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1  | INTRODUC TION

When a species exists across habitats of varying physical and struc‐
tural properties, communication systems may adapt to the local 
environment to optimize the efficacy of signal transmission and in‐
terpretation (Endler, 1992, 1993a). This idea is central to the sensory 
drive hypothesis, which proposes a correlated divergence in signaling 
traits (e.g., color), sensory perception (e.g., vision), and mate prefer‐
ences (Endler & Basolo, 1998). The scale and consistency of adaptive 
divergence in mating signals and perception can influence whether it 
leads to speciation or the maintenance of color variation within the 
species (Chunco, McKinnon, & Servedio, 2007; Gray & McKinnon, 

2007; Seehausen et al., 2008). Despite more than 25  years of re‐
search on sensory drive, the majority of work has focused on aquatic 
systems, where ambient illumination varies substantially and consis‐
tently (reviewed in Cummings & Endler, 2018). Furthermore, most 
evidence for tuning of color vision to different color signals comes 
from taxonomic groups that show substantial variation in the num‐
ber and spectral sensitivities of photoreceptors, such as butterflies 
and teleost fishes (Bernard & Remington, 1991; Briscoe et al., 2010; 
Carleton, Parry, Bowmaker, Hunt, & Seehausen, 2005; Hoffmann et 
al., 2007; Miyagi et al., 2012; Sison‐Mangus, 2006).

In many groups, including birds and reptiles, the number and 
spectral sensitivities of photoreceptors are highly conserved. 
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Abstract
The sensory drive hypothesis predicts the correlated evolution of signaling traits and 
sensory perception in differing environments. For visual signals, adaptive divergence 
in both color signals and visual sensitivities between populations may contribute to 
reproductive isolation and promote speciation, but this has rarely been tested or 
shown in terrestrial species. We tested whether opsin protein expression differs be‐
tween divergent lineages of the tawny dragon (Ctenophorus decresii) that differ in 
the presence/absence of an ultraviolet sexual signal. We measured the expression 
of four retinal cone opsin genes (SWS1, SWS2, RH2, and LWS) using droplet digital 
PCR. We show that gene expression between lineages does not differ significantly, 
including the UV wavelength sensitive SWS1. We discuss these results in the con‐
text of mounting evidence that visual sensitivities are highly conserved in terrestrial 
systems. Multiple competing requirements may constrain divergence of visual sen‐
sitivities in response to sexual signals. Instead, signal contrast could be increased via 
alternative mechanisms, such as background selection. Our results contribute to a 
growing understanding of the roles of visual ecology, phylogeny, and behavior on 
visual system evolution in reptiles.
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However, visual sensitivities can be influenced by the relative pro‐
portion of different photoreceptor types (and therefore cone opsin 
expression) in the retina (reviewed in Carleton, 2014). For example, 
in New World warblers (Parulidae), relative opsin expression is as‐
sociated with plumage dichromatism and light environment (Bloch, 
2015). Similarly, a high abundance of ultraviolet (UV) sensitive 
cones have been associated with the presence of a UV signal in a 
lizard (Fleishman, Loew, & Whiting, 2011). Opsin gene expression 
may evolve more readily in response to varying selection than opsin 
spectral tuning (i.e., changing the wavelength of peak photorecep‐
tor sensitivity, λmax). However, evidence for an association between 
visual signals and color vision achieved by modifying the relative 
gene expression of cone opsins is currently limited in terrestrial spe‐
cies (Bloch, Morrow, Chang, & Price, 2015; Coyle, Hart, Carleton, & 
Borgia, 2012; Tseng et al., 2018; Yewers et al., 2015).

The tawny dragon lizard (Ctenophorus decresii; Duméril & Bibron, 
1837) is a good candidate for examining changes in visual sensitivity 
associated with divergence of a sexual signal and the signaling envi‐
ronment. The species comprises two genetically and phenotypically 
distinct lineages which differ markedly in a sexual color signal, male 
throat coloration (Figure 1). Northern lineage males are polymor‐
phic with four discrete throat morphs: orange, yellow, yellow with 
an orange center, and gray (Teasdale, Stevens, & Stuart‐Fox, 2013), 

all of which lack significant UV reflectance. By contrast, southern 
lineage males are monomorphic with UV‐blue throats with a consis‐
tent UV reflectance peak (McLean, Stuart‐Fox, & Moussalli, 2014). 
This throat coloration is prominently displayed during territorial and 
courtship displays involving head‐bobbing and push‐ups (Gibbons, 
1979, 1977; Osborne, Umbers, Backwell, & Keogh, 2012; Stuart‐Fox 
& Johnston, 2005) and is locally adapted to increase conspicuous‐
ness against the predominant background colors of native lichen in 
their respective ranges (McLean, Moussalli, & Stuart‐Fox, 2014). The 
northern lineage is primarily found in semi‐arid sparsely vegetated 
habitats, whereas the southern lineage occurs in wetter, temperate, 
more vegetated habitats (Houston, 1974).

Characteristic of diurnal lizards, C. decresii has tetrachromatic vi‐
sion with UV sensitive (SWS1; 364–383 nm), short‐wavelength sen‐
sitive (SWS2; 440–467 nm), medium‐wavelength sensitive (rod‐like 
cone opsin RH2; 483–501 nm), and long‐wavelength sensitive (LWS; 
560–625  nm) cone opsins and one rod opsin (RH1; Yewers et al., 
2015). There are no significant differences in the absorption spec‐
tra of visual pigments between lineages of C. decresii, nor in amino 
acid sequences of opsin genes (Yewers et al., 2015). However, color 
discrimination may be fine‐tuned by differences in the relative pro‐
portion of photoreceptor types rather than shifts in their peak wave‐
length sensitivities. Given the occurrence of locally adapted throat 

F I G U R E  1   Sampling localities and male throat colors of the tawny dragon (Ctenophorus decresii). (a) Map showing localities in the 
northern and southern lineages. Elevated rocky ranges are shaded in gray. Average reflectance of male throat colors found in the 
(b) northern lineage: orange, yellow, gray, and in the (c) southern lineage: blue. Ultraviolet wavelengths are highlighted in gray; (d) 
Representative male throats for each color

(a) (b)

(c)

(d)
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coloration in C. decresii, we hypothesized that the lineages may differ 
in visual sensitivities via the relative expression of cone opsin genes. 
Specifically, we predicted that the southern lineage would exhibit 
higher expression of the UV sensitive SWS1 opsin gene due to the 
UV reflectance peak found on male throats.

2  | METHODS

2.1 | Animals

We analyzed the visual sensitivities of seven northern lineage (six 
males and one female) and nine southern lineage (seven males and 
two females) individuals (Table 1). We focused primarily on males 
because in C. decresii, males compete for access to females and op‐
portunities for female male choice appear to be limited, as is gener‐
ally the case in lizards (Lailvaux & Irschick, 2006; Lebas & Marshall, 
2001; Olsson & Madsen, 1995; Smith & Zucker, 1997; Tokarz, 
1995). Male–male interactions are therefore the strongest deter‐
minants of mating success in territorial lizards (Gullberg, Olsson, & 
Tegelstrom, 1997; Simon, 2011; Stamps & Krishnan, 1997; Tokarz, 
1998); however, we included a subset of females for comparison. 
Northern lineage individuals were wild‐caught by noosing or by 
hand from Caroona Creek Conservation Park (longitude: 139.103, 
latitude: −33.443), Telowie Gorge Conservation Park (longitude: 
138.106, latitude: −33.023), or Warren Gorge, South Australia 

(longitude: 137.995, latitude: −32.183). Southern lineage individu‐
als were captured from Palmer, South Australia (longitude: 139.159, 
latitude: −34.851) or were hatched from eggs laid by gravid females 
captured from Palmer and raised in captivity to sexual maturity 
(>1  year; Gibbons, 1977). The subjects were housed individually 
in opaque plastic tubs (55  ×  34  ×  38  cm [L  ×  W  ×  D]) with sand 
and two terracotta tiles to provide shelter and a basking platform. 
Lizards were kept in captivity between 3  months to 1.5  years at 
The University of Melbourne, Melbourne and Deakin University, 
Geelong, Australia. They were provided with artificial lighting and 
seasonal photoperiods to approximate natural conditions, including 
UV lighting and a heat lamp for thermoregulation. Lizards were fed 
crickets ad libitum and misted with water 3 days a week. Although 
individuals differed slightly in age and period of time in captivity, 
all were sexually mature at the time of sampling and suitable to 
investigate consistent differences in visual sensitivities between 
lineages. This research was conducted with approval from the 
Department of Environment, Water and Natural Resources, South 
Australia (permit nos. E25861‐4 and Q26428‐3), the Department 
of Environment, Land, Water and Planning, Victoria (permit nos. 
10007000 and 10007751) and with approval by the University of 
Melbourne Animals Ethics Committee (approval nos. 1312927.1 
and 1413220.4), the Wildlife Ethics Committee of South Australia 
(approval nos. 35/2013 and 25/2015), and the Deakin Animal Ethics 
Committee (project no. G39‐2013).

ID Lineage Sex Locality Housing Months

NM1 N M Telowie Gorge CP Deakin University 3

NM2 N M Telowie Gorge CP Deakin University 3

NM3 N M Caroona Creek CP Deakin University 3

NM4 N M Telowie Gorge CP Deakin University 3

NM5 N M Warren Gorge The University of 
Melbourne

3

NM6 N M Caroona Creek CP The University of 
Melbourne

18

NF1 N F Caroona Creek CP The University of 
Melbourne

18

SM1 S M Palmer Deakin University 3

SM2 S M Palmer Deakin University 3

SM3 S M Palmer Deakin University 3

SM4 S M Captive‐bred (Palmer) The University of 
Melbourne

6

SM5 S M Captive‐bred (Palmer) The University of 
Melbourne

6

SM6 S M Captive‐bred (Palmer) The University of 
Melbourne

6

SM7 S M Captive‐bred (Palmer) The University of 
Melbourne

6

SF1 S F Palmer The University of 
Melbourne

8

SF2 S F Palmer The University of 
Melbourne

4

TA B L E  1   Details of all individuals 
used in the study, including their lineage, 
sex, capture locality, housing facility, and 
length of housing (months)
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2.2 | Quantification of opsin expression

Following humane euthanasia, eyeballs were immediately removed, 
hemisected, and stored in RNAlater (Ambion Inc.) at −20°C. Whole 
retinas were dissected for each individual before being disrupted and 
homogenized using the TissueLyser II with 3 mm stainless steel beads 
(Qiagen). Total RNA was extracted using an RNeasy Mini Kit (Qiagen) 
and quantified on a 220 TapeStation (RIN scores >8.0; Agilent). For 
each sample, 200 ng of total RNA was reverse‐transcribed to cDNA 
using a qPCRBIO cDNA Synthesis Kit (PCR Biosystems) and opsin 
gene expression was measured using droplet digital PCR (ddPCR), a 
method of digital PCR that implements a water‐in‐oil droplet system 
using the Bio‐Rad QX100 system (detailed methods in Hindson et 
al., 2011). This method provides absolute quantification of copies of 
the PCR target, without the use of a standard curve, and has been 
shown to have comparable sensitivity to real‐time PCR with the ad‐
vantages of greater precision and improved reproducibility (Hindson 
et al., 2013). We used a 25 ul reaction mix containing cDNA, primers 
(900 nM each), probe (250 nM), and ddPCR Supermix for Probes (no 
dUTP, Bio‐Rad). Using the QX100 Droplet Generator, this mixture 
is partitioned into 20,000 droplets and each droplet becomes an 
independent amplification event. The amplification protocol was as 
follows: 10 min at 95°C, 40 cycles of 30 s at 94°C and 1 min at 57°C, 
followed by 10 min at 98°C, ramp rate set to 2.5°C/s. Following am‐
plification on a standard thermal cycler, droplets are analyzed on the 
QX100 Droplet Reader which counts the number of droplets con‐
taining the PCR target (positive) and droplets without (negative) in 
each sample. These data were analyzed with QuantaSoft Analysis 
Pro v1.0.596 (Bio‐Rad) which uses a Poisson distribution to deter‐
mine the absolute template quantity (copies per µl). We then calcu‐
lated relative opsin gene expression as a percentage of total cone 
opsin genes expressed for each individual.

We designed primers and probes for the four cone opsin genes 
(SWS1, SWS2, RH2, LWS; Table 2) based on published opsin se‐
quences from retinal transcriptomes of C.  decresii (Yewers et al., 
2015) using Primer3 v4.1.0 (Koressaar & Remm, 2007; Untergasser 
et al., 2012). Additionally, primer binding sites were designed to span 
an exon–exon junction to avoid amplification of genomic DNA and 
amplified short fragments (75–200  bp). Intron–exon junctions were 
identified by aligning opsin gene sequences with the draft genome for 
C. decresii (McLean, Stuart‐Fox, and Moussalli, unpublished data) using 

Exonerate v2.2.0 (Slater & Birney, 2005). A single mix of primers and 
probes was used for each opsin gene for the length of the experiment.

2.3 | Statistical analyses

We used a linear mixed‐effects model to examine the effects of lin‐
eage on opsin gene expression. Specifically, we had lineage, gene, 
and their interaction as fixed terms and included months in captivity, 
lizard ID, and age as random‐effect terms (opsin expression~lineag
e + gene + lineage*gene + (1|months) + (1|ID)) + (1|age). We used our 
model to examine the normality of residuals and found significant 
departure (Shapiro–Wilk normality test, p  <  .0001). We log‐trans‐
formed the data and confirmed normality (p = .30). The random‐ef‐
fect terms each accounted for a negligible amount of variability in 
the model (<0.05 total variance). Further, we repeated this analysis 
on a dataset comprising only males (excluding females; opsin expr
ession~lineage + gene + lineage*gene + (1|months) + (1|ID) + (1|age)
). Statistical tests were performed in R v3.3 (R Core Development 
Team, 2017) with the packages effects (Fox, 2003), lme4 (Bates, 
Mächler, Bolker, & Walker, 2014), and lmerTest (Kuznetsova, 2017). 
We conducted a post hoc power analysis in the program G*Power 
v3.1.9.4 (Faul, Erdfelder, Buchner, & Lang, 2009; Faul, Erdfelder, 
Lang, & Buchner, 2007), and determined that the datasets compris‐
ing all samples and adult males had powers of 0.94 and 0.86, respec‐
tively. A power of 0.80 is generally regarded as an appropriate level 
of statistical power (Cohen, 1988).

3  | RESULTS

There were no significant differences in gene expression of indi‐
vidual cone opsins between the northern and southern lineages 
(p > .05; Table 3). For the full dataset, the mean relative gene expres‐
sion ± SE for the northern lineage was 0.011 ± 0.007, 0.044 ± 0.022, 
0.373  ±  0.224, 0.572  ±  0.201 (SWS1, SWS2, RH2, LWS, respec‐
tively). Likewise for the southern lineage, mean relative gene ex‐
pression  ±  SE was 0.007  ±  0.002, 0.032  ±  0.013, 0.286  ±  0.129, 
0.675  ±  0.124 (Figure 2a). We found significant differences be‐
tween opsin genes (p < .0001; Table 3). The relative expression pat‐
terns for the four opsin genes were similar between lineages with 
SWS1 as the lowest expressed gene, followed by SWS2, RH2, and 

TA B L E  2   Forward primer, probe, and reverse primer sequences for each of the four cone opsins

Opsin Forward primer Reverse primer Probe

SWS1 ACA GTT CAG GGC TTG CAT TA TGG AAG AGA CAG AGG AGA CC /56‐FAM/ACC CAT GAC/ZEN/AGA TGA 
ATC CGA CGT /3IABkFQ/

SWS2 CAA GGC CTC CTC AGT TTA CAA GAA CTC GAA ACA TCA TCT TCA 
TCA C

/56‐FAM/TGA ACA AGC/ZEN/AGT TCC 
GCT CCT GTA /3IABkFQ/

LWS GCT GTC ATT ATC CTC TGC TAC C CAC TTC CCT TTC AGC CTT CT /56‐FAM/CAG CAA CCG/ZEN/CAC GAA 
TAG CCA AC/3IABkFQ/

RH2 CTC AAA GAG TTC GTC CCT CTA 
TAA

GTT CTT GCC ACA GCA GAT TG /56‐FAM/CGT CCT CAT/ZEN/GAA CAA 
GCA GTT CCG T/3IABkFQ/
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LWS as the most highly expressed gene (northern  =  1:4:33.9:52, 
southern = 1:4.6:40.1:96.4). Analysis of the subset of males recov‐
ered qualitatively similar results with no significant differences in 
expression of each cone opsin between the northern and south‐
ern lineages (p >  .05; Table 3). The mean relative expression ± SE 
for the northern lineage was 0.013  ±  0.006, 0.047  ±  0.021, 
0.310 ± 0.164, 0.630 ± 0.142; expression for the southern lineage 
was 0.007 ± 0.002, 0.036 ± 0.014, 0.286 ± 0.145, 0.671 ± 0.139 
(SWS1, SWS2, RH2, LWS, respectively; Figure 2b). Relative expres‐
sion patterns were also similar between lineages and to the full 
dataset (northern = 1:3.7:24: 48.7, southern = 1:5.2:41.6:97.4).

4  | DISCUSSION

The coevolution of color signals and vision is central to the sensory 
drive hypothesis, a key proposed mechanism of adaptive divergence 
and speciation. We examined visual sensitivities of C.  decresii and 

found no evidence that relative opsin gene expression levels corre‐
spond to divergence between lineages which differ in the presence/
absence of a UV sexual signal. We found differences in expression 
between the four opsin genes; this was similar to the relative ex‐
pression estimated from transcriptome sequencing in C.  decresii 
wherein SWS1 and LWS were the lowest and highest expressed 
genes but small sample sizes limited further statistical inferences 
(northern  =  1:2.4:2.5:31, N  =  1; southern  =  1.1:2.1:1: 19, N  =  1; 
SWS1:SWS2:RH2:LWS; Yewers et al., 2015). A similar hierarchy has 
been found in the abundance of visual pigments in other squamate 
taxa (Barbour et al., 2002; Bowmaker, Loew, & Ott, 2005; Tseng 
et al., 2018). Our results support the hypothesis that diurnal liz‐
ards share a highly conserved ancestral pattern of tetrachromatic 
vision extending into the ultraviolet spectrum as characterized in 
the families Agamidae (Barbour et al., 2002; Yewers et al., 2015), 
Chamaeleonidae (Bowmaker et al., 2005), Cordylidae (Fleishman 
et al., 2011), Dactyloidae (Kawamura & Yokoyama, 1998; Loew, 
Fleishman, Foster, & Provencio, 2002; Provencio, Loew, & Foster, 

 

All Individuals Males

df F p df F p

Lineage 1 0.59 .448 1 0.78 .382

Gene 3 275.72 <.0001 3 206.94 <.0001

Lineage × Gene 3 1.0 .397 3 0.75 .530

TA B L E  3   Results of linear mixed‐
effects models on all individuals (N = 16) 
and a subset of only males (N = 13), 
statistically significant values are italicized

F I G U R E  2   Mean relative expressions (copies per µl) of the four cone opsin genes in the northern and southern lineages for (a) all 
individuals and (b) a subset of only males. 95% confidence bounds were calculated using parameters estimated from the fitted model

(a) (b)
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1992), and Lacertidae (de Lanuza & Font, 2014). In general, reptiles 
have retained the set of opsin genes (SWS1, SWS2, RH2, LWS, RH1) 
inferred to have been present in the ancestral vertebrate (Cronin, 
Johnsen, Marshall, & Warrant, 2014).

These findings add to the growing body of evidence suggest‐
ing that the coevolution of color signals and visual systems is rare 
in terrestrial systems (Lind, Henze, Kelber, & Osorio, 2017). The 
strength of selection on visual sensitivities to optimize signal per‐
ception is likely to be weaker in terrestrial than aquatic systems 
because terrestrial light environments are less distinct and more 
variable over time and space whereas aquatic systems vary more 
steeply and consistently in background radiance (Chiao, Vorobyev, 
Cronin, & Osorio, 2000; Endler, 1993b; Goldsmith, 1990; Levine 
& MacNichol, 1979). Although the lineages of C. decresii differ in 
broad aspects of their habitat (aridity and vegetation cover), both 
prefer brightly lit open perches and irradiance spectra from full 
sun conditions are similar across northern and southern locali‐
ties (McLean, Moussalli, et al., 2014). Moreover, the magnitude of 
changes in irradiance over a diurnal cycle are likely to be much 
greater than the overall variation in light conditions between lin‐
eages (Endler, 1993b).

The greater variability of terrestrial environments allows for 
behavioral adjustments to select backgrounds with spectral prop‐
erties which optimize signal contrast. In C. decresii, adults are al‐
most exclusively found on rocks and the colors of the native rock 
and lichen differs between lineages. Gray and pink rocks with or‐
ange lichen are found in the range of the southern lineage whereas 
orange rocks with pale green lichen are principally found in the 
range of the northern lineage. The throat coloration of each lineage 
has been shown to be more chromatically conspicuous against the 
predominant native lichen color background and less conspicuous 
against native rock color backgrounds (McLean, Moussalli, et al., 
2014). This suggests that individuals could select a background 
substrate to maximize contrast or crypsis. There is evidence from 
various terrestrial taxa of local adaptation and/or that individuals 
can select or modify their environment to alter their conspicu‐
ousness (Bortolotti, Stoffel, & Galvan, 2011; Endler & Day, 2006; 
Endler & Thery, 1996; Gunderson, Fleishman, & Leal, 2018; Heindl 
& Winkler, 2003; Klomp, Stuart‐Fox, Das, & Ord, 2017; Leal & 
Fleishman, 2002; Macedonia, 2001; Marshall, Philpot, & Stevens, 
2016; Nafus et al., 2015; Sicsú, Manica, Maia, & Macedo, 2013; 
Uy & Endler, 2004). For example, two closely related species of 
Anolis lizards, A. cooki, and A. cristatellus, differ markedly in dew‐
lap UV reflectance and have adaptively diverged in microhabitat 
preference to select light conditions that maximize signal contrast 
(Leal & Fleishman, 2002). However, similar to our findings, there 
are no significant differences in spectral sensitivity between eco‐
logically diverse species of Anolis with varying dewlap colorations 
(Fleishman et al., 1997; Loew et al., 2002).

Other ecological factors may generate selection pressures on 
aspects of the visual system that constrain divergence in response 
to sexual signals. Visual systems have evolved to accommodate a 
broad gauntlet of activities critical to survival and fitness. Lizards 

rely primarily on visual signals at longer distances (López & Martín, 
2001; López, Martín, & Cuadrado, 2002; Whiting, Webb, & Keogh, 
2009), and individuals must detect and interpret many objects in 
their environment including suitable shelter, potential rivals and 
mates, predators, and prey. The lineages of C. decresii share simi‐
lar predominantly avian predators and a generalist diet of insects 
(Gibbons, 1977), which often have color patterns that reflect or 
absorb selectively in the UV spectrum (Théry & Gomez, 2010). 
Additionally, males of both lineages may need to interpret UV sig‐
nals in females. In the closely related species Ctenophorus ornatus, 
males prefer females with higher throat UV reflectance (LeBas 
& Marshall, 2000). Female C.  decresii have UV‐white throats and 
some exhibit yellow coloration on the throat and sides of the ab‐
domen during the breeding season (Dong and Stuart‐Fox, Personal 
Observation). The function of female coloration in C. decresii is yet 
to be determined, but could indicate receptivity as in other closely 
related species (Stuart‐Fox & Goode, 2014). Thus, there may be 
stronger selection for visual sensitivities that optimize perfor‐
mance across a variety of tasks, than for those tuned to a specific 
sexually selected signal.

Visual sensitivities can vary in relation to a range of intrinsic and 
extrinsic factors, such as carotenoid availability, sex steroids, and 
light environment. For example, testosterone may regulate opsin 
expression in the sexually dimorphic green‐spotted grass lizard 
Takydromus viridipunctatus (Tseng et al., 2018). However, the great 
majority of evidence for environmental regulation of opsin expres‐
sion comes from fish, which experience drastic changes in ambient 
light environment with habitat changes during ontogeny (Bowmaker 
& Kunz, 1987; Cheng, 2004; Cottrill et al., 2009; Shand, Archer, & 
Collin, 1999; Shand et al., 2008; Shand, Hart, Thomas, & Partridge, 
2002) and even across diurnal cycles (Johnson, Stanis, & Fuller, 
2013). It is possible that environmental factors contributed variation 
to our data; however, there were no differences in opsin gene ex‐
pression between sexes and these groups do not differ in diet or 
habitat preferences (Gibbons, 1977).

5  | CONCLUSIONS

In summary, we found no evidence for divergence in visual sensitivi‐
ties between lineages of C. decresii that differ in the presence of a 
UV sexual signal. Our findings are consistent with weaker divergent 
selection on visual sensitivities within and between closely related 
species in terrestrial systems. The lack of divergence in visual sen‐
sitivities between lineages of C. decresii can likely be attributed to 
similar selection on color vision imposed by the abiotic and biotic 
environment. Instead, male C.  decresii may increase conspicuous‐
ness of their throat coloration to conspecifics by selecting contrast‐
ing backgrounds. By testing for opsin expression divergence in a 
terrestrial reptile, our study contributes to a growing understand‐
ing of broad‐scale patterns in the coevolution of signals and sen‐
sory systems, and how they differ between taxonomic groups and 
environments.
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