 Precuneus_R 107 Cerebellum_10_L

30 Insula_R 69 Paracentral_Lobule_L 108 Cerebellum_10_R

31 Cingulum_Ant_L 70 Paracentral_Lobule_R 109 Vermis_1_2

32 Cingulum_Ant_R 71 Caudate_L 110 Vermis_3

33 Cingulum_Mid_L 72 Caudate_R 111 Vermis_4_5

34 Cingulum_Mid_R 73 Putamen_L 112 Vermis_6

35 Cingulum_Post_L 74 Putamen_R 113 Vermis_7

36 Cingulum_Post_R 75 Pallidum_L 114 Vermis_8

37 Hippocampus_L 76 Pallidum_R 115 Vermis_9

38 Hippocampus_R 77 Thalamus_L 116 Vermis_10

39 ParaHippocampal_L 78 Thalamus_R

Sup, superior; Mid, middle; Inf, inferior; L, left; R, right.

IMFs within each IMF-cluster frequency range in each ROI.
We then generated matrices of Pearson correlation coefficients
between the IMF time series of all pairs of ROIs. These
were then averaged across subjects to provide an overview of
RSN organization.

For comparison with the literature, we created an additional
set of correlation matrices using the band-pass filtered data (at
0.01–0.08 Hz) for each subject. This is the frequency range typical
of rs-fMRI analyses. Furthermore, to help explain the spectral
makeup of this reference correlation matrix, we also generated
correlation matrices using signals band-pass filtered into the
frequency ranges corresponding to the IMFs. These were also
averaged across subjects.

Statistical Comparisons
In this work, comparison between IMF clusters and tissue types
is performed using the Student’s t-test, and linear correlation is
used as the similarity index.

RESULTS

The average results of the Monte Carlo simulation are shown
in Figure 1. While the noiseless signal was successfully
reconstructed using all three algorithms (not shown), they
performed very differently when noise was introduced. It is
evident that IMF1 derived using EMD (Figure 1B) contains two
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FIGURE 1 | Comparison of performance for EMD, CEEMD and VMD on simulated data: The Fourier spectrum of the original noiseless signal (A) is compared to the
average spectra obtained by EMD (B), CEEMD (C) and VMD (D) on the noisy version if the signal, averaged across all iterations of the Monte Carlo simulation.
Gaussian noise was simulated in this case, with the SNR of the simulated noisy signals was approximately 1.2, approximated by the total power of the noise over the
total power of the signal. In EMD and CEEMD, the 4 IMFs with highest powers are displayed.
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distinct modes that would ideally have been attributed to two
different IMFs. This is the manifestation of modal spreading,
which is also seen in the CEEMD results (Figure 1C). Due to
the existence of substantial modal spreading, inter-modal mixing
(overlapping between IMFs in the frequency domain) is also
found. Compared to EMD and CEEMD, VMD was able to
identify the 4 IMFs of the original simulated signal with the
least mode spreading and mode mixing (Figure 1D), with the
noise component being split across the 4 IMFs. These simulation
results confirm the theory-based hypothesis of increased IMF-
estimation precision using VMD.

Intrinsic Frequencies of the rs-fMRI
Signal
Sample results from human rs-fMRI data are shown in Figure 2.
VMD was able to extract IMFs from all data sets with high
consistency and the lowest reconstruction error compared to
both EMD and CEEMD. Based on results similar to these,
IMFs were estimated for all voxels for each rs-fMRI data
set. The corresponding IMF frequencies were organized into
histograms for gray and white matter. A sample histogram of
IMF frequencies is shown in Figure 3. Note that not all voxels
returned 4 IMFs. Yet, when aggregated, the histograms revealed 4
clusters of IMF frequencies. This was common across all subjects,
and across tissue types. Based on these clusters, IMF frequency
ranges were identified for each subject in the group. We noted
regional variability in the location of IMF clusters, with IMF4
being the most stable across brain regions and IMF2 being the
least (Appendix Figure A3).

The group-average VMD-decomposed peak frequencies in
both gray and white matter are shown in Figure 4. Using the IMF-
frequency clustering procedure described earlier, we identified
4 robust IMF-cluster frequency ranges. This was the case for
all subjects and common to both gray and white matter. The
frequency ranges of the 4 VMD IMF-frequency clusters are
(mean frequency±mean width/2):

• VMD IMF1: 0.20–0.24 Hz
• VMD IMF2: 0.13–0.17 Hz
• VMD IMF3: 0.063–0.098 Hz
• VMD IMF4: 0.021–0.036 Hz

These frequencies were evenly distributed across the majority
of voxels (both gray and white matter), with no specific spatial
features. Thus, we do not show spatial maps of the frequency
distributions. Also, these frequencies were highly reproducible
based on the long-TR acquisitions (Figure 4), with an ICC of
0.99 for both gray and white matter. This was confirmed by the
absence of significant difference between IMF peak frequencies
across each trial in either tissue type (p > 0.21). Henceforth, all
IMFs associated with actual rs-fMRI data will be identified by
their cluster numbers (i.e., IMF1-4 refer to IMF cluster 1–4).

The IMF frequency clusters obtained from long-TR and short-
TR data acquisitions are highly similar, as shown by the frequency
groupings identified in Figures 5A,B – at a group level, there
were no significant differences between the two TRs for any of the
IMFs. However, the fractional IMF amplitudes are less consistent

across different TRs, as shown in Figures 5C,D. In particular,
IMF4 (the frequency cluster with the lowest mean frequency)
is a consistently greater contributor to total spectral power in
short-TR data sets. However, once again, the differences are not
statistically significant.

In Figure 6, we show the spatial distribution of the fractional
contributions of each VMD-derived IMF to the total spectral
power of the rs-fMRI signal. The equivalent maps are shown for
CEEMD-based IMFs as well. Note that for CEEMD as well, 4
IMF clusters were identified within the range of 0.01–0.25 Hz,
confirming previous findings by Qian et al. (2015). However,
due to the aforementioned decreasing spectral resolution with
increasing IMF frequency exhibited by CEEMD, the frequency
ranges of the CEEMD IMF clusters, listed below, are not directly
comparable to those of VMD.

• CEEMD IMF1: 0.12–0.23 Hz
• CEEMD IMF2: 0.05–0.12 Hz
• CEEMD IMF3: 0.025–0.05 Hz
• CEEMD IMF4: 0.01–0.025 Hz

For both VMD and CEEMD results, maps of fractional
spectral power were averaged across all subjects for each IMF,
and overlaid on a cortical surface. IMF4, which is associated
with the lowest frequency, is markedly elevated in the occipital
lobe, as reflected by VMD results (Figure 6b). This is consistent
with the CEEMD results (Figure 6a). IMF1 and 2, associated
with the highest frequencies, were elevated in the temporal lobe
and the frontal/limbic cortices, respectively. These are not clearly
seen in CEEMD-derived IMFs. It is important to note that the
CEEMD-derived IMF frequency ranges were as follows: IMF1:
0.12–0.23 Hz, IMF2: 0.05–0.10 Hz, IMF3: 0.025–0.05 Hz, IMF4:
0.01–0.025 Hz. These 4 IMF groupings were chosen to best match
those of the VMD groupings.

Frequency Dependence of Network
Organization
In Figure 7, we show strong RSN correlation patterns in areas
that are part of the motor and control networks (indices 1–20),
visual network (indices 43–60) and the medial-temporal network
(indices 80–90). These results, based on the conventionally band-
pass filtered rs-fMRI signal (to 0.01–0.08 Hz), are consistent with
existing literature (Zhang and Li, 2014; Qian et al., 2015).

In Figure 8, we compare the RSN topology derived from
VMD with those based on the 4 IMFs in comparable frequency
ranges obtained using CEEMD. We can see that the highest
correlations are found using IMF4, followed by IMF3, while no
strong patterns were seen for IMFs 1 and 2. Moreover, IMFs 3 and
4 were associated with correlation matrices that most resemble
that of the conventionally band-pass filtered signal (Figure 7),
but not in IMF 1 and 2. Even in IMFs 3 and 4, the values of the
correlations are much lower than those from band-pass filtering.
However, the values are comparable to those obtained based on
CEEMD. In fact, we note that the highest agreement between
VMD and CEEMD results can be seen in IMF 4 (Figure 8B,
r = 0.79), and secondarily in IMF 1 (Figure 8H, r = 0.58), the
lowest and highest frequencies, respectively.
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FIGURE 2 | Comparison of reconstruction accuracy of rs-fMRI time series: The reconstruction errors are indicated for each algorithm: (A) EMD; (B) CEEMD;
(C) VMD.

In Figure 9, we repeat the comparison, substituting CEEMD
with band-pass filtered versions of the rs-fMRI data, with each
band-pass filter range determined based on VMD derivations

of IMF frequency ranges. The conventional RSN topology can
be observed across all band-passed frequencies (the top-left,
middle and bottom-right areas of the matrix corresponding to
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FIGURE 3 | IMF frequency cluster distributions computed for a representative subject. Gray matter (A) and white matter (B) are shown to exhibit similar frequency
clusters. Note that there is no direct link between the number of IMFs targeted for at the VMD stage and the number of IMF frequency clusters detected at the
clustering stage.

FIGURE 4 | Between-session reproducibility of IMF frequency estimations. These frequencies were highly reproducible, with a ICC of 0.99 for both gray (A) and
white matter (B). The error bars indicate the standard deviations across all subjects.
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FIGURE 5 | Comparison of IMF frequency (A,B) and fractional amplitude estimates (C,D) across different sampling rates. The IMF frequency groupings obtained
from long-TR and short-TR data acquisitions are highly similar, although the fractional IMF amplitudes are less consistent across different TRs. There are no
significant differences between the estimates obtained from the two data sets. The error bars indicate the standard deviations across all subjects.

the sensorimotor, visual and default-mode network, respectively),
although it is most prominent at the lowest frequency. While
this trend of decreasing correlation with increasing frequency
is consistent with findings from VMD, the strengths of the
correlations in VMD are markedly lower than those found
using band-pass filtering. We also notice that the similarities
(Figures 9B,D,F,H) are lower than observed between VMD
and CEEMD results.

DISCUSSION

In studying the spectral properties of the rs-fMRI signal, there
is an increasing desire to use data-driven methods rather than
band-pass filtering to decipher frequency content (Niazy et al.,
2011; Qian et al., 2015). The main differences between methods
based intrinsic-modal decomposition and those based on band-
pass filtering are: (1) results and interpretations of band-pass
filtering are sensitive to the shape of the band-pass filter; (2)
band-pass filtering is sensitive to non-linearity in the signal, such
as introduced when the signal is non-stationary. The latter is
particularly the case in rs-fMRI, affecting the oscillatory validity
of band-pass filtered rs-fMRI signal components.

Our work is novel in the following aspects: (1) instead
of relying on the assumption that our data-driven method
accurately decomposes the modes of the signal, we test this

accuracy using rs-fMRI-informed simulations; (2) we not only
compared the findings from short-TR acquisitions with those
based on conventional acquisitions (TR = 2 s), but also
assessed the reproducibility of these results for both scenarios;
(3) instead of defining the rs-fMRI spectral information by
broad frequency ranges (up to >1 Hz), we specifically target
the frequency range typically used in functional-connectivity
analyses (<0.25 Hz).

Our primary findings are: (1) the rs-fMRI signal within
the 0.01–0.25 Hz range can be consistently characterized by
four intrinsic modal clusters (frequency clusters), centered at
0.028, 0.080, 0.15, and 0.22 Hz, respectively; (2) these frequency
clusters were highly reproducible, and independent of rs-fMRI
data sampling rate; (3) not all frequencies were associated with
equivalent RSN topology, in contrast to previous findings.

Intrinsic Frequencies of the rs-fMRI
Signal
In this work, we demonstrate that as expected, compared to the
previously used EMD and CEEMD techniques, VMD resulted
in less inter-modal mixing as well as minimal modal spreading
(Figure 1). When applied to rs-fMRI data, we demonstrate
high reconstruction accuracy when using VMD-derived IMFs
relative to the alternatives (EMD and CEEMD). We also see
that VMD is able to decompose fMRI signals in a reproducible
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FIGURE 6 | Spatial distribution of the fractional contributions of each IMF to the total spectral power of the rs-fMRI signal. The maps were averaged across all
subjects for each IMF, and overlaid on a cortical surface. IMF4, which is associated with the lowest frequency, is markedly elevated in the occipital lobe, as reflected
by VMD results (b). This is consistent with the CEEMD results (a). IMF1 and 2, associated with the highest frequencies, are elevated in the temporal lobe and the
frontal/limbic cortices, respectively. These are not clearly seen in CEEMD-derived IMFs.

manner, given the small variability associated with each IMF
frequency across 8 subjects. Interestingly, we found that both
gray and white matter of the healthy brain are characterized
by IMF clusters centered at the frequencies of 0.028, 0.080,
0.15, and 0.23 Hz, identifiable in all of our subjects. While all
brain voxels exhibited these frequencies, the contribution of
each to the total signal power varied spatially (Figure 6). In
the literature, a similar clustering of IMF frequencies across
brain voxels has been observed previously using EMD (Song
et al., 2014) and CEEMD (Qian et al., 2015), although the
previously reported center frequencies were 0.02, 0.04, 0.08, and
0.17 Hz, respectively. This difference is likely driven by the higher
degree of mode spreading in the higher-frequency IMFs that is
inherent in CEEMD, as described in the sections “Introduction”
and “Results.”

When we used short-TR acquisitions (TR on the scale of
300 ms) (Niazy et al., 2011; Kalcher et al., 2014) to reduce
respiratory and cardiac aliasing in the frequency range of
interest, our findings of these IMF cluster frequencies did
not change. Moreover, we acquired two trials of rs-fMRI
data per subject, within the same scan session. To our best
knowledge, no previous study has examined the reproducibility
of intrinsic mode functions derived from rs-fMRI data, nor did
any study examine the TR sensitivity of the decompositions.

The frequency clusters we identified were highly reproducible
across fMRI trials, and insensitive to the TR used (Figure 5),
strengthening our confidence in the potential biological relevance
of our findings.

Possible Interpretations of Intrinsic
rs-fMRI Frequencies
Our current data do not permit us to conclusively pinpoint
the physiological source(s) of these frequencies, although
we may refer to independent evidence of physiological
oscillatory signatures.

IMF4, being at the lowest frequency, contributed the most
to the overall signal power. This is in general agreement with
findings by Kalcher et al. (2014), who nonetheless examined a
different set of frequency bands (i.e., < 0.1 Hz, 0.1–0.25 Hz,
0.25–0.75 Hz, and 0.75–1.4 Hz). It has been well established that
within the 0.01–0.25 Hz frequency range, low-frequency cardiac-
rate variations and respiratory-volume variations are observable
near 0.01 Hz and 0.036 Hz in fMRI data, respectively. Therefore,
it is probable that IMF4 (range: 0.021–0.031 Hz) is associated
with these phenomena. Indeed, the high power contribution of
IMF4 to the occipital region (Figure 6) is consistent with previous
reports on the amplitude of rs-fMRI BOLD signal modulation
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FIGURE 7 | Typical correlation matrix based on the rs-fMRI signal within 0.001–0.08 Hz.

by respiratory variability (Chang and Glover, 2009a; Tong et al.,
2011; Golestani et al., 2015). Moreover, the contribution of IMF4
to the overall power is the only fraction that is lower in white
matter than in gray matter (Figures 5C,D), in agreement with
recent findings by Tong et al. (2016), although the difference is
not statistically significant. However, the effects of these different
physiological variances could not be distinguished from one
another, potentially due to oscillatory variations across different
tissue locations (Chang and Glover, 2009a; Golestani et al., 2015).
Moreover, while we may expect the short-TR data to exhibit
lower IMF4 amplitude than long-TR data due to the enhanced
ability for physiological nose removal, it is unclear which IMF the
physiological signal would be aliased into in the long-TR data. At
the maximum sampling frequency of 0.25 Hz, such noise sources
could equally alias into IMF3. Indeed, such is the case in the
gray matter, albeit the difference between short- and long-TR not
statistically significant.

The frequency ranges of IMF3 (0.063–0.098 Hz, peaking at
0.080 Hz) and IMF2 (0.13–0.17 Hz, peaking at 0.15 Hz) have
both been associated with low-frequency vascular oscillations
(Tong and Frederick, 2014; Hocke et al., 2016; Tong et al.,
2016). A major source of these vascular oscillations is vasomotion
(Intaglietta, 1990; Rivadulla et al., 2011). Vasomotion has long
been observed in the BOLD signal (Kiviniemi et al., 2000;
Cordes et al., 2001), and refers to a spontaneous oscillation in
the diameter of primarily pre-capillary vessels (Cooper et al.,
1966) that propagates through the entire vasculature but does
not influence cognitive processes. Vasomotion is associated with
oscillations in red blood-cell velocity (Biswal and Hudetz, 1996)

and modulates local blood flow (Morita et al., 1994; Biswal
and Hudetz, 1996; Aalkjaer et al., 2011). In particular, initially
observed in superficial blood vessels at around 0.1 Hz (Mayhew
et al., 1996; Meyer et al., 2003; Murphy et al., 2013), vasomotion’s
main frequency signature has been consistent between the animal
(Mayhew et al., 1996; Bernardi, 1997; Haddock et al., 2002;
Meyer et al., 2003) and human subcutaneous endothelium
(Kvernmo et al., 1999, 1998).

The origins of vasomotion observed in fMRI could be caused
by oscillations in both vascular diameter (Intaglietta, 1990;
Biswal and Hudetz, 1996) and blood oxygenation (Biswal and
Hudetz, 1996; Nikulin et al., 2014). Until recently, there have
not been fMRI-based measurements of vasomotion in the human
brain. Rayshubskiy et al. (2014) were able to measure sinusoids
at (∼0.1 Hz near using intraoperative optical intrinsic-signal
imaging and preoperative fMRI near the same pial veins of
awake humans. However, an added challenge of in vivo isolation
of vasomotion is that vasomotion frequency may in fact be
dependent on vascular size, increasing with decrease vessel size
(Intaglietta, 1990; Harrison and Cai, 2003). This, coupled with
the fact that frequencies below 0.1 Hz (clusters IMF3 and IMF4)
have typically revealed robust brain-network patterns, suggests
that the effects of vasomotion may be embodied in IMF2. In
support of the closer neuronal relevance of IMF3, we note
that the regions of the highest fractional power distribution
by IMF3 are the superior parietal, posterior cingulate and
precuneus regions (Figure 6), coinciding with regions of high
resting neuronal activity determined using positron-emission
tomography (Raichle, 2011).
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FIGURE 8 | Comparison of VMD with CEEMD RSN-matrix topology. IMFs 4, 3, 2, and 1 are represented in (A), (B), (C), and (D), respectively. The VMD and CEEMD
IMFs are in comparable frequency ranges. The highest agreement between VMD and CEEMD results are seen in IMF 4 (r = 0.79), and secondarily in IMF 1 (r = 0.58),
the lowest and highest frequencies, respectively. Note that the maximum displayed correlations value has been reduced from 1 to 0.8 for display purposes.

At very high frequencies (IMF1), the fractional spectral
power is second only to the contribution of IMF4 (very low
frequencies), as shown in Figure 5. This frequency band (0.20–
0.24 Hz, peaking at 0.21 Hz) has previously been associated
with head motion (Razavi et al., 2008). Although motion was
corrected in the preprocessing pipeline, the effect of motion
cannot be completely removed (Faraji-Dana et al., 2016a,b).
In the case of the long-TR data, this frequency may also
be associated with aliased cardiac pulsations, although this
theory is refuted by the fact that IMF1 is equally strong in
short-TR and long-TR data sets. The functional significance of
IMF1 will need to be interpreted in the context of network-
related features.

Frequency Dependence of Network
Organization
We found that the functional connectivity patterns of RSNs
are dependent on frequency and that not all IMFs reveal

the same connectivity patterns, contrary to previous reports
(Niazy et al., 2011; Qian et al., 2015). The connectivity-matrix
patterns found in IMF 3 and 4 (Figure 7) were most similar
to those from the 0.01–0.08 Hz band-passed signal (Figure 8),
and were not seen in the higher frequency range (IMF 1
and 2). This is expected and is likely to reflect differences in
biological significance of high- and low-frequency signals as
described earlier.

Our findings echo those of Song et al. (2014), who found
cortical RSNs to be best represented in low-frequency
oscillations (<0.05 Hz). While both IMF clusters 3 and
4 demonstrated visible RSN connectivity-matrix patterns
(Figures 8A,B), IMF4 was associated with the highest
signal power and highest correlation. The fact that IMF4
is also most likely to contain low-frequency physiological
contributions supports previous findings that physiological
processes are stable (Birn, 2012) and can equally generate
highly robust connectivity-matrix patterns (Chang and
Glover, 2009b). This is an important point to consider in
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FIGURE 9 | Comparison of VMD RSN-matrix topology with results of band-pass filtering. IMFs 4, 3, 2, and 1 are represented in (A), (B), (C), and (D), respectively.
Each band-pass filter range determined based on VMD derivations of IMF frequency ranges. The conventional RSN topology can be observed across all
band-passed frequencies, although it is most prominent at the lowest frequency. While this trend of decreasing correlation with increasing frequency is consistent
with findings from VMD, the strengths of the correlations in VMD are markedly lower than those found using band-pass filtering.

interpreting the quality of RSN results based on strength and
reproducibility alone.

However, our findings contrast previous findings that RSNs
are a broadband phenomenon (Niazy et al., 2011; Qian et al.,
2015). These previous findings are in line with band-pass
filtering results (Figure 9), whereby similar connectivity patterns
are observed across all frequency bands. Nonetheless, previous
work has also demonstrated the frequency dependence of task-
fMRI-based brain networks (Baria et al., 2011). Moreover, our
results are also corroborated by near-infrared optical connectivity
measures in the resting state (Sasai et al., 2011), whereby
long-range and local connections were associated with distinct
frequencies within the 0.009–0.1 Hz range.

As, we demonstrated significant mode mixing using EMD
and CEEMD (Figure 1), we argue this effect could have

resulted in the similarities between IMFs that were previously
reported. The same logic may explain why band-pass filtered
maps were similar across frequency bands, as IMFs are
difficult to isolate using such filtering methods. Notwithstanding,
the similarity of the IMF1 connectivity matrices obtained
through VMD and CEEMD (Figure 8A) despite their different
frequency bands, serves to cross validate previous findings
against our findings at low frequencies. Lastly, we are
unclear as to the reason the correlations values corresponding
to VMD are much lower than those based on band-pass
filtering (Figure 9).

On average (across the group), the functional connectivity
values found with the VMD and CEEMD are lower than found
with conventional bandpass filtering. This is to be expected, signal
bands produced by BPF always have the same frequency ranges,
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but IMFs do not always have the same frequency ranges, and
can vary from subject to subject in that regard. This variability
can reflect in inter-subject variations in connectivity strength, as
exemplified in the Appendix Figure A4.

Limitations
In this work, we focused on the use of the empirical model
decomposition (EMD) family of methods, and more specifically,
on the use of the VMD method to provide estimates of
intrinsic modes while avoiding mode mixing. In general,
EMD has long been used for investigating the frequency
composition of biological signals that are non-stationary.
Compared to prevalent techniques such as independent-
component analysis (ICA), EMD has the advantage of being
able to operate on individual signals instead relying on
multiple measurements. Furthermore, the focus on EMD
is “intrinsic frequencies” instead of statistical independence,
more directly addressing our main focus. Nevertheless, a
combination of EMD and ICA may be investigated in
our future work.

In adopting VMD, the main thrust of our work is to
reduce the spectral overlapping in previous works. Our choice
of IMFs is driven by precision and reproducibility, which
may be a strength and a limitation, depending on whether
the intrinsic modes are expected to be reproducible. Such
assumptions have been used broadly in the rs-fMRI field, but
requires further dissection. While the motivation for using
VMD (and EMD in general) is the non-stationarity of the rs-
fMRI signal, the ground-truth testing was done using simulated
stationary signals. As it was unclear what alternative noise
model would be appropriate for such a simulation (where
the ground truth signal vs. noise distributions are unknown
in rs-fMRI data), we used white noise. While this may be a
limitation, such an approach provided us with a clear way
to evaluate the techniques – if a given technique could not
faithfully reconstruct a stationary signal, its performance on
a non-stationary signal could be no better than presented.
Although we have identified the frequency cluster IMF3 as most
representative of neutrally relevant BOLD, both by frequency and
by spatial contribution, we are not able, in the current study,
to provide direct experimental verification. Likewise, we are
unable to determine the amount of physiological contributions
to IMF4, which is deemed most representative of respiratory
and cardiac effects using the current data. In future studies,
we will involve physiological monitoring during the rs-fMRI
sessions. This will be augmented by the use of simultaneous
EEG-fMRI to capture neural fluctuations as well as blood-
oxygenation effects, ideally in the presence of stimuli that can
modulate baseline cerebral metabolism. Furthermore, the use
phase locking is also an effective tool for estimating the sources
of the IMFs and their interplay (Pfurtscheller et al., 2017),
given sufficient SNR.

Furthermore, while we determined that the cluster
IMF2 is most likely associated with low-frequency vascular
oscillations (or vasomotion), the central frequency of IMF2
is 0.15 Hz, deviating from the typically reported to be
0.1 Hz in surface vessels. Furthermore, we did not find any

observable vascular networks based on specific frequencies
in the fMRI signal. While we have evidence to believe
the frequency of vasomotion increases with decreasing
diameter (Intaglietta, 1990), our ability to isolate smaller
blood vessels is limited by the spatial resolution of the fMRI
acquisition and by the BOLD effect itself. One possibility
for targeting this issue is to repeat these measurements in
conjunction with independent monitoring of subcutaneous
vasomotion as well as vascular stimuli that can modulate
vasomotion amplitude.

Finally, in this study, we do not examine network properties
such as the differences between local and long-range connections
in our study of RSN frequency dependence. The intention of our
current work is to establish the validity of our decomposition
procedure, and a comprehensive examination of the frequency
dependence of multiple network metrics will be part of
our future work.

DATA AVAILABILITY

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

This study was approved by the Baycrest Research Ethics Board.
All subjects provided informed written consent.

AUTHOR CONTRIBUTIONS

NY contributed to 90% of the analysis and 30% of the writing.
NO contributed to 10% of the analysis. JC contributed to 70% of
the analysis and writing.

FUNDING

This research was supported by the Natural Sciences and
Engineering Council of Canada (NSERC FGPIN# 418443 to JC
and NSERC Undergraduate Research Awards to NY and NO),
the Canadian Institutes of Health Research (CIHR: FRN# 126164
to JC), and the Sandra Rotman Foundation.

ACKNOWLEDGMENTS

We thank Prof. Stephen Smith (Oxford) for helpful discussions
on the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fnins.2019.
00900/full#supplementary-material

Frontiers in Neuroscience | www.frontiersin.org 15 September 2019 | Volume 13 | Article 900

https://www.frontiersin.org/articles/10.3389/fnins.2019.00900/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2019.00900/full#supplementary-material
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00900 September 3, 2019 Time: 15:25 # 16

Yuen et al. Frequencies of the rs-fMRI Signal

REFERENCES
Aalkjaer, C., Boedtkjer, D., and Matchkov, V. (2011). Vasomotion - what is

currently thought? Acta Physiol. 202, 253–269. doi: 10.1111/j.1748-1716.2011.
02320.x

Baria, A. T., Baliki, M. N., Parrish, T., and Apkarian, A. V. (2011). Anatomical
and functional assemblies of brain bold oscillations. J. Neurosci. 31, 7910–7919.
doi: 10.1523/JNEUROSCI.1296-11.2011

Bernardi, L. (1997). Reduction of 0.1 Hz microcirculatory fluctuations as evidence
of sympathetic dysfunction in insulin-dependent diabetes. Cardiovasc. Res. 34,
185–191. doi: 10.1016/s0008-6363(97)00017-5

Birn, R. M. (2012). The role of physiological noise in resting-state functional
connectivity. Neuroimage 62, 864–870. doi: 10.1016/j.neuroimage.2012.01.016

Birn, R. M., Smith, M. A., Jones, T. B., and Bandettini, P. A. (2008). The respiration
response function: the temporal dynamics of fMRI signal fluctuations related
to changes in respiration. Neuroimage 40, 644–654. doi: 10.1016/j.neuroimage.
2007.11.059

Biswal, B. B., and Hudetz, A. G. (1996). Synchronous oscillations in cerebrocortical
capillary red blood cell velocity after nitric oxide synthase inhibition. Microvasc.
Res. 52, 1–12. doi: 10.1006/mvre.1996.0039

Chang, C., and Glover, G. H. (2009a). Effects of model-based physiological
noise correction on default mode network anti-correlations and correlations.
Neuroimage 47, 1448–1459. doi: 10.1016/j.neuroimage.2009.05.012

Chang, C., and Glover, G. H. (2009b). Relationship between respiration, end-
tidal CO2, and bold signals in resting-state fMRI. Neuroimage 47, 1381–1393.
doi: 10.1016/j.neuroimage.2009.04.048

Cooper, R., Crow, H. J., Walter, W. G., and Winter, A. L. (1966). Regional control
of cerebral vascular reactivity and oxygen supply in man. Brain Res. 3, 174–191.
doi: 10.1016/0006-8993(66)90075-8

Cordes, D., Haughton, V. M., Arfanakis, K., Carew, J. D., Turski, P. A., Moritz,
C. H., et al. (2001). Frequencies contributing to functional connectivity in the
cerebral cortex in “resting-state” data. AJNR Am. J. Neuroradiol. 22, 1326–1333.

Dragomiretskiy, K., and Zosso, D. (2014). Variational mode decomposition. IEEE
Trans. Signal Process. 62, 531–544.

Faraji-Dana, Z., Tam, F., Chen, J. J., and Graham, S. J. (2016a). A robust method
for suppressing motion-induced coil sensitivity variations during prospective
correction of head motion in fMRI. Magn. Reson. Imaging 34, 1206–1219.
doi: 10.1016/j.mri.2016.06.005

Faraji-Dana, Z., Tam, F., Chen, J. J., and Graham, S. J. (2016b). Interactions between
head motion and coil sensitivity in accelerated fMRI. J. Neurosci. Methods 270,
46–60. doi: 10.1016/j.jneumeth.2016.06.005

Feinberg, D. A., Moeller, S., Smith, S. M., Auerbach, E., Ramanna, S., Glasser,
M. F., et al. (2010). Multiplexed echo planar imaging for sub-second whole brain
fMRI and fast diffusion imaging. PLoS One 5:e15710. doi: 10.1371/journal.pone.
0015710

Fischl, B., and Dale, A. M. (2000). Measuring the thickness of the human cerebral
cortex from magnetic resonance images. Proc. Natl. Acad. Sci. U.S.A. 97,
11050–11055. doi: 10.1073/pnas.200033797

Fischl, B., Sereno, M. I., Tootell, R. B., and Dale, A. M. (1999). High-resolution
intersubject averaging and a coordinate system for the cortical surface. Hum.
Brain Mapp. 8, 272–284. doi: 10.1002/(sici)1097-0193(1999)8:4<272::aid-
hbm10>3.0.co;2-4

Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D. H.,
et al. (2004). Automatically parcellating the human cerebral cortex. Cereb.
Cortex 14, 11–22. doi: 10.1093/cercor/bhg087

Golestani, A. M., Chang, C., Kwinta, J. B., Khatamian, Y. B., and Chen, J. J.
(2015). Mapping the end-tidal CO2 response function in the resting-state
BOLD fMRI signal: spatial specificity, test–retest reliability and effect of fMRI
sampling rate. Neuroimage 104, 266–277. doi: 10.1016/j.neuroimage.2014.
10.031

Haddock, R. E., Hirst, G. D. S., and Hill, C. E. (2002). Voltage independence of
vasomotion in isolated irideal arterioles of the rat. J. Physiol. 540, 219–229.
doi: 10.1113/jphysiol.2001.013698

Harrison, D. G., and Cai, H. (2003). Endothelial control of vasomotion and nitric
oxide production. Cardiol. Clin. 21, 289–302. doi: 10.1016/s0733-8651(03)
00073-0

Hocke, L. M., Tong, Y., Lindsey, K. P., de, B., and Frederick, B. (2016). Comparison
of peripheral near-infrared spectroscopy low-frequency oscillations to other

denoising methods in resting state functional MRI with ultrahigh temporal
resolution. Magn. Reson. Med. 76, 1697–1707. doi: 10.1002/mrm.26038

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., et al. (1998).
The empirical mode decomposition and the hilbert spectrum for nonlinear and
non-stationary time series analysis. Proc. R. Soc. Lond. A Math. Phys. Sci. 454,
903–905.

Intaglietta, M. (1990). Vasomotion and flowmotion: physiological mechanisms and
clinical evidence. Vasc. Med. 1, 101–112. doi: 10.1177/1358836x9000100202

Jenkinson, M., Bannister, P., Brady, M., and Smith, S. (2002). Improved
optimization for the robust and accurate linear registration and motion
correction of brain images. Neuroimage 17, 825–841. doi: 10.1006/nimg.2002.
1132

Jenkinson, M., and Smith, S. (2001). A global optimisation method for robust affine
registration of brain images. Med. Image Anal. 5, 143–156. doi: 10.1016/S1361-
8415(01)00036-6

Kalcher, K., Boubela, R. N., Huf, W., Bartova, L., Kronnerwetter, C., Derntl, B., et al.
(2014). The spectral diversity of resting-state fluctuations in the human brain.
PLoS One 9:e93375. doi: 10.1371/journal.pone.0093375

Kiviniemi, V., Jauhiainen, J., Tervonen, O., Paakko, E., Oikarinen, J., Vainionpaa,
V., et al. (2000). Slow vasomotor fluctuation in fMRI of anesthetized child brain.
Magn. Reson. Med. 44, 373–378. doi: 10.1002/1522-2594(200009)44:3<373::
aid-mrm5>3.3.co;2-g

Kvernmo, H. D., Stefanovska, A., Bracic, M., Kirkeboen, K. A., and Kvernebo, K.
(1998). Spectral analysis of the laser doppler perfusion signal in human skin
before and after exercise. Microvasc. Res. 56, 173–182. doi: 10.1006/mvre.1998.
2108

Kvernmo, H. D., Stefanovska, A., Kirkeboen, K. A., and Kvernebo, K. (1999).
Oscillations in the human cutaneous blood perfusion signal modified
by endothelium-dependent and endothelium-independent vasodilators.
Microvasc. Res. 57, 298–309. doi: 10.1006/mvre.1998.2139

Lahmiri, S. (2014). Comparative study of ECG signal denoising by wavelet
thresholding in empirical and variational mode decomposition domains.
Healthc. Technol. Lett. 1, 104–109. doi: 10.1049/htl.2014.0073

Liu, W., Cao, S., and Chen, Y. (2016). Applications of variational mode
decomposition in seismic time-frequency analysis. Geophysics 81, V365–V378.

Mark, C. I., Mazerolle, E. L., and Chen, J. J. (2015). Metabolic and vascular origins
of the BOLD effect: implications for imaging pathology and resting-state brain
function. J. Magn. Reson. Imaging 42, 231–246. doi: 10.1002/jmri.24786

Mayhew, J. E., Askew, S., Zheng, Y., Porrill, J., Westby, G. W., Redgrave, P., et al.
(1996). Cerebral vasomotion: a 0.1-Hz fluctuation in reflected light imaging of
neural activity. Neuroimage 4, 183–193. doi: 10.1006/nimg.1996.0069

Mert, A. (2016). ECG feature extraction based on the bandwidth properties of
variational mode decomposition. Physiol. Meas. 37, 530–543. doi: 10.1088/
0967-3334/37/4/530

Meyer, M. F., Rose, C. J., Hülsmann, J. O., Schatz, H., and Pfohl, M. (2003).
Impaired 0.1-Hz vasomotion assessed by laser doppler anemometry as an early
index of peripheral sympathetic neuropathy in diabetes. Microvasc. Res. 65,
88–95. doi: 10.1016/s0026-2862(02)00015-8

Morita, Y., Hardebo, J. E., and Bouskela, E. (1994). Influence of cerebrovascular
parasympathetic nerves on resting cerebral blood flow, spontaneous
vasomotion, autoregulation, hypercapnic vasodilation and sympathetic
vasoconstriction. J. Auton. Nerv. Syst. 49, S9–S14.

Murphy, K., Birn, R. M., and Bandettini, P. A. (2013). Resting-state fMRI
confounds and cleanup. Neuroimage 80, 349–359. doi: 10.1016/j.neuroimage.
2013.04.001

Niazy, R. K., Xie, J., Miller, K., Beckmann, C. F., and Smith, S. M. (2011). Spectral
characteristics of resting state networks. Brain Res. 193, 259–276. doi: 10.1016/
b978-0-444-53839-0.00017-x

Nikolaou, F., Orphanidou, C., Papakyriakou, P., Murphy, K., Wise, R. G., and
Mitsis, G. D. (2016). Spontaneous physiological variability modulates dynamic
functional connectivity in resting-state functional magnetic resonance imaging.
Philos. Trans. A Math. Phys. Eng. Sci. 374:20150183. doi: 10.1098/rsta.2015.0183

Nikulin, V. V., Fedele, T., Mehnert, J., Lipp, A., Noack, C., Steinbrink, J.,
et al. (2014). Monochromatic ultra-slow (˜0.1Hz) oscillations in the human
electroencephalogram and their relation to hemodynamics. Neuroimage 97,
71–80. doi: 10.1016/j.neuroimage.2014.04.008

Pfurtscheller, G., Schwerdtfeger, A., Brunner, C., Aigner, C., Fink, D., Brito, J.,
et al. (2017). Distinction between neural and vascular bold oscillations and

Frontiers in Neuroscience | www.frontiersin.org 16 September 2019 | Volume 13 | Article 900

https://doi.org/10.1111/j.1748-1716.2011.02320.x
https://doi.org/10.1111/j.1748-1716.2011.02320.x
https://doi.org/10.1523/JNEUROSCI.1296-11.2011
https://doi.org/10.1016/s0008-6363(97)00017-5
https://doi.org/10.1016/j.neuroimage.2012.01.016
https://doi.org/10.1016/j.neuroimage.2007.11.059
https://doi.org/10.1016/j.neuroimage.2007.11.059
https://doi.org/10.1006/mvre.1996.0039
https://doi.org/10.1016/j.neuroimage.2009.05.012
https://doi.org/10.1016/j.neuroimage.2009.04.048
https://doi.org/10.1016/0006-8993(66)90075-8
https://doi.org/10.1016/j.mri.2016.06.005
https://doi.org/10.1016/j.jneumeth.2016.06.005
https://doi.org/10.1371/journal.pone.0015710
https://doi.org/10.1371/journal.pone.0015710
https://doi.org/10.1073/pnas.200033797
https://doi.org/10.1002/(sici)1097-0193(1999)8:4<272::aid-hbm10>3.0.co;2-4
https://doi.org/10.1002/(sici)1097-0193(1999)8:4<272::aid-hbm10>3.0.co;2-4
https://doi.org/10.1093/cercor/bhg087
https://doi.org/10.1016/j.neuroimage.2014.10.031
https://doi.org/10.1016/j.neuroimage.2014.10.031
https://doi.org/10.1113/jphysiol.2001.013698
https://doi.org/10.1016/s0733-8651(03)00073-0
https://doi.org/10.1016/s0733-8651(03)00073-0
https://doi.org/10.1002/mrm.26038
https://doi.org/10.1177/1358836x9000100202
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1016/S1361-8415(01)00036-6
https://doi.org/10.1016/S1361-8415(01)00036-6
https://doi.org/10.1371/journal.pone.0093375
https://doi.org/10.1002/1522-2594(200009)44:3<373::aid-mrm5>3.3.co;2-g
https://doi.org/10.1002/1522-2594(200009)44:3<373::aid-mrm5>3.3.co;2-g
https://doi.org/10.1006/mvre.1998.2108
https://doi.org/10.1006/mvre.1998.2108
https://doi.org/10.1006/mvre.1998.2139
https://doi.org/10.1049/htl.2014.0073
https://doi.org/10.1002/jmri.24786
https://doi.org/10.1006/nimg.1996.0069
https://doi.org/10.1088/0967-3334/37/4/530
https://doi.org/10.1088/0967-3334/37/4/530
https://doi.org/10.1016/s0026-2862(02)00015-8
https://doi.org/10.1016/j.neuroimage.2013.04.001
https://doi.org/10.1016/j.neuroimage.2013.04.001
https://doi.org/10.1016/b978-0-444-53839-0.00017-x
https://doi.org/10.1016/b978-0-444-53839-0.00017-x
https://doi.org/10.1098/rsta.2015.0183
https://doi.org/10.1016/j.neuroimage.2014.04.008
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00900 September 3, 2019 Time: 15:25 # 17

Yuen et al. Frequencies of the rs-fMRI Signal

intertwined heart rate oscillations at 0.1 Hz in the resting state and during
movement. PLoS One 12:e0168097. doi: 10.1371/journal.pone.0168097

Qian, L., Zhang, Y., Zheng, L., Shang, Y., Gao, J.-H., and Liu, Y. (2015). Frequency
dependent topological patterns of resting-state brain networks. PLoS One
10:e0124681. doi: 10.1371/journal.pone.0124681

Raichle, M. E. (2011). The restless brain. Brain Connect. 1, 3–12. doi: 10.1089/brain.
2011.0019

Rayshubskiy, A., Wojtasiewicz, T. J., Mikell, C. B., Bouchard, M. B., Timerman,
D., Youngerman, B. E., et al. (2014). Direct, intraoperative observation of ˜0.1
Hz hemodynamic oscillations in awake human cortex: implications for fMRI.
Neuroimage 87, 323–331. doi: 10.1016/j.neuroimage.2013.10.044

Razavi, M., Eaton, B., Paradiso, S., Mina, M., Hudetz, A. G., and Bolinger, L. (2008).
Source of low-frequency fluctuations in functional MRI signal. J. Magn. Reson.
Imaging 27, 891–897. doi: 10.1002/jmri.21283

Rivadulla, C., Labra, D. C., Grieve, L. K., and Cudeiro, J. (2011). Vasomotion and
neurovascular coupling in the visual thalamus in vivo. PLoS One 6:e28746.
doi: 10.1371/journal.pone.0028746

Salvador, R., Suckling, J., Schwarzbauer, C., and Bullmore, E. (2005). Undirected
graphs of frequency-dependent functional connectivity in whole brain
networks. Philos. Trans. R Soc. Lond. B Biol. Sci. 360, 937–946. doi: 10.1098/
rstb.2005.1645

Sasai, S., Homae, F., Watanabe, H., and Taga, G. (2011). Frequency-specific
functional connectivity in the brain during resting state revealed by NIRS.
Neuroimage 56, 252–257. doi: 10.1016/j.neuroimage.2010.12.075

Segonne, F., Dale, A. M., Busa, E., Glessner, M., Salat, D., Hahn, H. K., et al. (2004).
A hybrid approach to the skull stripping problem in MRI. Neuroimage 22,
1060–1075. doi: 10.1016/j.neuroimage.2004.03.032

Segonne, F., Pacheco, J., and Fischl, B. (2007). Geometrically accurate topology-
correction of cortical surfaces using nonseparating loops. IEEE Trans. Med.
Imaging 26, 518–529. doi: 10.1109/TMI.2006.887364

Sled, J. G., Zijdenbos, A. P., and Evans, A. C. (1998). A non-parametric method
for automatic correction of intensity non-uniformity in MRI data. IEEE Trans.
Med. Imaging 17, 87–97. doi: 10.1109/42.668698

Song, X., Zhang, Y., and Liu, Y. (2014). Frequency specificity of regional
homogeneity in the resting-state human brain. PLoS One 9:e86818. doi: 10.
1371/journal.pone.0086818

Tong, Y., and Frederick, B. D. (2014). Studying the spatial distribution of
physiological effects on bold signals using ultrafast fMRI. Front. Hum. Neurosci.
8:196. doi: 10.3389/fnhum.2014.00196

Tong, Y., Hocke, L. M., Lindsey, K. P., Erdo ∂̃an, S. B., Vitaliano, G., Caine, C. E.,
et al. (2016). Systemic low-frequency oscillations in bold signal vary with tissue
type. Front. Neurosci. 10:313. doi: 10.3389/fnins.2016.00313

Tong, Y., Lindsey, K. P., and De, B. F. B. (2011). Partitioning of physiological
noise signals in the brain with concurrent near-infrared spectroscopy and fMRI.
J. Cereb. Blood Flow Metab. 31, 2352–2362. doi: 10.1038/jcbfm.2011.100

Tripathy, R. K., Sharma, L. N., and Dandapat, S. (2016). Detection of shockable
ventricular arrhythmia using variational mode decomposition. J. Med. Syst.
40:79. doi: 10.1007/s10916-016-0441-5

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O.,
Delcroix, N., et al. (2002). Automated anatomical labeling of activations
in SPM using a macroscopic anatomical parcellation of the MNI MRI
single-subject brain. Neuroimage 15, 273–289. doi: 10.1006/nimg.2001.
0978

Wu, Z., and Huang, N. E. (2009). Ensemble empirical mode decomposition:
a noise-assisted data analysis method. Adv. Adapt. Data Anal. 01, 1–41.
doi: 10.1142/s1793536909000047

Xiao, Q., Li, J., Bai, Z., Sun, J., Zhou, N., and Zeng, Z. (2016). A small
leak detection method based on VMD adaptive de-noising and ambiguity
correlation classification intended for natural gas pipelines. Sensors 16:2116.
doi: 10.3390/s16122116

Yeh, J.-R., Lin, T.-Y., Chen, Y., Sun, W.-Z., Abbod, M. F., and Shieh, J.-
S. (2012). Investigating properties of the cardiovascular system using
innovative analysis algorithms based on ensemble empirical mode
decomposition. Comput. Math. Methods Med. 2012:943431. doi: 10.1155/2012/
943431

Zhang, S., and Li, C. (2014). Functional clustering of the human inferior
parietal lobule by whole-brain connectivity mapping of resting-state functional
magnetic resonance imaging signals. Brain Connect. 4, 53–69. doi: 10.1089/
brain.2013.0191

Zhang, Y., Brady, M., and Smith, S. (2001). Segmentation of brain MR
images through a hidden Markov random field model and the expectation-
maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57. doi: 10.1109/
42.906424

Zou, Q. H., Zhu, C. Z., Yang, Y., Zuo, X. N., Long, X. Y., Cao, Q. J.,
et al. (2008). An improved approach to detection of amplitude of
low-frequency fluctuation (ALFF) for resting-state fMRI: fractional
ALFF. J. Neurosci. Methods 172, 137–141. doi: 10.1016/j.jneumeth.2008.
04.012

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Yuen, Osachoff and Chen. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Neuroscience | www.frontiersin.org 17 September 2019 | Volume 13 | Article 900

https://doi.org/10.1371/journal.pone.0168097
https://doi.org/10.1371/journal.pone.0124681
https://doi.org/10.1089/brain.2011.0019
https://doi.org/10.1089/brain.2011.0019
https://doi.org/10.1016/j.neuroimage.2013.10.044
https://doi.org/10.1002/jmri.21283
https://doi.org/10.1371/journal.pone.0028746
https://doi.org/10.1098/rstb.2005.1645
https://doi.org/10.1098/rstb.2005.1645
https://doi.org/10.1016/j.neuroimage.2010.12.075
https://doi.org/10.1016/j.neuroimage.2004.03.032
https://doi.org/10.1109/TMI.2006.887364
https://doi.org/10.1109/42.668698
https://doi.org/10.1371/journal.pone.0086818
https://doi.org/10.1371/journal.pone.0086818
https://doi.org/10.3389/fnhum.2014.00196
https://doi.org/10.3389/fnins.2016.00313
https://doi.org/10.1038/jcbfm.2011.100
https://doi.org/10.1007/s10916-016-0441-5
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1142/s1793536909000047
https://doi.org/10.3390/s16122116
https://doi.org/10.1155/2012/943431
https://doi.org/10.1155/2012/943431
https://doi.org/10.1089/brain.2013.0191
https://doi.org/10.1089/brain.2013.0191
https://doi.org/10.1109/42.906424
https://doi.org/10.1109/42.906424
https://doi.org/10.1016/j.jneumeth.2008.04.012
https://doi.org/10.1016/j.jneumeth.2008.04.012
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Intrinsic Frequencies of the Resting-State fMRI Signal: The Frequency Dependence of Functional Connectivity and the Effect of Mode Mixing
	Introduction
	Materials and Methods
	VMD Optimization
	Simulated Data
	MRI Data Acquisition
	Image Preprocessing
	IMF Clustering and Spectral Analysis
	Amplitude Analysis
	Functional Connectivity Matrices
	Statistical Comparisons

	Results
	Intrinsic Frequencies of the rs-fMRI Signal
	Frequency Dependence of Network Organization

	Discussion
	Intrinsic Frequencies of the rs-fMRI Signal
	Possible Interpretations of Intrinsic rs-fMRI Frequencies
	Frequency Dependence of Network Organization
	Limitations

	Data Availability
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


