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An accurate characterization of diseases and compounds is the key to predicting the compound-disease relationship (CDR).
However, due to the difficulty of a comprehensive description of CDR, the accuracy of traditional drug development models for
large-scale CDR prediction is usually unsatisfactory. In order to solve this problem, we propose a new method that integrates the
molecular descriptors of compounds and the symptom descriptors of diseases to build a CDR two-dimensional matrix to predict
candidate active compounds. The Matlab software draws grayscale images of CDRs, which are used as a benchmark dataset for
training convolutional neural network (CNN) models. The trained model is used to predict candidate antitumor active com-
pounds. Among the AlexNet and GoogLeNet models, we selected the GoogLeNet model for the prediction of active compounds in
Chinese medicine, and its Acc, Sen, Pre, F-measure, MCC, and AUC are 0.960, 0.956, 0.965, 0.960, 0.920, and 0.964, respectively.
In the prediction results of compounds, 1624 candidate CDRs were found in 124 Chinese medicines. Among them, we obtained 31
features of candidate antitumor active compounds. This method provides new insights for the discovery of candidate active

compounds in Chinese medicine.

1. Introduction

The accurate prediction of the compound-disease rela-
tionship (CDR) can not only be used to identify candidate
active compounds but also help discover new indications for
compounds. Based on the hypothesis that “compounds with
similar structures tend to have similar activities”, some
studies have made progress in the identification of CDRs.
However, due to the lack of a comprehensive description
method for compounds and diseases, the accuracy of tra-
ditional drug development models for large-scale CDRs
prediction is usually unsatisfactory [1, 2].

In recent years, with the accumulation of the compound-
disease relationship data, many methods have been pro-
posed to screen candidate active compounds by identifying
CDRs. These methods can be roughly divided into two major

mainstreams: compound-based and disease-based. Among
compound-based research methods, the quantitative
structure-activity relationship (QSAR) has been widely used
in the prediction of compound properties or activity [3]. The
traditional QSAR method encodes molecules into fixed-
length strings or vectors but ignores the detailed structure
information and ADME characteristics [4]. Afterward, the
holographic QSAR, 3D-QSAR, and the combination of
multiple QSAR models have achieved a comprehensive
description of the molecular structure of compounds.
However, it is difficult to be used for the prediction of large-
scale CDRs. Some molecular simulation techniques such as
pharmacophore and docking can incorporate more detailed
information into the calculation model, greatly improving
the speed and accuracy of compound screening [5]. How-
ever, these methods usually can only obtain the effect of the
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compound on a target, and it is difficult to predict the overall
efficacy of compounds [6]. A variety of computational
models based on molecular simulation techniques have been
used for the prediction and evaluation of compound-disease
relationships. However, it is difficult to predict the rela-
tionship between compounds and multiple diseases for a
large number of traditional Chinese medicine compounds.
Based on the lack of quantitative description methods and
the limitations of current computational models, this study
adopted a comprehensive description method that com-
bined molecular descriptors and disease descriptors to
generate a two-dimensional matrix, which can be converted
into a grayscale image that visually displays the character-
istics of the data. It facilitates the identification of the re-
lationship between large-scale compounds and multiple
diseases.

For complex diseases with multiple targets, researchers
have also developed a variety of disease-based methods to
identify CDRs [7]. Kai Yang proposed an embedded het-
erogeneous network based on compound-disease relation-
ships to predict the potential efficacy of compounds [8].
Huiqing Wang et al. combine the structural similarity of
compounds with the semantic similarity of diseases, use
deep learning algorithms to extract feature information, and
weight features through convolution modules to effectively
predict potential therapeutic drugs for diseases. [9]. How-
ever, there are still problems such as whether the data source
is reliable, and the lack of relevant clinical sample data
verification [10]. The above methods revolve around genes,
targets, and pathways of diseases, but one of the important
and neglected resources is clinical data in public literature or
databases [11]. In these data, symptoms are the basis of
clinical disease classification and one of the most directly
related manifestations of the disease [12, 13]. Zhou et al.
carried out a quantitative description of the relationship
between disease and symptoms. The study standardized and
weighted disease and symptom terms retrieved from large
medical literature databases to build a comprehensive and
high-quality disease symptom relationship map [14]. Based
on the above methods, the structural information of the
compound and the symptom information of the disease
provide a wealth of data resources for comprehensively
characterizing the compound-disease relationship.

Heat-clearing Chinese medicine plays an important role
in the prevention and treatment of malignant tumors.
Pharmacological studies have shown that heat-clearing
Chinese medicines can achieve antitumor effects by in-
ducing apoptosis, inhibiting the proliferation of tumor cells,
regulating the immune capacity of the human body, and
resisting mutations [15-17]. In addition, they also have
clinical effects such as antipathogenic microorganisms,
antihypertension, antiatherosclerosis, and anti-inflamma-
tion [18-20]. Heat-clearing compounds have become the
research focus of new compound research and development
due to their good therapeutic effects, diverse antitumor
mechanisms, and few adverse reactions [21]. Among them,
the pharmacological effects of some heat-clearing Chinese
medicines have been deeply studied, but most of them are
still in the exploratory stage. There are still many compounds
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with unknown efficacy yet to be developed. It needs to be
screened on a large scale for better clinical application.

In recent years, deep learning has been widely used in
various disciplines [22]. It is a new type of algorithm with
powerful computing power, which overcomes the limita-
tions of traditional machine learning, such as weak data
adaptability and less applicable data types [23]. Among
them, Convolutional Neural Network (CNN) is one of the
deep learning algorithms that can be used in image rec-
ognition. It has the advantages of local connections, weight
sharing, and pooling, which can reduce the parameters in the
network. The structural features of network local connection
and convolution kernel weight sharing reduce the com-
plexity of the model, especially when dealing with two-di-
mensional images, it has good robustness for image
displacement, scaling, and nonlinear deformation [24].
These features make the CNN model have high computa-
tional efficiency and classification accuracy [25].

AlexNet is one of the common architectures of the CNN
model. Research has shown that the more layers of the CNN
model, the higher the accuracy. However, due to the
problem of the disappearance of the gradient, the gradient
becomes smaller in the back propagation process, making
the weight unable to be updated. Therefore, CNN perfor-
mance will not completely increase as the number of layers
increases. GoogLeNet solves this problem very well. The
modular structure of inception makes it increase the depth
and width of the network without increasing the parameters
[26]. Therefore, it can achieve better prediction performance
with fewer parameters. It is suitable for complex and
multidimensional input data.

Therefore, based on the structural information of the
compound and the information on the symptoms of the
disease, this study established a description method of
disease and compound characterization. We use a combi-
nation of molecular descriptors and symptom descriptors to
establish a CDR two-dimensional matrix. The CDRs con-
tained in public databases are mapped to grayscale images.
These images are used as a benchmark data set to train the
CNN model. Among the AlexNet and GoogLeNet models,
we selected the GoogLeNet model for the prediction of active
compounds in traditional Chinese medicine. Among them,
we obtained 31 features of candidate antitumor active
compounds. This method can provide a new perspective for
the large-scale development of active compounds in tradi-
tional Chinese medicine. The experimental flowchart is
shown in Figure 1.

2. Results

From the Comparative Toxicogenomics Database (CTD,
version 1.0 http://ctdbase.org/, accessed July 15, 2021) and
Drugbank  database  (version  5.1.9,  https://go.
compoundbank.com/, accessed July 14, 2021), we col-
lected a total of 13981 confirmed CDRs as positive samples,
including 40 diseases and 4770 compounds [27, 28]. However,
due to the lack of research value, there is currently no
database dedicated to the inclusion of unrelated compounds
and diseases. We had to randomly select 13981 unknown
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FIGURE 1: The experimental flow chart. (a) Draw a grayscale map based on the existing compound-disease relationship (CDR). (b)
Convolutional Neural Networks (CNNs) are used to build models that identify candidate CDRs. (c) Models are used to predict candidate
active compounds and extract structural features of antitumor compounds.

compound-disease relationships (NCDRs) as negative
samples from 176819 unrelated compounds and diseases;
CDRs are not included in these NCDR data and used them
together with positive samples as the benchmark data set.

2.1. Proportion of Positive and Negative Samples. In CDRs
composed of compounds and diseases, the number of
negative samples is far more than that of positive samples.
To overcome the common unbalanced problem of the data
set in classification models, we try to examine the pro-
portion of positive and negative samples in the benchmark
dataset. A series of datasets were constructed, with positive
and negative sample ratios of 1:1,1:2,1:3,1:4,and 1:5,
respectively. 20,000 samples are randomly selected from the
benchmark dataset, 75% of which are used to generate the
training set, and the remaining 25% are used to generate the
test set. The whole process is repeated three times, and the
average statistical results of the test set are shown in
Figure 2.

In the test set, the ratio of positive and negative samples
isfrom 1:1to 1:5. The results showed that the Accand AUC
values of the model did not change much. However, the
values of Sen, Pre, F-measure, and MCC all decreased
significantly as the ratio increased. These results show that as
the ratio of negative samples increases, the number of

negative samples in the training set also increases. The model
is more fully trained on negative samples, so it is easier to
identify negative samples, but it is also harder to identify
positive samples. This suggests that it is reasonable to set the
ratio of positive and negative samples to 1:1, which can
ensure that the model has high sensitivity.

2.2. Prediction Results of GoogLeNet Model and AlexNet
Model. In order to select a more suitable CNN model, we
used the same benchmark dataset to train and test the
GoogLeNet model and the AlexNet model. 20,000 samples
are randomly selected from the benchmark dataset, 75% of
which are used to generate the training set, and the
remaining 25% are used to generate the test set, ensuring
that the number of positive and negative samples remains
the same. Based on the same training set, the GoogLeNet
model and the AlexNet model are trained separately. Then,
we use the same test set to measure the performance of the
two models. The results are shown in Table 1 and Figure 3.

Since the two models are both binary classification
models, we compared their ability to recognize positive and
negative samples, respectively (Table 2). In terms of the
ability to identify positive samples, the Sen, Pre, and
F-measure of the GoogLeNet model are 0.956, 0.965, and
0.960, which are 2.465%, 6.866%, and 4.575% higher than the
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F1GURE 2: The calculation results of the test set with positive and negative sample ratios set to 1:1(a), 1:2(b), 1:3(c), 1:4(d), and 1:5(e).

TaBLE 1: Calculation results of the test set based on the GoogLeNet model and the AlexNet model.

CNN Acc Sen Pre F-measure MCC AUC
GoogLeNet 0.960 0.956 0.965 0.960 0.920 0.964
AlexNet 0.919 0.933 0.903 0.918 0.839 0.889

In the same test set, GoogLeNet shows an AUC of 0.964; the AlexNet model shows an AUC of 0.889. Furthermore, the GoogLeNet model has higher values in
terms of Acc, Sen, Pre, F-measure, and MCC. It outperforms the AlexNet model by 4.461%, 2.465%, 6.866%, 4.575%, 9.654%, and 8.436%, respectively.

TaBLE 2: Calculation results of positive and negative samples based on the GoogLeNet and AlexNet models.

Sen Pre F-measure Class
GoogLeNet 0.956 0.965 0.960 1
AlexNet 0.933 0.903 0.918 1
GoogLeNet 0.964 0.956 0.960 0
AlexNet 0.906 0.936 0.921 0
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F1Gure 3: ROC curves of GoogLeNet and AlexNet models. (a) ROC curves of the GoogLeNet model. (b) ROC curves of the AlexNet model.

AlexNet model, respectively. In terms of the ability to
identify negative samples, the Sen, Pre, and F-measure of the
GoogLeNet model are 0.964, 0.956, and 0.960, which are

6.402%, 2.137%, and 4.234% higher than the AlexNet model,
respectively. Overall, among the two models, the GoogLeNet
model is more suitable for our experimental data.
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2.3. Identification Power of the GoogLeNet Model on the
External Test Set

2.3.1. The Ability of the Model to Identify CDRs for Existing
Compounds and New Indications. We further evaluated the
recognition ability of the GoogLeNet model for a variety of
external test sets. By generating new training sets and test
sets, the predictive ability of the GoogLeNet model for
existing compounds and new indications is evaluated. (1)
Randomly select a positive sample (The CDR contains
compound C,, and disease D; ) from the benchmark data set
to the training set. (2) All positive samples including disease
D; were put into the training set. (3) Repeat (1) and (2) until
the number of positive samples in the training set reaches
7500, and 2500 of the remaining positive samples are se-
lected as the test set. (4) Randomly select a negative sample
(The NCDR contains compound C,, and disease D;) from the
benchmark data set to the training set. (5) All negative
samples including disease D; are put into the training set. (6)
Repeat (1) and (2) until the number of negative samples in
the training set reaches 7500, and 2500 of the remaining
negative samples are selected as the test set.

Based on this strategy, it can be ensured that disease
information in the test set does not exist in the training set.
The prediction result is shown in Figure 4.

In the new test set, Acc, Sen, Pre, F-measure, MCC and
AUC are 0.909, 0.923, 0.893, 0.908, 0.819, and 0.929, re-
spectively, which are about 5.312%, 3.452%, 7.461%, 5.417%,
10.978%, and 3.631% lower than the test set of the original
benchmark data set. These results show that even though the
disease in the test set does not exist in the training set, our
method can still obtain high prediction accuracy. The model
has the ability to identify new indications for compounds.

2.3.2. Recognition Ability of Candidate Compound Molecules.
Similarly, by constructing new training sets and test sets, we
further evaluated the performance of the model in identi-
fying relationships between existing diseases and new
compounds. Following the above strategy, it was ensured
that compounds in the test set were not present in the
training set. The predicted results are shown in Figure 5.

In the new test set, Acc, Sen, Pre, F-measure, MCC, and
AUC are 0.932, 0.941, 0.921, 0.931, 0.863, and 0.948, re-
spectively. It is only about 2.917%, 1.569%, 4.560%, 3.021%,
6.196%, and 1.660% lower than the test set of the original
benchmark data set. These results show that the model can
identify candidate compounds with high prediction
accuracy.

2.4. Large-Scale Prediction Results of Heat-Clearing Chinese
Medicine Compounds. There are a total of 124 Chinese
medicines classified as heat-clearing Chinese medicines in
the SymMap database (version 2.0, http://www.symmap.
org/, accessed May 26, 2021), and 2302 compounds of
them are downloaded [29]. Chinese medicine compounds
are annotated in the SymMap database. QC compounds
refer to critical compounds under the quality inspection of
herbs. Blood compounds refer to compounds absorbed into
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FIGURE 4: The prediction results of the GoogLeNet model on the
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FIGURE 5: The prediction results of the GoogLeNet model on the
new test set and the original test set.

the blood and can be detected in the blood. We only select
QC compounds, blood compounds, and compounds with
OB>30% [30-32]. After filtering, 83 Chinese medicines and
437 compounds are retained. Finally, 437 compounds and 40
diseases generated 17480 unknown CDRs. The model pre-
dicted 1624 candidate CDRs. We sort all CDRs in
descending order according to the probability value. Among
them, 1416 CDR probability values are greater than 0.9, and
these compounds may become candidate active compounds
(Table S1).

2.5. Structural Features and ADME Features of Antitumor
Active Compounds. In order to discover the structure and
ADME feature of candidate antitumor compounds, we use
the support vector machine recursive feature elimination
(SVM-RFE) algorithm to calculate the feature importance
scores for their molecular descriptors and ADME descrip-
tors. In the end, we obtained 31 features of antitumor
compounds including 13 ADME features and 18 structure
features. The result is shown in Figure 6 and Table S2.
There are 30 categories of molecular structure features in
the Dragon software, including ring descriptor, topological
index descriptor, geometric descriptor, and pharmacoki-
netic index descriptor. As can be seen in Figure 6(a), the
features with the highest scores are basic descriptors (Mi,
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FIGURE 6: The feature importance score of antitumor compounds based on SVM-RFE. (a) The structure feature importance score of
antitumor compounds, red boxes represent basic descriptors, the blue box represents information indices, the dark green box represents 2D
autocorrelations, the yellow box represents burden eigenvalues, the brown box represents edge adjacency indices, the red-brown box
represents3D-MoRSE descriptors, the green box represents WHIM descriptors, and the sky blue box represents GETAWAY descriptors. (b)
The ADME feature importance score of antitumor compounds, red boxes represent lipophilicity, blue boxes represent physicochemical
properties, the yellow box represents medicinal chemistry, and sky blue boxes represent water solubility.

RBF, nCH2RX, H-047), followed by information indices
(BIC1), 2D autocorrelations (MATS3v), burden eigenvalues
(SpMax1_Bh(m)), edge adjacency indices (SpMA-
D_EA(dm), SpMAD_AEA(dm)), 3D-MoRSE descriptors
(Mor10u, Mor24e, Mor08s), WHIM descriptors(P2v), and
GETAWAY descriptors(HATS6m, HATSv, HATSIs, R4v+,
RTv+).

There are 44 ADME descriptors in the SwissADME
database, including 6 compound-likeness, 6 lipophilicity, 4
medicinal chemistry, 9 pharmacokinetics, 10 physico-
chemical properties, and 9 water solubility. As can be seen in
Figure 6(b), the feature with the highest scores is lip-
ophilicity iILOGP, Consensus Log P, MLOGP, XLOGP3,
WLOGP), followed by physicochemical properties (Fraction
Csp3, X Aromatic heavy atoms, TPSA, MR, MW), medicinal
chemistry (synthetic accessibility), and water solubility (Ali
Log S, ESOL Log S).

3. Discussion

In this study, we used symptom descriptors of diseases and
molecular descriptors of compounds to draw novel two-
dimensional matrix grayscales. The CNN algorithm is used
to build a prediction model to identify candidate CDRs. The
rationality of this method stems from the fact that “structure
determines function” and “symptoms are clinical manifes-
tations of disease” [11]. Therefore, we use molecular de-
scriptors to describe compound structure information and
symptom descriptors to represent the pathological mecha-
nism of the disease. This method provides new insights for
the discovery of candidate active compounds.

In the process of model construction, we first examine
the impact of the sample unbalance problem on model
prediction performance. Because of CDRs that we can ac-
tually obtain, negative samples are far more than positive
samples. When the positive and negative sample ratios were
setto 1:1,1:2,1:3, 1:4, and 1:5, the values of Pre, Sen,

F-measure, and MCC all dropped significantly. However,
Acchas not changed much. This is because Acc considers the
combined results of positive and negative samples. When
there are too many negative samples in the training set, the
value of Acc is mainly determined by the negative samples.
Since the training set provides more negative sample in-
formation, it will also increase the accuracy of the model in
identifying negative samples. Therefore, Acc has not
changed much with the increase in the ratio. In addition, we
have also noticed that in the current model, when the
number of positive and negative samples was changed, the
AUC did not decrease significantly.

After that, we compared the prediction results of the
AlexNet model and the GoogLeNet model for CDRs. In the
same test set, the GoogLeNet model is more suitable for our
experimental data. Therefore, we identified the predictive
ability of the GoogLeNet model on the external test set.
Discovering new indications for compounds can greatly
reduce the time and money invested in drug development, so
many researchers have turned their attention to “new use of
old compounds.” We added new diseases to the test set, and
the model can still obtain a high prediction accuracy. This
indicates that the model has the ability to identify new
indications for existing compounds. Researchers usually pay
more attention to which compounds may become candidate
lead compounds, which is a key step in the design and
optimization of new drugs. We added new compounds to
the test set. The results show that the model has the ability to
identify candidate active compounds.

Some previous reports can be used to verify our pre-
diction results. In CDRs predicted by the model, the anti-
tumor effects of some compounds have been reported. For
example, the model predicts that eugenol, eucalyptol,
eupatorin, shikonin, jatrorrhizine, and isovitexin have
candidate antitumor activities. Studies have shown that
eugenol can produce anticancer effects by blocking the cell
cycle, inducing cell death, and inhibiting tumor cell
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metastasis. [33-35]. In addition, eugenol can reduce the
toxicity of chemotherapy and improve its efficacy and can be
used as an adjuvant drug for chemotherapy. [36]. Eugenol
inhibits tumor migration and invasion by regulating the
PI3K/Akt/mTOR pathway [37]. A pharmacological study
showed that eupatorin (20 mg/kg) was able to reduce tumor
lung metastases compared to untreated mice. [38]. The study
found that shikonin can significantly inhibit the prolifera-
tion of hepatoma cells (HepG2, BEL7402, and Huh?7).
However, it has no obvious inhibitory effect on normal
human hepatocytes cells (L02) and human embryonic
kidney cells (HEK293T), suggesting that shikonin can se-
lectively kill tumor cells [39]. The inhibition of tumor cell
proliferation by shikonin is closely related to its inhibition of
the cell cycle. Studies have found that shikonin can arrest
gastric cancer cells (AGS) in the G2/M phase, hepatoma cells
(HepG2) in the S phase, and colon cancer cells (HCT116 and
SW480) in the G1 phase. Shikonin arrests the cycle of tumor
cells by regulating the expression of cycle-related proteins,
such as cyclin A, cyclin B, CDK1, and CDK2 [40]. Jatror-
rhizine can reduce f-catenin and increase GSK-3f expres-
sion thereby inhibiting the epithelial-mesenchymal
transition of cells. A pharmacological study showed that
jatrorrhizine can induce tumor cell apoptosis and inhibit
tumor growth and metastasis in the HCT-116 nude mouse
xenograft model [41]. Isovitexin induces tumor cell apo-
ptosis and inhibits colon cancer cell growth through PI3K/
Akt/mTOR signaling pathway [42]. There are also some
candidate antitumor compounds predicted by models that
have not been found to have relevant efficacy in previous
studies. For example, yadanzioside B, beta-hydrox-
ypropiovanillone, dihydrokaempferide, precatorine, and so
on. They may become candidates for future compound
design directions.

Traditional compound efficacy prediction models are
usually based on a single type of compounds or a single
target, which is difficult to use for large-scale compound-
disease relationship prediction. When new compounds or
new indications appear, traditional compound efficacy
prediction models will be unsatisfactory [26]. In this study,
based on the GoogLeNet algorithm, a CDRs prediction
model was constructed for more than 4000 compounds in
the CTD database and the Drugbank database. Taking heat-
clearing Chinese medicine as an example, we apply the
model to the large-scale prediction of compounds’ efficacy.
The model can obtain large quantities of compound-disease
relationship data through one calculation. It provides a data
foundation for the construction of a big data platform for
traditional Chinese medicine and also provides technical
support for the mechanism study of multicompounds-
multitargets of traditional Chinese medicine.

This research has certain limitations. For example, we
only selected 40 common clinical diseases as the research
objects. In fact, the classification of commonly clinical
diseases and the use of compounds are more abundant and
diversified. We have only made a methodological attempt in
this research. In future research, we will expand the
benchmark data set and refine the disease classification. In
addition, when predicting diseases related to Chinese

medicine compounds, we only used QC compounds, blood
compounds, and compounds with OB>30%. In fact, it is still
a huge challenge to study how Chinese medicine compounds
enter the body to be absorbed and metabolized [43]. With
the establishment of more traditional Chinese medicine
compounds databases and the identification of blood
compounds, the number of compounds predicted by the
model will also increase. There will also be more potential
active compounds of traditional Chinese medicine to be
screened for the design of new drugs. Finally, the candidate
active compounds predicted by the model still need to be
confirmed in future studies.

4. Materials and Methods

4.1. Collection of Compound-Disease Relationship Data.
The human CDR was downloaded from the CTD database
and Drugbank database. We only used compounds with
“direct evidence (marker/mechanism/treatment)” annota-
tion, which indicates the accurate relationship between
disease and compounds [11].

For compounds, we calculated their 5270 structure
descriptors through the Dragon 7 software (Talete Srl,
Milano, Italy). It can obtain chemical structure information
including atom type, functional group, number of frag-
ments, topology, and geometric descriptors [44]. Therefore,
each compound can be described by a 5270-dimensional
feature vector.

For diseases, we retrieved the symptom data of 40 dis-
eases from the human symptom-disease network. The study
is based on the cooccurrence of diseases and symptoms in
the PubMed database to obtain the relationship between
them. All diseases can be represented by 322 symptom
descriptors [14]. Therefore, each disease can be described by
a 322-dimensional feature vector. The molecular descriptor
and symptom descriptor are normalized separately.

4.2. Plotting of Grayscale Map of Compound-Disease Rela-
tionship Matrix. Each CDR is mapped into a two-dimen-
sional matrix. Then, they are converted into grayscale images
in order to train the CNN model. First, standardize the color
block range of the grayscale image to 0-255. Then, for each
CDR, we use the disease feature as the row and the com-
pound feature as the column and calculate the average of the
sums of each row and corresponding column. Finally, a two-
dimensional relationship matrix of diseases and compounds
of size 5270 x 322 can be obtained. That is, the disease is
represented by the feature vector Vp = [al, a2, ..., a322]. For
the compound, its characteristic vector is Vo =[b1, b2, ...,
b5270]. For a CDR, it is represented by a matrix M, where the
elements in the j-th row and the i-th column are (aj + bi)/2.
The matrix M is converted into a grayscale image by
MATLAB 2019a software (Mathworks, Natick, MA) to
represent a CDR.

S :@ (1)
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FiGure 7: The network structure of the AlexNet model.

4.3. Construction of GoogLeNet Model and AlexNet Model.
The purpose of the model is to judge the yes or no of each
CDR, which is a binary classification problem. The AlexNet
model is divided into eight layers. After five layers of
convolution operations, it is connected to three layers of
fully connected layers. Compared with the traditional CNN
model, the AlexNet model has a deep network structure and
many parameters and has stronger feature expression ca-
pabilities. It uses RELU as the activation function, which
improves the computational efficiency of the network. The
network structure is shown in Figure 7 (Table S3) [45]. The
GoogLeNet model is a deep CNN model. The structure of the
model is shown in Figure 8 (Table S4). It reduces the number
of parameters and improves computational efficiency by
using the inception module [46]. The momentum of the
model stochastic gradient descent optimizer is set to 0.9 and
the learning rate is set to 0.0001. The maximum number of
training epochs was set to 20 epochs with 290 iterations per
epoch, using a small batch of 20 observations in each it-
eration. All other parameters use default values. The pro-
gram is executed based on MATLAB 2019a software.

TP+TN
Acc = il , (2)
TP+TN + FP+FN
TP
Pre=——, 3
TP+ FP 3
TP
Sen = ——, 4
TPy EN )
2TP
F—measure= ————————, (5)
2TP + FP + FN
TPxTN - FP x FN
MCC x x 6)

"~ J(TP+FP)(IP + FN)(IN + FN)

We tested the GoogLeNet model and the AlexNet model
using the same benchmark dataset. 20000 samples were
randomly drawn from the benchmark dataset, with the same
number of positive and negative samples. We select 75% of

them to generate the training set and the remaining 25% to
generate the test set. Accuracy (Acc), sensitivity (Sen),
precision (Pre), Matthews correlation coefficient (MCC),
F-measure, and AUC are commonly used evaluation indi-
cators in binary classification models. The calculation results
of the above evaluation indicators were used to select the
CNN model suitable for this study.

Here, true positives (TPs) represent the number of
samples that were predicted to be positive and were actually
positive. False positives (FP) represent the number of
samples that were predicted to be positive and were actually
negative. True negatives (TNs) represent the number of
samples predicted to be negative and actually negative. False
negatives (FNs) represent the number of samples predicted
to be negative and actually positive.

4.4. The Large-Scale Prediction of Heat-Clearing Chinese
Medicine Compounds. The trained GoogLeNet model was
applied to the large-scale prediction of heat-clearing Chinese
medicines compounds. The GoogLeNet model attempts to
discover candidate indications for their compounds. In
order to generate unknown CDRs, we (1) downloaded the
3D structure of the heat-clearing Chinese medicine com-
pounds from the SymMap datasets, (2) only select the
compounds marked as QC compounds, blood compounds,
and OB>30% in the database (Table S5), and (3) randomly
combine compounds with 40 diseases. Follow steps 4.1 and
4.2 to generate grayscale images of CDRs. They are input into
the trained model to predict the relationship between
compounds and diseases.

4.5. Structural Features and ADME Features’ Extraction of
Antitumor Compounds Based on SVM-RFE Algorithm.
The predicted CDRs were used to extract the structural
features and ADME features of the candidate antitumor
compounds. We enter the SMILES of antitumor compounds
into the SwissADME database and can obtain 44 ADME
descriptors  (version 1.0, http://www.swissadme.ch/,
accessed August 16, 2021) [47]. We employ the SVM-RFE
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algorithm to calculate feature importance scores for anti-
tumor compounds. The SVM-RFE algorithm is a selection
algorithm for sorting all features based on the SVM model. It
uses w” to represent the importance of features as the basis
for feature ranking. The algorithm starts with all features and
then removes one feature with the smallest w” at a time until
the feature set is empty. The program is implemented based
on R 4.0.2 software (https://www.r-project.org/). Each fea-
ture importance score F; can be expressed as

F;=uw}. (7)

Here, w is the feature weight vector of the SVM model; w;
is the weight of the i-th dimension feature [48].
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