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Purpose: To use a deep learning model to develop a fully automated method (fully
semantic network and graph search [FS-GS]) of retinal segmentation for optical coher-
ence tomography (OCT) images from patients with Stargardt disease.

Methods: Eighty-seven manually segmented (ground truth) OCT volume scan sets
(5171 B-scans) from 22 patients with Stargardt disease were used for training, validation
and testing of a novel retinal boundary detection approach (FS-GS) that combines a fully
semantic deep learning segmentationmethod,whichgenerates a per-pixel class predic-
tionmapwith a graph-searchmethod to extract retinal boundary positions. The perfor-
mance was evaluated using the mean absolute boundary error and the differences in
two clinical metrics (retinal thickness and volume) comparedwith the ground truth. The
performance of a separate deep learning method and two publicly available software
algorithms were also evaluated against the ground truth.

Results: FS-GS showed an excellent agreement with the ground truth, with a bound-
ary mean absolute error of 0.23 and 1.12 pixels for the internal limiting membrane and
the base of retinal pigment epithelium or Bruch’s membrane, respectively. The mean
difference in thickness and volume across the central 6 mm zone were 2.10 μm and
0.059 mm3. The performance of the proposed method was more accurate and consis-
tent than the publicly available OCTExplorer and AURA tools.

Conclusions: The FS-GS method delivers good performance in segmentation of OCT
images of pathologic retina in Stargardt disease.

TranslationalRelevance:Deep learningmodels canprovide a robustmethod for retinal
segmentation and support a high-throughput analysis pipeline for measuring retinal
thickness and volume in Stargardt disease.

Copyright 2020 The Authors
tvst.arvojournals.org | ISSN: 2164-2591 1

This work is licensed under a Creative Commons Attribution 4.0 International License.

mailto:d.alonsocaneiro@qut.edu.au
https://doi.org/10.1167/tvst.9.11.12
http://creativecommons.org/licenses/by/4.0/


Deep Learning Segmentation in Stargardt OCT Images TVST | October 2020 | Vol. 9 | No. 11 | Article 12 | 2

Introduction

Retinal degeneration owing to inherited or age-
related diseases is the most common cause of visual
loss in the Western countries.1,2 The advent of optical
coherence tomography (OCT) has provided a unique
opportunity for detailed monitoring of the slow rate
of retinal cell loss through measurements of retinal
thicknesses in repeated volume scans over time. The
accuracy of this measurement depends on the precise
segmentation of the inner and outer retinal layer
boundaries in large numbers of closely spaced slices
from a set of OCT volume scans. Although most OCT
clinical instruments can provide accurate segmenta-
tion of retinal layers in OCT images of healthy eyes,
pathologic changes associated with retinal degenera-
tion often lead to segmentation errors that require
a significantly increased amount of time for manual
correction.3–5 In addition to the impracticality of this
manual approach in a busy clinical practice, interob-
server variability and human error6 arising from grader
inexperience also pose significant limitations. There-
fore, there is an unmet clinical need to improve current
OCT segmentation algorithms for each type of retinal
pathology to allow accurate monitoring of the rate of
retinal degeneration in this era of increasing therapeu-
tic options to arrest disease progression.7,8

An increasing number of studies have reported
semiautomated or fully automated segmentation
methods with the goal of improving the accuracy,
consistency and speed of segmentation in diseased
retina to replace the need for manual correction. Early
versions of these methods were built around standard
image processing techniques and algorithms.9–14 More
recently, machine learning and deep learning methods
have been used, including support vectormachines,15,16
random forest classifiers,17 patch-based classification
with convolutional neural networks18–22 or recurrent
neural networks,20,22 semantic segmentation with fully
convolutional (encoder–decoder) networks,22–26 and
other deep learning methods.27–30 Importantly, some
of these methods have been applied to OCT images
from patients with age-related macular degenera-
tion,18,20,24,27 diabetic retinopathy,11,25 macular telang-
iectasia type 2,29 diabetic macular oedema,13,23,24
pigment epithelium detachment,28 glaucoma,15,30
multiple sclerosis 17,26 retinitis pigmentosa,31 and
neurodegenerative diseases.32 These diseases are
characterized by variable thinning of the inner retinal
layers (e.g., glaucoma and multiple sclerosis), thicken-
ing or cystic changes in the nuclear layers (e.g., macular
telangiectasia type 2 and diabetic retinopathy) or focal
disruption of the retinal pigment epithelium (RPE, e.g.,

age-related macular degeneration, macular telangiec-
tasia, and pigment epithelium detachment). However,
OCT segmentation algorithms have not been investi-
gated in Stargardt disease despite its unique lesions,
including outer retinal or subretinal flecks,33 outer
retinal atrophy with or without RPE loss, and variable
loss of choroidal architecture disrupting the Bruch’s
membrane contour,34–36 which provide challenges
for commercial segmentation software. Kong et al.37
assessed the reproducibility of OCT retinal struc-
ture parameter measurements and noted that the
complex morphology of Stargardt disease made the
segmentation challenging. Strauss et al.38 showed that
monitoring the decrease in retinal volume for Stargardt
disease is possible, but stressed the need to manually
correct segmentation errors in more than one-third of
the OCT slices. To overcome the deficiency in commer-
cial software and the need for time-consuming manual
segmentation, Velaga et al.39 described an “adaptive”
method in which thickness measurement was calcu-
lated based on only a subset (minimum of 25 slices) of
the entire OCT volume scans (49 in total) chosen by
the grader to decrease the need to manually segment
all OCT scans acquired. However, this approach does
not address the fundamental problem of poor segmen-
tation performance in Stargardt disease. Therefore,
there is an opportunity to apply machine learning to
address this clinical need. Currently, the only applica-
tion of machine learning to Stargardt disease image
analysis is limited to cone detection in adaptive optics
scanning light ophthalmoscope split-detection images,
as described by Davidson et al.40

In this study, we used OCT images from patients
with Stargardt disease to develop and demonstrate
the use of an automated machine learning–based
method to segment retinal layers. We evaluated the
performance of this method by calculating the error in
retinal boundary position compared with the ground
truth, existing retinal segmentation tools as well as a
patch-based machine learning method. The differences
in retina thickness and volume from the ground truth
were also analyzed and compared with the repeatability
of manual segmentation in OCT images with similar
RPE loss.

Methods

Patient and Image Data

The data consists of a range of spectral domain
OCT (SD-OCT) scans from patients with various
stages of Stargardt disease. Approval to identify and
use SD-OCT images from patients with genetically
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confirmed Stargardt disease for developing segmenta-
tion methods was obtained from the Human Ethics
Office of Research Enterprise, The University of
Western Australia (RA/4/1/8932 and RA/4/1/7916)
and the Human Research Ethics Committee, Sir
Charles Gairdner Hospital (2001-053). A diagno-
sis of Stargardt disease was made based on clini-
cal assessment by an ophthalmologist specializing
in inherited retinal diseases (FKC) supported by
characteristic multimodal retinal imaging features and
genetic confirmation of biallelic mutation in the
ABCA4 gene (Australian Inherited Retinal Disease
Registry).

All patients underwent SD-OCT scans using the
Spectralis OCT+HRA device (Heidelberg Engineer-
ing, Heidelberg, Germany). The OCT scanning proto-
col consisted of 61 raster lines covering an area of
30° × 25° (8.8 mm horizontally × 7.2 mm verti-
cally) of the macula, with 119 μm separation between
each line scan. The wide scan area coverage ensures
no truncation or missing B-scan within the central
6 mm diameter zone. The automated real-time
algorithm was used to enhance the definition of
each B-scan by averaging nine OCT images. Scans
were taken in high-resolution mode, unless it was
determined necessary to use high-speed mode owing
to poor fixation (any low-resolution scan was resized
to match the resolution of the dataset). Care was
taken to ensure that the scanned area was centered
at the fovea even if the preferred retinal locus was
eccentric. All scans were taken by a trained retinal
imaging technician. For each patient, scans were
acquired in both eyes, across a number of visits,
over several years. However, these visits were not
spaced regularly and the quantity and spacing of
visits for all participants were not necessarily the
same.

Total retinal thickness, defined as the axial
distance41 from the base of the RPE or the Bruch’s
membrane if RPE was absent, to the internal limiting
membrane (ILM), provides an indirect measure of the
number of neuronal, glial, and RPE cells in the retina.
The summation of this value within the central 6 mm
diameter zone of the retina (macular volume) has
been proposed as a useful clinical metric in tracking
disease progression.38 Automated segmentation of
these inner and outer boundaries of the retina, in all
61 B-scans of each eye were examined and adjusted
manually in the HEYEX software (HEYEX-XML,
Heidelberg, Germany) by a team of image graders
(coauthors YC, SA, NV, and DH) trained by the
senior author (FKC). Accuracy of manual segmenta-
tion by these graders were independently verified by
the senior author. Most of the segmentation errors

were located in regions of RPE loss, because the
HEYEX software cannot reliably identify the Bruch’s
membrane in the absence of an RPE layer. The errors
were particularly prominent if there was concomi-
tant choroidal atrophy resulting in Bruch’s membrane
discontinuity.

A total of 177 OCT volume scan sets from
44 eyes of 22 Stargardt patients were exported via the
XML software provided by Heidelberg Engineering
(HEYEX-XML). Each scan is grayscale and measures
1536 pixels wide × 496 pixels deep with a transversal
resolution 5.7 μm per pixel wide, and axial resolution
of 3.9 μm per pixel deep, yielding approximate physical
dimensions of 8.8 × 1.9 mm per scan. Examples of a
typical OCT scan in Stargardt disease, its automated
segmentation and adjusted manual segmentation are
shown in Figure 1.

For the purposes of this study, each volume scan set
was marked as “usable” based on an inspection of the
images and boundary truths. For training purposes and
for evaluating boundary error performance, a subset
of this usable data was used, including four volumes
(the two baseline and latest two follow-up volumes)
for each participant (where possible) in an effort to
maximize the diversity in the data (image change in
the OCT features) as a result of disease progression.
The decision to use an equal number of volumes for
each participant was taken so that a balanced training
dataset could be constructed without bias toward any
particular participant. This subset of data was subse-
quently cleaned using custom software by manually
marking a start and an end point inside of which
to retain the original image pixels and the provided
boundary positions. Outside of this range, the image
pixels were zeroed and cropped and the boundary
positions were repeated and flattened to the edges of
the image. This cleaning and cropping was performed
owing to the small region of invalid segmentations
of partially truncated images that were commonly
present at the lateral extremities of the OCT images.
These cleaned data helped to facilitate the training
process both so that the method would not learn in
an erroneous fashion and so that it may be tested in
a fair manner when comparing boundary errors across
the entire scan width. During this cleaning process, a
small percentage of images (approximately 2.3%) were
discarded owing to severe image truncation precluding
retinal layer segmentations. For the analysis of thick-
ness and volume metrics, volume data for all tested
participants were used.Note that each of these datasets
was not cleaned before running this part of the analy-
sis. This information included a total of 7845 images
from 129 volumes, with a variable number of volumes
per participant.
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Figure 1. Overview of the proposed method, including (1) an example raw OCT image, (2) corresponding contrast enhanced image, (3)
neural network architecture with 4 pooling layers incorporating squeeze and excite blocks, (4) example layer probability map (pink, vitreous
+ padding; blue, retina; red, choroid + sclera) and, (5) example of OCT image with boundary predictions marked (solid lines, truths; dotted
lines, predictions; blue lines, ILM; red lines, RPE). For the neural network architecture, #F, filters, #S, stride, BR, batch normalization + ReLU
activation, while all convolutional layer inputs are padded such that input size is equal to output size.

Training, Validation, and Testing Sets

Patient images were divided into training
(10 subjects), validation (2 subjects) and testing
(10 subjects) cohorts with each patient’s images used
only for one of the three purposes. Early and late
disease processes were equally represented in each
cohort by (1) calculating the macular volume using
the baseline (earliest) scan set, (2) using the median
macular volume as a threshold to separate participants
into a high- and a low-volume group, and (3) assigning
an equal number of each type of patient into the three
cohorts. A total of 10 participants (40 volumes) were
used for training, 2 participants (8 volumes) were used
for validation and 10 participants (39 volumes, with
1 participant only possessing 3 volumes) were used for
testing. Note that an individual participant’s volumes
were used only for training or only for testing, not
both. Volumes for an individual participant were not
split across the different sets. This cohorting was done
to avoid bias in the performance and to obtain the
most accurate possible representation of the method’s

generalizability to new unseen participants. A k-fold
approach is used for the training and validation sets
with 6 folds used. For each fold, the training set is
constructed to contain 10 participants (5 low and
5 high macular volume scan sets), with the validation
set containing 2 participants (1 low and 1 high macular
volume scan sets). In this way, OCT volume scan sets
from all participants were used at least once within the
validation set and the balance of low and high macular
volume participants is retained for each set, within
each fold. A summary of the data split is given in
Table 1.

Preprocessing and Augmentation

The effect of image processing is considered in this
study for its effect on performance. Here, a contrast
enhancement method proposed by Girard et al.42 was
examined with emphasis placed on the RPE bound-
ary or Bruch’s membrane. This approach is similar
to previous studies that have reported related segmen-
tation performance improvements using a similar
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Table 1. Summary of Training, Validation, and Testing Sets Used

Set No. of Images† No. of Participants No. of Volumes

Training 2424–2429 10 40
Validation 483–488 2 8
Testing (subset, all) 2259 (7845) 10 39 (129)
Total (subset, all) 5171 (10,762) 22 87 (177)

†The number of images for training and validation varies very slightly between folds owing to the handful of truncated
scans that were discarded. For evaluating boundary error performance, the subset of cleaned test data is used (2259 images),
whereas all testing data (uncleaned) is used for volume and thickness calculations (7845 images).

technique.20,22 An example of the application of the
Girard filter is shown in Figure 1. To boost the diversity
within the dataset, data augmentation methods were
also used. To achieve this, when a sample is presented
to the network it is either (each has a 25% chance):

• Unchanged (original image)
• Flipped (left to right/right to left)
• Noisy (Gaussian noise added to each pixel)
• Flipped and noisy

Left–right flips were used because it emulates the
conversion of an OCT image from left eye to right and
vice versa, and noise was added as a form of regular-
ization and to encourage the methods robustness to
varying image quality.43 Gaussian noise is added using
a variance randomly selected between 250 and 1000,
each time a sample is presented. To support all tested
neural network architectures, 16 pixels of zero padding
were applied to the top of each image.

Network Architecture and Training

A neural network is used here as the core of
the machine learning method. To identify the retinal
boundary positions, this network is trained for seman-
tic segmentation to distinguish the three regions
separated by these boundaries: the vitreous, the retina,
and the sclera. The architecture of this network is
inspired by the U-Net,44 which is commonly used as
the basis for semantic segmentation networks. We have
developed this fully semantic network and graph search
(FS-GS) in our previous work and have previously
demonstrated its application to retinal and choroidal
segmentation in images with no pathologic changes.22
Additionally, we have highlighted the ability of train-
ing such a network to be noise resilient when provided
with OCT images of poor quality.43 As was the case
in our previous studies, eight filters were used in the
initial set of convolution blocks with this doubled
after each subsequent pooling layer. Each layer consists

of three convolutional blocks with a residual connec-
tion added between the first and last convolutional
blocks by adding their outputs. A 50% dropout is
used at the bottleneck for regularization. The Adam
optimizer,45 with default parameters was used to train
the network for 100 epochs by minimizing Dice loss.
Afterward, the model with best validation accuracy
(highest Dice overlap) was chosen for evaluation. A
batch size of three was used for training with all
samples randomly shuffled in each epoch. To facilitate
implementation of the method a copy of the source
code can be found online (https://github.com/jakugel/
oct-stargardtretina-seg).

We explore two extensions to the network architec-
ture: (1) varying the number of pooling layers between
four and five and (2) incorporating squeeze and excita-
tion blocks.46,47 The motivation for using an additional
pooling layer is that there is a greater amount of
context available to the network. Indeed, the effec-
tive receptive field size of a four-layer variant of our
network is 202 × 202, which is increased to 410 ×
410 by using an additional pooling layer. Note that
we compute these effective receptive field sizes using
the general formula provided by Venhuizen et al.24 The
advantage of additional context is that feature extrac-
tion may be performed on a more global level.

The idea of the second proposed extension, using
squeeze and excitation blocks, is to increase the repre-
sentational power of the network. First, we provide
some background on the concepts of feature maps
and the terms “spatial” and “channel.” Put simply, the
feature maps contain information (or features) learnt
by the network. For an OCT image, this information
(these features) might include (but is not limited to)
layer boundaries, layer areas, artifacts, speckle noise,
blood vessel shadows, or other structures. Each feature
map may contain a different subset of features. We also
define the term “spatial” here to refer to the spatial
dimensions (i.e., width and height) of each feature
map and using the term “channel” to refer to an
individual feature map. Squeeze and excitation blocks

https://github.com/jakugel/oct-stargardtretina-seg
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operate by reweighting the importance of the feature
maps (at any given layer output in the network) to
place more emphasis on (1) the more important and
relevant feature maps (channels) and/or (2) the more
important and relevant spatial locations within the
feature maps. We provide some examples. In the first
case, feature maps that contain information related to
the layer positions are likely to be more relevant and
important for this segmentation problem and could be
weighted higher. Similarly in the second case, spatial
locations in the feature maps that correspond with
transitions between layers (the boundaries) are particu-
larly relevant for this segmentation problem and could
also be weighted higher. By placing such blocks at the
output of each level of the network, the learned feature
maps are dynamically recalibrated both spatially and
channel-wise, producing a set of reweighted feature
maps that are likely to be more meaningful for this
particular application and thus may help to improve
segmentation performance. There are three variants of
these blocks and, in our network, we use the concur-
rent spatial and channel squeeze and excitation block
variant. Further details about the concurrent spatial
and channel squeeze and excitation block as well as the
other two block variants are provided in Supplemen-
tary Figure S1 and the accompanying text.

Rather than using a single training and validation
set, the six folds may be used to each separately train
a network to be evaluated on an identical testing set.
Here, two methods were used:

1) Average the boundary errors for the six networks
(average); and

2) Majority vote on each boundary probabil-
ity map with subsequent boundary delineation
performed on the single map (ensemble).

Owing to inherent randomness in the initial weights
of the neural networks, as well as the order of presen-
tation of samples from shuffling, each experiment was
performed five times with the results averaged.

Boundary Delineation and Graph Search

The GS method used for boundary delineation
is similar to that used in a number of previous
studies.12,18–20,22 Using a trained network, layer proba-
bility maps for test images may be obtained. To obtain
boundary probability maps, edge detection is then
performed with a boundary probability map formed
for each boundary. An acyclic directed graph is then
constructed with each pixel corresponding to a vertex.
All vertices are connected left to right to their three
rightmost immediate neighbors (horizontally, diago-

nally up, and diagonally down). The weights of the
edges are computed using the following formula:

wsd = 2 − (ps + pd )

where ps and pd are the probabilities of the source and
destination vertices respectively.UsingDijkstra’s short-
est path algorithm, a graph search is then performed to
find the shortest path of the graph using predetermined
image locations, the start (top left corner) and the end
(bottom right corner). This shortest path corresponds
with the predicted boundary location. To gauge perfor-
mance, the predicted boundary location is compared
with the ground truth, with the mean absolute error
(MAE) and mean error in pixels computed.

Comparison of Methods

There has been a vast array of previous methods
proposed for retinal segmentation, so the useful-
ness of the proposed method should be validated by
comparing with these where possible. Here, three other
methods are considered. The first is a patch-based
machine learning method.18–20,21,22 For this, we use
the Cifar CNN architecture and a set of patch classes
(single background) proposed by Fang et al.18 and a
graph search method and 64 × 32 patch size used
by Kugelman et al.20 Here, patches are constructed
using the same set of images as the proposed method,
with one patch for each class sampled from every
column where segmentations are present. The other
two methods for comparison, not based on machine
learning, are publicly available tools including the
OCTExplorer tool (part of the IOWA Reference
Algorithms [Retinal Image Analysis Lab, Iowa Insti-
tute for Biomedical Imaging, Iowa City, IA]),14,48,49
and the AURA tool for retinal layer segmentation.17

Results

For the proposed semantic segmentation and graph
search method, denoted FS-GS, five variants of the
overall model are considered, including the effect of
contrast enhancement, number of pooling layers, use
of squeeze and excitation blocks, andwhether augmen-
tations were used. Each method was run five times
for each of six folds with the trained networks evalu-
ated by calculating the MAE and mean error for each
boundary. The mean results across the five runs for
both the average fold performance and the ensem-
ble performance are summarized in Table 2 (MAE)
and Table 3 (mean error). The Dice overlap (percent)
for eachmethod, for the network predictions (pregraph
search) were also computed for both the retina as
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Table 2. Boundary MAE Results for Inner and Outer Retinal Boundaries

Average Ensemble

Method ILMMAE (SD) [px] RPE MAE (SD) [px] ILM MAE (SD) [px] RPE MAE (SD) [px]

ON 4 0.32 (0.68) 1.37 (2.42) 0.23 (0.20) 1.22 (1.74)
OFF 4 0.36 (1.10) 1.47 (3.03) 0.25 (0.45) 1.37 (2.54)
ON 5 0.32 (0.81) 1.39 (2.96) 0.23 (0.30) 1.25 (2.28)
ON 4 scSE 0.35 (1.28) 1.31 (2.15) 0.23 (0.23) 1.12 (1.41)
ON 4 scSE NA 0.34 (0.88) 1.41 (2.50) 0.22 (0.24) 1.17 (1.60)

Each method was run five times with the average error and standard deviation across the five runs presented here. 4/5,
number of pooling layers used;NA, no augmentationswereused;ON/OFF,whether contrast enhancementwasused; px, pixels;
scSE, squeeze + excitation blocks were incorporated.

Table 3. Boundary Mean Error Results for Inner and Outer Retinal Boundaries

Average Ensemble

Method ILMME (SD) [px] RPE ME (SD) [px] ILM ME (SD) [px] RPE ME (SD) [px]

ON 4 0.02 (1.32) 0.15 (2.15) –0.02 (0.20) 0.14 (1.79)
OFF 4 0.14 (1.08) 0.24 (2.84) 0.05 (0.51) 0.18 (2.96)
ON 5 0.05 (0.79) 0.23 (2.82) –0.02 (0.32) 0.21 (2.62)
ON 4 scSE 0.01 (1.26) 0.15 (2.16) –0.02 (0.20) 0.17 (1.46)
ON 4 scSE NA 0.09 (0.86) 0.16 (2.51) –0.01 (0.22) 0.10 (1.61)

Eachmethod was run five times with the average error and standard deviation across the five runs presented here. Positive
values indicate that predictions are lower on the image than the corresponding truths. 4/5, number of pooling layers used;
ME,mean error; NA, no augmentationswere used; ON/OFF, whether contrast enhancementwas used; px, pixels; scSE, squeeze
+ excitation blocks were incorporated.

Table 4. Comparison of Various Methods with the Best Performing Semantic Segmentation Method

Method ILMMAE (SD) [px] RPE MAE (SD) [px]

FS-GS [Semantic ON 4 scSE] (ensemble) 0.23 (0.23) 1.12 (1.41)
Patch-based 64 × 32 (ensemble) 0.26 (0.17) 1.15 (1.13)
OCTExplorerˆ [54] 1.32 (1.41) 4.95 (5.33)
AURA* [20] 1.26 (0.92) 7.17 (6.87)
Spectralis (automatic) 1.07 (1.63) 6.50 (3.27)

*Some volume segmentations failed (18% of all testing volumes) and could not be included in error calculations.
ˆSections of some scans (1.7% of compared columns) returned undefined segmentations. px, pixels; scSE, squeeze+ excita-

tion blocks were incorporated.

well as the overall value. These values are provided in
Supplementary Table S1.

We also compare the best performing method
to a range of other approaches with the bound-
ary error (MAE) results summarized in Table 4.
For further reference, the Spectralis segmentation
algorithm (Heidelberg Eye Explorer version 1.9.14.0) is
also evaluated against the ground truth corrected data.
For these, we note that some methods failed to provide
segmentations for part or whole of some scans and
volumes. Because of this, these parts are not included
in error calculations for those individual methods. In

particular, AURA failed to segment 7 of 39 (18%) of
the testing volumes, and OCTExplorer returned no
predictions for approximately 1.7% of the total image
columns used for comparison. Figure 2 provides some
example segmentations for both the proposed method
and OCTExplorer for a variety of scans. Supplemen-
tary Figures S2 and S3 provide the same comparison
with the AURA method and the patch-based machine
learning method respectively.

We also quantify the error (mean absolute differ-
ence) for both thickness and volume for all nine Early
Treatment of Diabetic Retinopathy Study subfields
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Figure 2. Example segmentations of Stargardt OCT images from
FS-GS (the proposed ML-based semantic segmentation) method
(left) and those provided by OCTExplorer (right). Blue, ILM; Red,
RPE/Bruch’s membrane. Solid lines indicate the ground truth bound-
ary locations and the dotted lines correspond with the predicted
locations.

across the central 6-mm diameter in all testing volumes.
This included all 129 volume scan sets from the
testing participants. The mean absolute differences
between the retinal thickness and volumes generated
by FS-GS and the ground truth were 2.10 μm and
0.059 mm3, respectively. The detailed results of the
analysis for each subfield are summarized in Figure 3
(subplots A and B, respectively). A Bland–Altman
analysis was undertaken with respect to both thick-
ness and volume for each subfield as well as for the
total thickness and total volume across the central
6-mm diameter zone. For the total thickness, the mean
difference between FS-GS and the ground truth was
−0.55 μm with limits of agreement of −7.66 μm and
+6.56 μm. For the total volume, the mean differ-
ence was −0.0156 mm3 with limits of agreement of
−0.2166mm3 and+0.1855mm3. The respective results
for each subfield are summarized in Figure 3 (subplots
C andD respectively). Bland–Altman plots for the total
central 6-mm diameter zone thickness and volume are
provided in Supplementary Figure S4.

Discussion

In this study, we have developed and evaluated a
fully automated method (FS-GS) to segment the inner

and outer retinal boundaries in OCT images from
patients with Stargardt disease. We have performed
a number of experiments to further develop and
optimize the neural network architecture and machine
learning ensemble processes used as the basis for
FS-GS. Compared with existing, publicly available
segmentation software, FS-GS performs favorably
with a significant improvement in boundary delin-
eation accuracy and a greater level of consistency.
Critically, from a clinical point of view, there is a
high level of agreement between FS-GS and the
ground truth supported by the negligible differences
in mean retinal thickness and total macular volume
across all Early Treatment of Diabetic Retinopa-
thy Study subfields in the central 6 mm diameter
zone.

Our experiment illustrates several key ingredients
of success in our proposed automated segmenta-
tion method (FS-GS). First, the use of contrast
enhancement as a preprocessing step seems to improve
the segmentation performance, particularly on the
RPE/Bruch’s membrane boundary, with a significant
decrease in the standard deviation of the error. Impor-
tantly, the enhanced performance at the outer bound-
ary does not seem to compromise the accuracy of
the segmentation at the ILM boundary. Second, the
use of an additional pooling layer in the case of five
pooling layers does not appear to have a large effect
on performance. Therefore, it is likely that additional
context is not needed in the form of a larger effec-
tive receptive field (410 × 410 pixels) than what is
already provided by the four-layer network variant
(202 × 202 pixels). Third, unlike results from other
studies,46,47 adding squeeze plus excitation blocks did
seem to only slightly improve the segmentation perfor-
mance for the RPE/Bruch’s membrane boundary, with
a decrease of 0.10 pixels evident when comparing the
respective ensemble models. Fourth, ensembling itself
had a noticeable positive impact. In all cases, ensem-
bling led to a lower mean and standard deviation
in all boundary errors. Indeed, performance improve-
ments with respect to the MAE were observed on
the ILM (approximately 0.10 pixels) and on the RPE
(0.10–0.25 pixels) across the board. Fifth, small perfor-
mance improvements were identified when augmenta-
tions were used but, critically, it should be noted that
the use of the chosen augmentations does not lead to a
decrease in performance. The mean error calculations
suggest that the boundary predictions do not exhibit
any consistent bias above or below the ILM boundary,
with generally small values observed on average. For
the RPE/Bruch’s membrane, there was a slight trend
for the prediction boundary to be located below the
ground truth positions, but again these values were
small compared with the corresponding MAEs.
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Figure 3. Mean absolute difference (in bold) and standard deviation in (parentheses) of the thickness (in μm) (subplot A) and volume in
cubicmillimeters (subplot B).Mean (inbold) and limits of agreement (+1.96 SDabove, –1.96 SDbelow) fromBland–Altmananalysis between
FS-GS and the ground truth for each subfield for thickness (in μm) (subplot C) and volume cubic millimeters (subplot D). Measurements are
performed across the entire testing dataset for all nine Early Treatment of Diabetic Retinopathy Study subfields across the central 6 mm of
all 129 testing volumes. Here the circles (from inner to outer, respectively) represent 1, 3, and 6 mm in diameter.

Interestingly, the Dice overlap values did not seem
to correlate with the boundary errors. For instance,
the Dice values between the average and ensemble
approaches were very similar across the different evalu-
ated methods, whereas the corresponding boundary
errors are notably lower using the ensemble approach.
This finding indicates that any differences between the
two methods only occur in a very small margin around
the boundaries.

A number of existing non–machine learning–
based methods were also evaluated for their perfor-
mance.We demonstrated that mean absolute boundary
position errors on both the ILM and the RPE/Bruch’s
membrane are considerably smaller and much more
consistent (lower standard deviations) across scans
with the use of FS-GS compared with existing
methods. Indeed, a decrease in MAE of approxi-

mately one-pixel was observed on the ILM and a
decrease of more than three pixels was observed on
theRPE/Bruch’smembrane comparedwith these other
methods. These differences were significant despite
the exclusion of regions of scans and volumes where
segmentations failed using existing methods. Indeed,
the existing methods appear to be inferior on two
counts: (1) the greater and less consistent bound-
ary errors and (2) the failure to segment regions of
some scans and volumes. For instance, the second
row in Figure 2 shows an example of a central
portion of an OCT scan with no predicted bound-
ary locations provided by OCTExplorer. In contrast,
FS-GS is constrained to provide predictions for
the entire width of each scan. The other examples
in Figure 2 show a range of other cases where OCTEx-
plorer provides comparable segmentations (first and



Deep Learning Segmentation in Stargardt OCT Images TVST | October 2020 | Vol. 9 | No. 11 | Article 12 | 10

last rows) and relatively poor performance compared
with the proposed method (middle rows). It seems
that the scans exhibiting more advanced retinal and
choroidal atrophy are the more difficult cases for
the segmentation algorithm. Here, it is logical that
these existing methods perform poorly because these
algorithms were not originally designed to handle
images of pathology of this type. Additionally, we
analyzed the level of manual correction that was
performed on the automatic segmentation provided by
the Heidelberg Spectralis OCT instrument. Again, the
segmentation error between the corrected and uncor-
rected ground truth is high and on a similar level to
the other automatic methods, demonstrating that the
automatic Spectralis segmentation algorithm used by
the instrument is less efficient for this dataset. Overall, it
is clear that the performance of these existing methods
justifies the need for the improved FS-GS method
presented here.

A patch-based machine learning method demon-
strated similar results to FS-GS. Here, MAEs were
slightly lower in FS-GS but standard deviations were
slightly higher. The similarity between the twomethods
is highlighted by the little difference between the
predicted boundaries as illustrated by the example
plots in Supplementary Figure S3. However, as has
been highlighted in a previous study,22 such patch-
based methods are significantly more time consum-
ing with respect to evaluation time than FS-GS. Here,
a similar semantic segmentation method performed
evaluations in about one-half the time when compar-
ing the same patch size and patch classification archi-
tecture as used in this study. The chosen patch size of
this method is 64 × 32 pixels, which is considerably
smaller than the effective receptive field of the proposed
network (202 × 202 pixels). This finding once again
demonstrates that the context available to the network
does not seem to be a limiting factor in the performance
of the FS-GS method.

The reproducibility in clinically relevant metrics
(retinal thickness and volume in central 6-mm zone)
using our FS-GS method was comparable to the
repeatability of manual segmentation in diseased
retina. The mean absolute and relative differences in
retinal thicknesses between FS-GS and the ground
truth was 2.10 μm and −0.55 μm, respectively, whereas
the coefficient of repeatability of manual segmenta-
tion was 4.5 μm in a previous report. Similarly, the
mean absolute and relative differences in retinal volume
between FS-GS and the ground truth was 0.059 mm3

and −0.016 mm3, respectively, which was less than
the coefficient of repeatability in manual segmenta-
tion of 0.164 mm3 as reported by Hanumunthadu et
al.6 However, the limits of agreement were slightly

greater than the coefficients of repeatability and the
impact of this variability on tracking disease progres-
sion rate compared with using ground truth measure-
ments warrants further study.

Although this study is the first attempt to use
machine learning for training a segmentation
algorithm specific for OCT scans of patients with
Stargardt disease, the training set of approximately
2400 B-scans was relatively small and they were from
only 10 patients. We tried to diversify the training set
by including equal number of eyes with low and high
macular volumes so that the algorithm can recognize
the varied morphology of the RPE/Bruch’s membrane
boundary in different stages of the disease. However,
10 patients cannot represent the entire spectrum of
Stargardt disease phenotype and disease severity. The
training set consisted of scans from the Heidelberg
device and, therefore, the reproducibility reported for
a testing set of OCT images from this device is likely to
be different for OCT scans from other spectral domain
or swept source OCT devices using our FS-GSmethod.
We only examined the accuracy of segmentation at the
level of the ILM and RPE/Bruch’s membrane. Previ-
ous authors have attempted to segment internal layers
of the retina, but these boundaries are often difficult
to distinguish in severe retinal degeneration without
a direct correlation with histology.39 Hence, further
training of FS-GS is required to provide sublayer
segmentation and volume measurement. Similarly,
further training may also be required to adapt FS-
GS to other pathologies and differing levels of OCT
image quality,43 as well as images acquired using other
scanning parameters (e.g., scan averaging, enhanced
depth imaging).

Although the focus of this work was the segmenta-
tion of Stargardt’s images, the translational impact of
FS-GS to nonpathologic images is also an important
consideration. To obtain a better idea of this factor, we
used FS-GS to perform segmentation on two volumet-
ric image sets fromhealthy participants. Across approx-
imately 110 total images (OCT B-scans) the segmenta-
tion errors were very low (ILMMAEof 0.18 pixels and
RPE MAE of 0.25 pixels). This result demonstrates
that good performance can be maintained for healthy
images. We note that the reason behind this finding is
that early stage pathologic images, used to train the
model, still closely resemble those of healthy images.

In conclusion, we have demonstrated that our
proposed method, FS-GS, exhibits promising perfor-
mance for the segmentation of OCT images in
Stargardt disease. Using such a method in clinical
practice may allow for a more efficient segmentation
process and reduce the burden of OCT interpreta-
tion by eliminating the need for manual correction of
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software errors from existingmethods. Future develop-
ment of machine learning methods should ideally be
agnostic to the type of OCT instrument and provide
segmentation of the internal layers of the retina.

Acknowledgments

The authors thank the Australian Inherited Retinal
Diseases Registry and DNA bank for performing
genetic analysis of ABCA4 to confirm genetic diagno-
sis and the clinicians who have referred their Stargardt
disease patients for clinical evaluation. Computa-
tional resources and services used in this work
were provided in part by the HPC and Research
SupportGroup,QueenslandUniversity of Technology,
Brisbane, Australia.

Supported by the Telethon-Perth Children’s
Hospital Research Fund (FKC, DAC), National
Health & Medical Research Council Ideas Grant
(APP1186915, DAC), Rebecca L. Cooper 2018
Project Grant (DAC), National Health & Medical
Research Council Career Development Fellowship
(MRF1142962, FKC), Centre of Research Excellence
(GNT1116360, FKC), Miocevich Family donation
(FKC), McCusker Foundation donation (FKC). PhD
Scholarship is awarded by the Perron Institute and
Murdoch University (DH).

Disclosure: J. Kugelman, None; D. Alonso-Caneiro,
None; Y. Chen, None; S. Arunachalam, None;
D. Huang, None; N. Vallis, None; M.J. Collins, None;
F.K. Chen None

References

1. Liew G, Michaelides M, Bunce C. A compari-
son of the causes of blindness certifications in
England and Wales in working age adults (16–
64 years), 1999–2000 with 2009–2010. BMJ Open.
2014;4:e004015.

2. Crewe J, Morgan WH, Morlet N, et al. Prevalence
of blindness in Western Australia: a population
study using capture and recapture techniques. Br
J Ophthalmol. 2012;96:478–481.

3. Alshareef RA, Goud A, Mikhail M, et al. Seg-
mentation errors in macular ganglion cell analysis
as determined by optical coherence tomography in
eyes with macular pathology. Int J Retina Vitreous.
2017;3:25.

4. Aojula A, Mollan SP, Horsburgh J, et al. Segmen-
tation error in spectral domain optical coherence
tomography measures of the retinal nerve fibre
layer thickness in idiopathic intracranial hyperten-
sion. BMC Ophthalmol. 2017;17:257.

5. Patel PJ, Chen FK, daCruz L, Tufail A. Segmenta-
tion error in stratus optical coherence tomography
for neovascular age-related macular degeneration.
Invest Ophthalmol Vis Sci. 2009;50:399–404.

6. Hanumunthadu D, Wang JP, Chen W, et al.
Impact of retinal pigment epithelium pathology
on spectral-domain optical coherence tomography
derived macular thickness and volume metrics and
their intersession repeatability. Clin Exp Ophthal-
mol. 2017;45:270–279.

7. Liao DS, Grossi FV, El Mehdi D, et al. Comple-
ment C3 inhibitor pegcetacoplan for geographic
atrophy secondary to age-related macular degener-
ation: a randomized phase 2 trial. Ophthalmology.
2020;127:186–195.

8. Cremers FPM, Lee W, Collin RWJ, Allikmets
R. Clinical spectrum, genetic complexity and
therapeutic approaches for retinal disease caused
by ABCA4 mutations. Prog Retin Eye Res.
2020;9:100861.

9. Baghaie A, Yu Z, D’Souza RM. State-of-the-art
in retinal optical coherence tomography anal-
ysis. Quant Imaging Med Surg. 2015;5:603–
617.

10. DeBuc DC. A review of algorithms for segmen-
tation of retinal image data using optical coher-
ence tomography. Ho PG (ed.) Image Segmenta-
tion. London: InTech; 2011:15–54.

11. González-López A, de Moura J, Novo J, Ortega
M, Penedo MG. Robust segmentation of reti-
nal layers in optical coherence tomography images
based on a multistage active contour model.
Heliyon. 2019;5:e01271.

12. Chiu SJ, Li XT, Nicholas P, Toth CA, Izatt
JA, Farsiu S. Automatic segmentation of seven
retinal layers in SDOCT images congruent
with expert manual segmentation. Opt Express.
2010;18:19413–19428.

13. Chiu SJ, Allingham MJ, Mettu PS, Cousins SW,
Izatt JA, Farsiu S.Kernel regression based segmen-
tation of optical coherence tomography images
with diabetic macular edema. Biomed Opt Express.
2015;6:1172–1194.

14. Li K, Wu X, Chen DZ, Sonka M. Optimal surface
segmentation in volumetric images – a graph – the-
oretic approach. IEEE Trans Pattern Anal Mach
Intell. 2006;28:119–134.

15. Vermeer K, V der Schoot J, Lemij H, De Boer J.
Automated segmentation by pixel classification of



Deep Learning Segmentation in Stargardt OCT Images TVST | October 2020 | Vol. 9 | No. 11 | Article 12 | 12

retinal layers in ophthalmic OCT images. Biomed
Opt Express. 2011;2:1743–1756.

16. Srinivasan PP, Heflin SJ, Izatt JA, Arshavsky VY,
Farsiu S. Automatic segmentation of up to ten
layer boundaries in SD-OCT images of the mouse
retina with and without missing layers due to
pathology. Biomed Opt Express. 2014;5:348–365.

17. Lang A, Carass A, Hauser M, et al. Retinal
layer segmentation of macular OCT images using
boundary classification. Biomed Opt Express.
2013;4:1133–1152.

18. Fang L, Cunefare D, Wang C, Guymer RH, Li S,
Farsiu S. Automatic segmentation of nine retinal
layer boundaries in OCT images of non-exudative
AMD patients using deep learning and graph
search. Biomed Opt Express. 2017;8:2732–2744.

19. Hamwood J,Alonso-CaneiroD,Read SA,Vincent
SJ, Collins MJ. Effect of patch size and network
architecture on a convolutional neural network
approach for automatic segmentation of OCT
retinal layers. Biomed Opt Express. 2018;9:3049–
3066.

20. Kugelman J, Alonso-Caneiro D, Read SA, Vin-
cent SJ, Collins MJ. Automatic segmentation of
OCT retinal boundaries using recurrent neural net-
works and graph search. Biomed Opt Express.
2018;9:5759–5777.

21. Hu K, Shen B, Zhang Y, Cao C, Xiao F, Gao
X. Automatic segmentation of retinal layer bound-
aries inOCT images usingmultiscale convolutional
neural network and graph search.Neurocomputing.
2019;365:302–313.

22. Kugelman J, Alonso-Caneiro D, Read SA, et al.
Automatic choroidal segmentation in OCT images
using supervised deep learning methods. Sci Rep.
2019;9:13298.

23. Roy AG, Conjeti S, Karri SPK, et al. ReLayNet:
retinal layer and fluid segmentation of macular
optical coherence tomography using fully convolu-
tional network. Biomed Opt Express. 2017;8:3627–
3642.

24. Venhuizen FG, van Ginneken B, Liefers B, et al.
Robust total retina thickness segmentation in opti-
cal coherence tomography images using convo-
lutional neural networks. Biomed Opt Express.
2017;8:3292–3316.

25. Pekala M, Joshi N, Alvin Liu TY, Bressler NM,
Cabrera DeBuc D, Burlina P. Deep learning based
retinal OCT segmentation. Comput Biol Med.
2019;114:103445.

26. He Y, Carass A, Liu Y, et al. Deep learning based
topology guaranteed surface and MME segmen-
tation of multiple sclerosis subjects from retinal
OCT. Biomed Opt Express. 2019;10:5042–5058.

27. Shah A, Abramoff M, Wu X. Simultaneous multi-
ple surface segmentation using deep learning. Jorge
CardosoM, Arbel T, Carneiro G, et al. (eds.)Deep
Learning in Medical Image Analysis and Multi-
modal Learning for Clinical Decision Support. New
York: Springer; 2017:3–11.

28. Xu Y, Yan K, Kim J,, et al. Dual-stage deep learn-
ing framework for pigment epithelium detachment
segmentation in polypoidal choroidal vasculopa-
thy. Biomed Opt Express. 2017;8:4061–4076.

29. Loo J, Fang L, Cunefare D, Jaffe GJ, Far-
siu S. Deep longitudinal transfer learning-based
automatic segmentation of photoreceptor ellip-
soid zone defects on optical coherence tomography
images of macular telangiectasia type 2. Biomed
Opt Express. 2018;9:2681–2698.

30. Wang J, Wang Z, Li F, Qu G, Qiao Y, Hairong
L, Zhang X. Joint retina segmentation and classi-
fication for early glaucoma diagnosis. Biomed Opt
Express. 2019;10:2639–2656.

31. WangY,Galles D,KleinM, LockeKG, BirchDG.
Application of a deep machine learning model for
automatic measurement of EZ width in SD-OCT
images of RP. Trans Vis Sci Technol. 2020;9:15.

32. Wong BM, Cheng RW, Mandelcorn ED,, et al.
Validation of optical coherence tomography retinal
segmentation in neurodegenerative disease. Trans
Vis Sci Technol. 2019;8:6.

33. Querques G, Leveziel N, Benhamou N, Voigt M,
Soubrane G, Souied EH. Analysis of retinal flecks
in fundus flavimaculatus using optical coherence
tomography. Br J Ophthalmol. 2006;90:1157–1162.

34. Yeoh J, Rahman W, Chen F, et al. Choroidal
imaging in inherited retinal disease using the tech-
nique of enhanced depth imaging optical coher-
ence tomography. Graefes Arch Clin Exp Ophthal-
mol. 2010;248:1719–1728.

35. Park SP, Chang S, Allikmets R, et al. Disruption
in Bruch membrane in patients with Stargardt dis-
ease. Ophthalmic Genet. 2012;33:49–52.

36. Adhi M, Read SP, Ferrara D, Weber M, Duker
JS, Waheed NK. Morphology and vascular lay-
ers of the choroid in Stargardt disease analysed
using spectral-domain optical coherence tomogra-
phy. Am J Ophthalmol. 2015;160:1276–1284.

37. Kong X, Ho A, Munoz B, et al. Reproducibility
of measurements of retinal structural parameters
using optical coherence tomography in Stargardt
disease. Trans Vis Sci Technol. 2019;8:46.

38. Strauss RW, Muñoz B, Wolfson Y, et al. Assess-
ment of estimated retinal atrophy progression
in Stargardt macular dystrophy using spectral-
domain optical coherence tomography. Br J Oph-
thalmol. 2015;100:956–962.



Deep Learning Segmentation in Stargardt OCT Images TVST | October 2020 | Vol. 9 | No. 11 | Article 12 | 13

39. Velaga SB, Nittala MG, Jenkins D, et al. Impact
of segmentation density on spectral domain opti-
cal coherence tomography assessment in Star-
gardt disease. Graefes Arch Clin Exp Ophthalmol.
2019;257:549–556.

40. Davidson B, Kalitzeos A, Carroll J, et al. Auto-
matic cone photoreceptor localisation in healthy
and Stargardt afflicted retinas using deep learning.
Sci Rep. 2018;8:7911.

41. Alonso-Caneiro D, Read SA, Vincent SJ, Collins
MJ, Wojtkowski M. Tissue thickness calculation
in optical coherence tomography. Biomed Opt
Express. 2016;7:629–645.

42. Girard MJ, Strouthidis NG, Ethier CR, Mari
JM. Shadow removal and contrast enhancement
in optical coherence tomography images of the
humanoptic nerve head. InvestOphthalmolVis Sci.
2011;52:7738–7748.

43. Kugelman J, Alonso-CaneiroD, Read SA, Vincent
SJ, Chen FK, Collins MJ. Effect of altered OCT
image quality on deep learning boundary segmen-
tation. IEEE Access 2020;8:43537–43553.

44. Ronneberger O, Fischer P, Brox T. U-Net: convo-
lutional networks for biomedical image segmenta-
tion. 2015. arxiv:1505.04597.

45. Kingma DP, Ba J. Adam: A method for
stochastic optimization. 2014. arXiv preprint
arXiv:1412.6980.

46. Hu J, Shen L, Sun G. Squeeze-and-excitation net-
works. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 2018 (pp.
7132–7141.

47. Roy AG, Navab N, Wachinger C. Recalibrat-
ing fully convolutional networks with spatial
and channel ‘squeeze & excitation’ blocks. 2018.
arXiv:1808.08127.

48. Abramoff MD, Garvin M, Sonka M. Retinal
imaging and image analysis. IEEE Rev Biomed
Eng. 2010;3:169–208.

49. Garvin MK, Abramoff MD, Wu X, Burns TK,
Russell SR, Sonka M. Automated 3-D intrareti-
nal layer segmentation of macular spectral-domain
optical coherence tomography images. IEEE Trans
Med Imaging. 2009;9:1436–1447.


