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Higher‑order topological Mott 
insulator on the pyrochlore lattice
Yuichi Otsuka1,2*, Tsuneya Yoshida3,4, Koji Kudo4, Seiji Yunoki1,2,5,6 & Yasuhiro Hatsugai3,4

We provide the first unbiased evidence for a higher‑order topological Mott insulator in three 
dimensions by numerically exact quantum Monte Carlo simulations. This insulating phase is 
adiabatically connected to a third‑order topological insulator in the noninteracting limit, which 
features gapless modes around the corners of the pyrochlore lattice and is characterized by a Z

4
 spin‑

Berry phase. The difference between the correlated and non‑correlated topological phases is that in 
the former phase the gapless corner modes emerge only in spin excitations being Mott‑like. We also 
show that the topological phase transition from the third‑order topological Mott insulator to the usual 
Mott insulator occurs when the bulk spin gap solely closes.

Nontrivial topological properties and many-body effects are the two major subjects in modern condensed mat-
ter physics. In a system involving these two subjects, obtaining knowledge of a wave function, often required 
for characterizing topological properties, is difficult and demanding because of the many-body nature. In such 
a situation, the adiabatic-connection approach and the notion of bulk-edge correspondence can still provide 
smoking-gun evidence for an interacting topological phase.

The topological Mott insulator (TMI) is a novel state of matter in which nontrivial topological properties and 
correlation effects  coexist1,2 (Note that the topological Mott insulators studied here and in Ref.3 are different, 
although the same term is used. In the former case, the topological Mott insulator is found as a Mott insulator 
possessing gapless edge spin-only excitations, while in the latter case band topology is induced from spontaneous 
symmetry breaking due to interactions.). Such a state was first proposed by Pesin and Balents as one of possible 
ground states for Ir-based pyrochlore  oxides4. Among various interesting issues originated in their proposal, 
gapless surface spin-only excitations in the TMI are intriguing, since it is in sharp contrast to the case of the usual 
topological insulators where gapless edge excitations appear in the single-particle  spectrum5–7. Namely, in the 
TMI, the bulk-edge (boundary)  correspondence8,9, one of the most distinguished and ubiquitous properties of 
the topological insulators, is generalized by the correlation effect. Soon after the proposal, intensive studies have 
examined the possibility of TMI in several condensed matter  systems10–20, yielding concrete evidences for  one17 
and  two18–20 dimensional cases. However, the TMI in three dimensions (3D) has not yet been fully explored, 
partly because of lack of reliable methods to study the correlated systems in 3D such as the complicated model 
considered for the Ir  oxides4.

On the one hand, recently, another type of unconventional topological insulators, a higher-order topological 
insulator (HOTI), has been attracting increasing  interest21,22. The nth-order topological insulator in d-dimensions 
features gapless excitations around its ( d − n)-dimensional boundaries. Thus, also in HOTI, the bulk-edge cor-
respondence is generalized. The studies of the HOTI have not always been material-oriented23–28, but also have 
covered a wide range of  models21,22,29–49 and experimental  setups50–57. Among them, three of the present authors 
proposed a tailored model to investigate the correlation effects on the HOTI in d = 2 and found a correlated 
topological state dubbed as a higher-order topological Mott insulator (HOTMI), in which gapless corner modes 
emerge only in spin  excitations45.

In this study, we present unbiased numerical evidence for a HOTMI in 3D by constructing a repulsive Hub-
bard model with spin-dependent hoppings on the pyrochlore lattice. Our results support the TMI in 3D in the 
sense that, both in the TMI and the HOTMI, the nontrivial bulk topological property manifests itself in the 
edge states only through the spin channel. As in the case of the kagome  lattice45, the repulsive Hubbard model 
with spin-dependent hoppings on the pyrochlore lattice can be mapped into the attractive Hubbard model by 
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the particle-hole transformation, and hence we can utilize a quantum Monte Carlo (QMC) method for the cor-
related model in 3D without facing the negative-sign problem. We show that the on-site interaction (U) added 
to the HOTI closes neither the charge nor spin gap in the bulk, which suggests that the higher-order topology 
characterized by a Z4 spin-Berry  phase58 in the HOTI is adiabatically preserved in the U > 0 phase. As for the 
properties around the boundaries, the characteristic gapless corner modes are found only in the spin sector. 
These results indicate that the U > 0 phase, next to the HOTI, is the third-order topological Mott insulator in 
3D. We also show that the gapless corner modes disappear when the bulk spin gap vanishes at a phase boundary 
between the HOTMI and the Mott insulator (MI).

Results
Model. We study the spinful interacting model on the pyrochlore lattice. The Hamiltonian is described by

with

and

where c†iα creates an electron with spin α (=↑,↓) at site i, σ z
αβ is the z-component of Pauli matrix, and niα = c†iαciα 

is a number operator. Since we consider the model in the grand canonical ensemble, we explicitly include the 
terms for a chemical potential µ and a magnetic field h, which are coupled to the total number of the electrons, 
N =

∑

iα niα , and the total magnetization, Sztot =
∑

i

(

ni↑ − ni↓
)

/2 . In the kinetic part HŴ
t  with Ŵ =

�
 and 

�
 , 

t� and t� denotes the transfer integrals for the intra and inter unit cell, respectively (see Fig. 1a). Their relative 
ratio is parameterized by φ with 0 ≤ φ ≤ 1/2 as t� = t sin (φ π) and t� = t cos (φ π) . Here, t is chosen as an 
energy unit, namely, t = 1 . The Hubbard term of Eq. (3) represents the repulsive ( > 0 ) on-site interaction.

The system preserves a certain type of particle-hole symmetry defined by a transformation of ci↑ → c̃†i↓ and 
ci↓ → c̃†i↑ , under which the Hamiltonian is invariant for µ = 0 . The number of electrons with spin up, �ni↑� , where 
�· · · � denotes an expectation value defined below, is related to that for spin down in the transformed Hamiltonian 
as �ni↑� = 1− �ñi↓� . Since the invariant Hamiltonian trivially yields the same expectation value, �ñi↓� = �ni↓� , 
the system is half filled, i.e., �ni↑� + �ni↓� = 1 , at µ = 0 , which is the case we consider in this study.

The unusual ingredient in our model would be σ z
αβ in Eq. (2), which simply leads to the spin-dependent 

transfer integrals. Such a modification of the model was proposed in the previous  study45 for the kagome lattice 
to induce the bulk gap in the single-particle spectrum, necessary for realizing the topological phases. In this 
study, σ z

αβ is also crucial for allowing the sign-problem-free QMC calculations.
We employ the finite-temperature auxiliary-field quantum Monte Carlo  method59–63. An expectation 

value of a physical operator O at a finite temperature T is calculated in the grand canonical ensemble as 
�O� = 1

Z
Tr
(

O e
−βH

)

 , where Z = Tr
(

e
−βH

)

 is the partition function, and β = 1/T denotes an inverse tem-
perature. To be convinced that our model is sign-problem free, let us consider a partial particle-hole transforma-
tion, ci↑ → c̃i↑ and ci↓ → c̃†i↓ , which maps the Hamiltonian into the following form (excluding a constant term):

(1)H = H

�

t +H

�

t +HU − µN − h Sztot,

(2)H
Ŵ
t = −tŴ

∑

i,j∈Ŵ

∑

α,β=↑,↓

(

c†iασ
z
αβcjβ + h.c.

)

,

(3)HU = U
∑

i

(

ni↑ −
1

2

)(
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1

2

)
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Figure 1.  (a) Pyrochlore lattice for L = 4 with the open boundary conditions. The small upward tetrahedron 
represents the unit cell. Transfer integral for the intra (inter) unit cell indicated by red (blue) is t� ( t� ). 
Enhancement of the local moment by the on-site interaction U = 1 , i.e., �m2

i
�U=1 − �m2

i
�U=0 , is shown by the 

radius of the yellow spheres for φ = 0.08 and T = 0.08 . (b) Ground-state phase diagram as function of φ and U. 
The color of the two symbols, circles for U > 0 and diamonds at U = 0 , represents the value of 〈Sztot〉/NUC.
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This reads the attractive Hubbard model without the spin-dependency in the transfer integrals, therefore being 
free from the sign problem in the absence of the effective magnetic field, namely µ = 064. It is also understood 
that 〈Sztot〉 is nonzero even for h = 0 , because in terms of the attractive model, the zero chemical potential does 
not correspond to the half filling for non-bipartite  lattices65. Owing to the absence of the negative sign problem, 
we can perform the QMC simulations for fairly large clusters with several hundreds of the lattice sites far beyond 
the scope of the exact diagonalization method. To study the bulk and boundary properties, we treat the model 
under periodic boundary conditions (PBC) and open boundary conditions (OBC). The total number of the unit 
cells NUC is L3 for PBC and L(L+ 1)(L+ 2)/6 for OBC, where L denotes the number of the unit cells aligned 
in the linear dimension (see Fig. 1a for the case of OBC), and the total number of the lattice sites Ns is 4NUC.

Phase diagram. The model for U > 0 has three different phases; the HOTMI, the MI, and the correlated 
band insulator (cBI) as summarized in Fig. 1b. Here, the cBI is the trivial band insulator with the charge and 
spin gaps, thus being different from the HOTMI or the MI. The two phase boundaries, referred to as φU

c1 and φU
c2 , 

are determined as points where the value of 〈Sztot〉/NUC deviates from −1 , which is the value of that in the HOTI 
or the band insulator (BI) at U = 0 (see Supplemental Material). This is because the HOTMI (cBI) is smoothly 
connected from the HOTI (BI) and is therefore labeled by the same value of 〈Sztot〉 . The phase boundaries thus 
determined are legitimated by calculating a more direct quantity, i.e., the spin gap, from magnetization plateaus 
under the nonzero magnetic field h (see Supplemental Material).

HOTI at U = 0. There are three phases at U = 0 when φ is varied: the HOTI, the metal, and the BI, divided 
by φ0

c1 ≃ 0.1 and φ0
c2 ≃ 0.4 . In the limit of φ = 0 or 1/2, the system is completely decoupled into a set of isolated 

tetrahedrons, where the energy levels in each tetrahedron is E = −3 (3) and 1 (− 1) for up (down) spin with the 
latter being threefold degenerate. Consequently, both of the HOTI and the BI have �Sztot�/NUC = −1 , since the 
chemical potential is set as µ = 0 . The difference between the two gapped phases can be determined by the Z4 
spin-Berry  phase58: γ = π for the HOTI and γ = 0 for the BI. This topological invariant is defined by an integra-
tion of the many-body Berry connection associated with local gauge twists. The S4 symmetry of the pyrochlore 
lattice yields its Z4 quantization as γ = 2πn/4 with n = 0, 1, 2, 3 (see Supplemental Material).

The distinction between the HOTI and the BI can also be made by imposing the OBC, since according to 
the bulk-edge  correspondence8,9 the topological property in the bulk is reflected in the edge states. The edge 
states of the HOTI appear as the zero-energy states in the energy spectra, whereas such states are absent in the 
 BI33 (see Supplemental Material). The zero-energy states are fourfold degenerate for each spin, originating from 
the isolated sites at the four corners of the finite-size cluster of the pyrochlore lattice (see Fig. 1a) in the limit 
of φ = 0 . Therefore, the zero-energy states for φ < φ0

c1 are mostly localized at these corners (see Supplemental 
Material), representing the third-order topological insulator in  3D33.

From HOTI to HOTMI. The HOTI changes to the HOTMI when the on-site interaction U is turned on. It is, 
however, difficult to distinguish these two phases by the bulk properties because they both have the charge and 
spin gaps. In Fig. 2, we show temperature dependence of the charge compressibility χc and the spin susceptibility 
χs , defined respectively as

and
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∑
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ñi↑ −
1

2

)(
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Figure 2.  Temperature dependence of (a) charge compressibility χc and (b) spin susceptibility χs at φ = 0.08 for 
L = 5 under the PBC.
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at φ = 0.08 < φ0
c1 . Except that χc is more strongly suppressed by U, there is no obvious qualitative difference 

between the HOTI and the HOTMI. On the other hand, if we consider the system under the OBC, the difference 
can be noticeable as shown in Fig. 3. At U = 0 , both χc and χs show a diverging behavior at low T, which is due 
to the gapless modes in the HOTI. For U > 0 , the gapless charge excitations vanish as shown in Fig. 3a, whereas 
the gapless spin excitations remain as evident in the diverging behavior of χs for U > 0 (see Fig. 3b). The feature 
that the boundary states posses only the charge gap seems common in the  TMI1,2.

The gapless modes observed from χc and χs for the system under the OBC are elucidated by “site-resolved” 
charge compressibility and spin susceptibility, defined respectively as

and

with mi =
(

ni↑ − ni↓
)

/2 , which are similar to a momentum-resolved  compressibility66–68. As shown in Fig. 3c, 
κc(i) for U = 0 exhibits peaks at four site locations that are the isolated corners in the limit of φ = 0 . This is the 
expected behavior of the third-order topological insulator in three dimensions. Note that the peaks in κs(i) of 
Fig. 3d are identical to those in κc(i) (except for the constant factor) at U = 0 because the gapless excitations 
appears in the single-particle spectrum. The peaks in κc(i) immediately disappear upon inclusion of U, while 
the peaks in κs(i) remain and even develop for U > 0 . This clearly shows that the gapless spin excitations appear 
around the ( d − 3)-dimensional boundary, namely the corners, which can also be observed from the enhance-
ment of the local magnetic moments �m2

i � − �m2
i �0 , where �· · · �0 denotes the expectation value for U = 0 , as 

shown in Fig. 1a.
It is desired to calculate some quantity which directly characterizes the topological index such as the spin-

Berry  phase58 for further identifying the U > 0 phase as the HOTMI. However, such calculation is not feasible 
because there is no established way within the framework of the auxiliary-field QMC. It is also because the system 
size of the pyrochlore lattice is too large to apply the exact diagonalization method, which was possible for the 
kagome  lattice45. Nevertheless, it is reasonable to consider that the nontrivial topology is protected by the bulk 
charge and spin gaps as shown in Fig. 2.

Collapse of the HOTMI. Next, we examine how the HOTMI evolves into the MI with varying φ at a fixed 
value of U = 3 . We confirm in Fig. 4a that the charge gap does not close between the HOTMI and the MI, since 
the temperature dependence of χc always shows the thermally-activated behavior below and above φU

c1 ≃ 0.16 
that is determined by 〈Sztot〉/NUC . In addition, the change of χc with increasing φ is found to be nonuniform. 
Below φU

c1 , χc gradually increases as φ → φU
c1 , indicating that the charge gap continuously decreases. At φ = φU

c1 , 
the temperature dependence of χc qualitatively changes, and they fall into the almost same curve for φ > φU

c1 , 
which suggests that the charge gap in the MI does not depend on φ . This abrupt change in χc implies that the 
natures of the charge gaps are different between the HOTMI and the MI. In Fig.  4b, it is observed that the 
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Figure 3.  Temperature dependence of (a) charge compressibility χc and (b) spin susceptibility χs at φ = 0.08 
for L = 5 under the OBC. Site-resolved (c) charge compressibility κc(i) and (d) spin susceptibility κs(i) for the 
system of L = 4 under the OBC at φ = 0.08 and T = 0.08.
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thermally-activated behavior of χs is completely lost for φ > φU
c1 . The peak structure in κs(i) also vanishes when 

the spin gap closes at φU
c1 as shown in Fig. 4c (see Supplemental Material). This topological phase transition is 

intrinsically different form the noninteracting counterpart; while in the noninteracting systems the topological 
property can change when the charge and spin gaps close, here the topological phase transition occurs when the 
spin gap solely closes.

Discussion
Finally, we comment on possible realizations of the HOTMI. The starting model of Eq. (1) involves the spin-
dependent transfer integrals which seems difficult to realize in material. However, if we exploit the mapping of 
Eq. (4), the mapped attractive model turns out to have the hoppings which does not dependent on the spin. We 
thus expect that the HOTMI would be realized in materials with the breathing pyrochlore lattice structure and 
the attractive interaction at quarter filling. Such a system may also have instability to superconductivity (The 
superconducting phase in terms of the attractive model corresponds to a ferromagnetic state in the xy plane, 
which should emerge somewhere in the MI region of the phase diagram.). Then, we are also tempted to specu-
late that some aspects of the HOTMI on the kagome  lattice45 might be related to recently discovered kagome 
superconductors AV3Sb5 (A = K, Rb, Cs)69–72.

We have studied the spinful Hubbard-like model on the pyrochlore lattice in three dimensions. Owing to 
the well-designed amendment of the model, namely the spin-dependent transfer integrals originally proposed 
in the previous study on the kagome lattice, the model yields the higher-order topological insulator in the non-
interacting limit. The spin-dependent transfer integrals also enable us to study the model by the auxiliary-field 
quantum Monte Carlo method, which is numerically exact, without suffering the negative-sign problem. With 
including the interaction U, we have found that the gapless corner spin-only excitations persist for the system 
with the open boundaries, while the bulk hosts both the charge and spin gaps, which is characteristics of the 
topological Mott insulator. To our best knowledge, this is the first unbiased evidence for the topological Mott 
insulator in three dimensions. Furthermore, we have confirmed that this phase also falls within the category 
of the higher-order topological Mott insulator by calculating the site-resolved spin susceptibility showing the 
peaks at the corners. The higher-order topological Mott insulator collapses into the usual Mott insulator when 
the bulk spin gap solely closes.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
on reasonable request.
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