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Abstract: Multi-contrast MRI images use different echo and repetition times to highlight different
tissues. However, not all desired image contrasts may be available due to scan-time limitations,
suboptimal signal-to-noise ratio, and/or image artifacts. Deep learning approaches have brought
revolutionary advances in medical image synthesis, enabling the generation of unacquired image
contrasts (e.g., T1-weighted MRI images) from available image contrasts (e.g., T2-weighted images).
Particularly, CycleGAN is an advanced technique for image synthesis using unpaired images. How-
ever, it requires two separate image generators, demanding more training resources and computations.
Recently, a switchable CycleGAN has been proposed to address this limitation and successfully im-
plemented using CT images. However, it remains unclear if switchable CycleGAN can be applied
to cross-contrast MRI synthesis. In addition, whether switchable CycleGAN is able to outperform
original CycleGAN on cross-contrast MRI image synthesis is still an open question. In this paper,
we developed a switchable CycleGAN model for image synthesis between multi-contrast brain MRI
images using a large set of publicly accessible pediatric structural brain MRI images. We conducted
extensive experiments to compare switchable CycleGAN with original CycleGAN both quantitatively
and qualitatively. Experimental results demonstrate that switchable CycleGAN is able to outperform
CycleGAN model on pediatric MRI brain image synthesis.

Keywords: artificial intelligence; CycleGAN; deep learning; MR imaging; pediatric brain;
switchable CycleGAN

1. Introduction

Magnetic Resonance Imaging (MRI) has been widely utilized in radiology to non-
invasively generate images of normal and abnormal anatomy as well as physiological
functions of the body [1]. It is a versatile imaging technique that enables the generation
of different tissue contrasts depending on the acquisition parameters. For instance, T1-
weighted (T1w) MRI increases the signal of fat tissue and decreases the signal of water,
while T2-weighted (T2w) MRI increases the signal of water. Taking full consideration of
multi-contrast MRI allows for the comprehensive evaluation of scanned organs, poten-
tially improving clinical diagnosis and patient outcomes [2]. However, all the desired
contrasts/weightings may not be available due to scan-time limitations, suboptimal signal-
to-noise ratio, and/or image artifacts. In addition, an unavailable contrast may also lead
to an insufficient data issue for developing robust machine learning and deep learning
models [3–6], which, consequently, may result in poor model performance in the clinical
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application phase. Thus, there is an urgent research-related and clinical need to synthesize
unacquired or corrupted image contrasts using the available image contrast [7].

Deep learning has achieved tremendous progress in cross-modality and the cross-
contrast synthesis of medical images. Followed by the early attempts using deep con-
volutional neural networks (CNNs) [8,9], generative adversarial networks (GANs) [10]
that consist of two CNN networks—one generator and one discriminator—have been
demonstrated to exhibit better performance on nonlinear intensity transformation between
source and target images than traditional nonlinear regression and other neural network ap-
proaches [11–13]. Research studies have applied GANs models on medical image-to-image
translation tasks through learning the mapping between two image distributions. [14–22].
The pix2pix GAN [23] was the first success to use a conditional GAN [24] to learn the map-
ping between paired images. The pGAN [17] employed structural regularization through
combining a perceptual loss with pixel-wise loss to enforce a multi-level match between
the paired images. In the scenario that multiple paired contrasts are available to synthesize
one missing contrast, a multi-stream GAN (mustGAN) [18] was proposed to leverage both
shared and complementary features of multiple source images via a mixture of multiple
one-to-one streams and a joint many-to-one stream. As paired image sets may be difficult
and expensive to acquire, and in some cases impossible, CycleGAN [23] was proposed
for unpaired image-to-image translation through a cycle-consistency loss to ensure the
forward and backward mapping to be bijections and reverses of each other. CycleGAN has
been applied to the synthesis of CT to PET [25,26], MR to CT [19,20], CT to MR [21], and
T1w to T2w MRI images [17,22]. More specifically, Wolterink et al. [19] showed CycleGAN
trained with unpaired data was able to outperform a GAN model trained with paired
brain MR and CT images. Hiasa et al. [20] investigated CycleGAN performance on the
number of training data and on the incorporation of consistency loss. Chartsias et al. [21]
leveraged synthesized cardiac MR images to achieve improved accuracy in segmentation.
Oh et al. [22] used an optimal-transport-driven cycle-consistent generative adversarial
network on an unpaired human knee MRI dataset. Dar et al. [17] investigated synthesis
performance via pixel-wise perceptual losses and cycle-consistency loss for both registered
and unregistered images. It has been demonstrated that the CycleGAN is able to learn an
optimal transport between two probabilistic distributions that simultaneously minimizes
the statistical distances between the empirical data and synthesized data in two domains.

A novel switchable CycleGAN architecture was developed by designing a single
switchable generator using the adaptive instance normalization (AdaIN) technique [27,28].
AdaIN was first proposed to enable arbitrary image style transfer in real-time by aligning
the mean and variance of “content” features in images to those of the targeted “style”
features [29,30]. The switchable CycleGAN utilized the AdaIN as a switch to control the
generator for synthesizing images with different styles. This pioneering design enables a
single image generator in the model, compared to two separate image generators in the
original CycleGAN model.

One notable limitation of the CycleGAN is that it requires two separate image gen-
erators at the training phase to enforce cycle-consistency loss when conducting forward
and backward image synthesis. The two separate generators demand more training pa-
rameters and time. This constitutes the main hurdle for robust model training. Switchable
CycleGAN has been successfully applied in synthesizing CT images in different doses
and kernels with less model training time and more stable model performance, even with
small samples of unpaired training data [27,28]. However, it remains unclear if switchable
CycleGAN can be applied to a task of cross-contrast MRI image synthesis. In addition,
whether switchable CycleGAN is able to outperform original CycleGAN on such a task is
still an open question.

In this study, we developed a switchable CycleGAN model [27,28] for image synthesis
between T1w and T2w brain MRI images. We collected and processed a large set of
structural MRI images from a publicly accessible study database [31] as our testbed. Then,
we conducted extensive experiments to compare switchable CycleGAN with the original
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CycleGAN. Both models are trained with unpaired images and are evaluated based on
both visual assessments and quantitative metrics (i.e., image synthesis quality, robustness
on small datasets, and time efficiency).

2. Materials and Methods
2.1. MRI Data

We used the publicly available Adolescent Brain Cognitive Development (ABCD)
Study database [31] for model development and validation. 1517 subjects with both T1w
and T2w MRI scans available were included in the study. Prospective motion correction
was originally included in the ABCD image protocol for all structural MRI acquisitions.
Both T1w and T2w were acquired using three different 3T MRI scanner manufacturers with
the following acquisition parameters: Siemens Healthineers (Prisma VE11B-C): axial T1w
images: TR = 2500 ms, TE = 2.88 ms, flip angle = 8

◦
, volume size = 256× 256× 176, voxel

dimensions = 1.0 mm× 1.0 mm× 1.0 mm; axial T2w images: TR = 3200 ms, TE = 565 ms,
flip angle = variable, volume size = 256× 256× 176, and voxel dimensions = 1.0 mm×
1.0 mm× 1.0 mm. Philips Healthcare (Achieva, dStream, or Ingenia): axial T1w images:
TR = 6.31 ms, TE = 2.9 ms, flip angle = 8

◦
, volume size = 256× 256× 225 , voxel dimen-

sions = 1.0 mm× 1.0 mm× 1.0 mm; axial T2w images: TR = 2500 ms, TE = 251.6 ms,
flip angle = 8

◦
, volume sizes = 256 × 256 × 256, and voxel dimensions = 1.0 mm ×

1.0 mm× 1.0 mm. GE (Discovery MR750w, DV25–26): axial T1w images: TR = 2500 ms,
TE = 2 ms, flip angle = 8

◦
, volume size = 256× 256× 208 , voxel dimensions = 1.0 mm×

1.0 mm× 1.0 mm; axial T2w images: TR = 3200 ms, TE = 60 ms, flip angle = variable,
volume sizes = 256× 256× 208, and voxel dimensions = 1.0 mm× 1.0 mm× 1.0 mm.

2.2. Overview of Switchable CycleGAN

Suppose that the domain A is composed of T1w brain images, while the images in
domain B are T2w brain images. As shown in Figure 1a, a CycleGAN [11] framework for
T1w and T2w image synthesis includes two separate generators: one forward generator
from T1w images to T2w images (GAB), and one backward generator from T2w images
to T1w images (GBA). In contrast, the switchable CycleGAN designed a single switchable
generator for image synthesis between T1w and T2w MRI images. As shown in Figure 1b,
the switchable generator includes two modules: Autoencoder G and AdaIN coder F. The
Autoencoder module works as a baseline network to achieve the image “content” synthesis
between domain A and domain B, while AdaIN coder adjusts the “style” of images as a
switch (e.g., F(0) for synthesis from T1w to T2w, and F(1) for synthesis from T2w to T1w).

The premise of AdaIN is that image representation estimation is possible by modifying
the mean and variance of the feature map. To be more specific, AdaIN-based image
synthesis was performed by matching the mean and variance of the feature map of the input
image to those of the reference target image. Given an input feature map is represented by
X = [x1 · · · xN] ∈ RN×H×W, where N is the number of channels in the input feature map xn,
and xn ∈ RHW×1 refers to the n-th column vector of X, which represents the input feature
map of size of H×W at the n-th channel. Suppose the feature map of reference target
image is represented by Y = [y1 · · · yN] ∈ RN×H×W. After encoding the input images and
targeted target images in feature space, an AdaIN layer aligns the mean and variance of xn
to match those of yn using the following transformation:

zn = T (xn, yn) :=
σ(yn)

σ(xn)
(x− µ(xn)1) + µ(yn)1, n = 1, · · · , N (1)

where 1 ∈ RHW is the H×W-dimensional vector composed of 1, and µ(xn), µ(yn), σ(xn),
and σ(yn) are the mean and standard deviation, computed across spatial dimensions.
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Figure 1. Overview of original CycleGAN and switchable CycleGAN for T1-weighted (T1w) and
T2-weighted (T2w) pediatric brain MRI images synthesis. (a) The schema of CycleGAN [11] with two
different generators GBA and GAB. DA is the discriminator that differentiates generated T1w images
and real T1w images, and DB is the discriminator that differentiates synthesized T2w images from
real T2w images. Lcyc is the cycle-consistency loss, andLd is the discriminator loss. (b) The schema
of switchable CycleGAN with one single generator consists of an image Autoencoder G followed by
AdaIN coder F. Discriminators of switchable CycleGAN are the same as CycleGAN.

The AdaIN for switching between domain A and domain B is similar to [27] and can
be represented as follows:

(µ(y), σ(y)) =
{

(1, 0), domain A
(µB, σB), domain B

(2)

With Equation (2), AdaIN coder in Figure 1b is defined as:

F(γ) :=
[

σ(γ)
µ(γ)

]
= (1− γ)

[
1
0

]
+ γ

[
σB
µB

]
, (3)

where σB and µB are learnable parameters during network training and γ is a variable
that represents the domain. In Equation (2), γ = 0 when it represents domain A, and
γ = 1 when it represents domain B. Then, the synthesis from domain A to domain B can
be written as:

GAB(x) = G1,0(x) := G(x; F(0)). (4)

The synthesis from domain B to domain A can be described as follows:

GBA(y) = G0,1(y) := G(y; F(1)). (5)

2.3. Network Architecture of Switchable CycleGAN
2.3.1. Generator
Autoencoder Module

As shown in Figure 2, the Autoencoder module (light red color), which is based on
the U-net architecture [32], consists of a contracting path and an expansive path. The
contracting path consists of the repeated applications of four convolution layers for image
learning and down-sampling. The four convolution layers are of kernel size 4, stride size
2, and padding size 1. At each down-sampling step, we doubled the number of feature
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channels. The AdaIN layers take a mean vector and a variance vector as input. Each of four
AdaIN layers is followed by a Leaky Rectified Linear Unit (LeakyReLU) layer.
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Figure 2. Overview of generator network architecture in switchable CycleGAN. The upper part (light
red color) is the autoencoder module in the generator. The lower part (light blue color) is the AdaIN
coder module in the generator.

Every step in the expansive path consists of an up-sampling of the feature map fol-
lowed by a four convolutional layer that halves the number of feature channels. The four
convolutional layers are for image reconstructing and up-sampling, and of kernel size 4,
stride size 2, and padding size 1. These are followed by a concatenation with the correspond-
ingly cropped feature map from the contracting path, and three 4× 4 convolutional layers,
each connected with an AdaIN layer and a LeakyReLU layer. The cropping is necessary
due to the loss of border pixels in every convolution. At the final layer, a 1 × 1 convolution
is used to map each 64-component feature vector to the channel size one.

AdaIN Coder Module

As shown in Figure 2, the AdaIN coder module (light blue color) connects to both
the encoder and decoder of the Autoencoder module. The AdaIN coder takes a vector of
1× 128 size as input and outputs nine pairs of mean and variance vectors. The AdaIN
coder consists of two fully connected layers, one Rectified Linear Unit (RELU) layer to
prevent the variance vectors from becoming negative, an AdaIN layer, and a LeakyReLU
layer. Accordingly, the AdaIN coder is very light-weight. Since the switchable CycleGAN
employs a single generator, the number of the model parameters is largely reduced.

2.3.2. Discriminator

For the discriminator, PatchGAN [23] structure was utilized to classify whether over-
lapping image patches are real or generated (Figure 3). Such patch-level discriminator
architecture not only has fewer parameters than a full-image discriminator but also can
work on arbitrarily sized images [33]. The discriminator consists of five convolution layers,
in which the first convolution layer uses a stride of 2, while the following four convolution
layer use a stride of 1. The first convolution layer is followed by the LeakyReLU layer, and
other convolution layers are followed by batch normalization layers and LeakyReLU layers,
except for the last convolution layer. The first convolution layer gets an input image with
one channel and generates a feature map with 64 channels. After that, each time the feature
map passes through the convolution layer, the number of channels is doubled. In the last
layer, the output tensor is obtained by reducing the number of channels to size one.
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2.4. Model Training

The switchable CycleGAN model for T1w and T2w image synthesis was trained in a
similar manner to CycleGAN network [11]. We trained the model by solving the following
min-max optimization problem [10]:

G∗, F∗ = arg min
G,F

max
DA ,DB
Ltotal(G, F, DA, DB). (6)

The total loss objective is:

Ltotal(G, F, DA, DB) = λadvLadv(G, F, DA, DB)

+λcycLcyc(G, F)

+λidLid(G, F),

(7)

where λadv is the weight parameter of adversarial loss, λcyc is the weight parameter
of cycle-consistency loss, and λid is the weight parameter of identity loss. For Ladv in
Equation (7), we used least-square loss [34] same as CycleGAN. This least-square loss was
more stable during training and generated higher quality results [11]. The adversarial loss
is represented as follows:

Ladv(G, F, DA, DB)

= Ey∼PA

[
||DA(y) ||22

]
+Ex∼PB

[
||1−DA(G1,0(x)) ||22

]
= Ex∼PB

[
||DB(x) ||22

]
+Ey∼PA

[
||1−DB(G0,1(y)) ||22

]
,

(8)

where ||·||2 is the l2 norm; G1,0(x) and G0,1(y) are defined in Equations (4) and (5). DA
is the discriminator differentiates generated T1w images and real T1w images, and DB
is the discriminator differentiates synthesized T2w images with real T2w images. The
cycle-consistency loss is defined as

Lcyc(G, F) = Ey∼PA [||G1,0(G0,1(y))−y||1]
+Ex∼PB [||G0,1(G1,0(x))−x||1].

(9)

We used identity loss to encourage the mapping when real samples of target domain
are provided as the input of the generator. The identity mapping is simulated as follows:
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Lid(G, F) = Ey∼PB [||G1,0(y)−y||1]
+Ex∼PA [||G0,1(x)−x||1].

(10)

The discriminators were trained to minimize the adversarial lossLadv(G, F, DA, DB),
while the generator G is trained to maximize it. The generator and discriminators are
updated alternatively for adversarial training.

2.5. Implementation Details

For training, we iteratively trained a switchable CycleGAN with 200 epochs. All
networks were trained using the optimizer ADAM solver [35] with β1 = 0.5, β2 = 0.999.
The learning rate for the first 100 epochs was 0.0002, and the learning rate linearly decayed
to zero over the next 100 epochs. The minibatch size was 1. For the hyperparameters in
Equation (7), the loss weights λcyc, λid, and λadv were set to 10, 5, and 1, respectively. The
model was trained on NVIDIA GeForce RTX 3080.

All the methods in this study were implemented in Pytorch v1.9.1. The input images
were randomly cropped into small patches of size 128× 128 during the training. They
were also randomly flipped both horizontally and vertically for data augmentation and
model generalizability. Training images were provided in a randomized unpaired way,
making it unlikely that both an T1w image and its registered corresponding T2w image
were simultaneously shown to GAN model. We also followed Shrivastava et al.’s strat-
egy [36] and updated the discriminators using a history of generated images rather than
the ones produced by the latest generators. An image buffer was implemented to store the
50 previously synthesized images.

2.6. Model Evaluation and Statistical Analysis

Multi-contrast T1w and T2w MRI images from a given subject were registered using
advanced normalization tools [37]. We extracted 10 slices of brain MRI images from each
subject, resulting in a total of 30,340 slices. We randomly selected 1063 subjects (70%)
for training, 151 subjects (10%) for validation, and 303 subjects (20%) for testing. We
compared switchable CycleGAN with baseline CycleGAN [11], as well as pix2pix GAN
models [23]. Tuning hyperparameters in deep neural networks, especially in complicated
models such as GANs, can be computationally intensive [38,39]. Thus, it is quite common
in deep learning research to perform one-fold cross-validation [40,41] or even directly adopt
hyperparameter selection from published work [19,25,41]. We adopted hyperparameters of
switchable CycleGAN from a prior study [27]. The epoch numbers (in the range [100, 200])
were selected based on performance of the validation set through on-fold cross-validation.
Both methods are compared with the same training and test set data.

We used the structural similarity index (SSIM) [42] and peak signal-to-noise ratio
(PSNR), two well-known metrics, to evaluate the quality of synthesized images. The
equation for PSNR calculation is as follows:

PSNR(x, x̂) = 20log10
MAXx

‖ x− x̂ ‖2
, (11)

where MAXx is the maximum possible value of image x. The SSIM is calculated by
the equation:

SSIM(x, x̂) =
(2µxµx̂ + c1)(2σxx̂ + c2)(

µ2
x + µ2

x̂ + c1
)(

σ2
x + σ2

x̂ + c2
) , (12)

where µ is mean of the image, σ is variance of the image, and σxx̂. is covariance of the
images x and x̂. L is the dynamic range of the pixel intensities, and the two variables are
defined by c1 = (k1L)2, c2 = (k2L)2, which are used to stabilize the division. We used
k1 = 0.01, k2 = 0.03 as in the original work [42].

To compare different image generative models, we conducted nonparametric Wilcoxon
signed-rank tests to test the performance difference. A p-value less than 0.05 is consid-
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ered statistically significant. All statistical analyses were conducted in Python 3.8.5 and
SciPy 1.7.3.

3. Results
3.1. Quantitative Comparison between CycleGAN and Switchable CycleGAN

Table 1 presents PSNR and SSIM data across test images synthesized using CycleGAN
and switchable CycleGAN. For T1w to T2w image synthesis, the switchable CycleGAN
method was 1.2 dB higher (p-value < 0.001) in PSNR than CycleGAN. For the image synthe-
sis from T2w to T1w, switchable CycleGAN was 0.1 dB (p-value < 0.001) higher in PSNR.
The PSNR for switchable CycleGAN in two directions was an average of 0.65 dB higher
than CycleGAN. As for SSIM T1w to T2w image synthesis, switchable CycleGAN model
was 9.5% higher (p-value < 0.001) than CycleGAN, while for the image synthesis from
T2w to T1w, switchable CycleGAN was 12.5% higher (p-value < 0.001) than CycleGAN.
The SSIM for switchable CycleGAN in two directions was, on an average, 11.0% higher
than CycleGAN. Considering two synthesis directions together, pix2pix GAN was 0.0023
higher (p-value < 0.001) in SSIM and 0.002 dB higher (p-value < 0.001) in PSNR than
CycleGAN. Switchable CycleGAN outperformed pix2pix GAN, being 0.05 higher in SSIM
(p-value < 0.001) and 0.652 dB higher in PSNR (p-value < 0.001). This demonstrated that
switchable CycleGAN quantitatively outperformed CycleGAN in image synthesis of T1w
and T2w pediatric brain images. This also demonstrated that switchable CycleGAN trained
with unpaired data outperformed pix2pix GAN trained with paired data. Since the main
hypothesis of this work is to investigate difference between CycleGAN and switchable
CycleGAN using unpaired data, henceforth we will only focus on experiments with models
using unpaired data.

Table 1. Quantitative evaluations of peak signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) for CycleGAN and switchable CycleGAN for pediatric T1w and T2w images. Higher values
indicate better performance.

Method
PSNR SSIM

T1w→T2w T2w→T1w T1w→T2w T2w→T1w

CycleGAN [11] 30.481 ± 1.296 31.614 ± 0.620 0.682 ± 0.150 0.651 ± 0.113
pix2pix GAN [23] 31.373 ± 1.443 30.726 ± 0.544 0.691 ± 0.131 0.688 ± 0.120

Switchable CycleGAN 31.671 ± 1.813 31.733 ± 1.093 0.747 ± 0.169 0.732 ± 0.128

3.2. Visualization

We compare visualization results in Figures 4 and 5. Figure 4 is the T1w to T2w
image synthesis, and Figure 5 is the perspective of T2w to T1w image synthesis. For
both directions, the results generated by switchable CycleGAN are more consistent with
the target images and could remain sophisticated structures and preserve more details
of brain tissues than CycleGAN as the red arrows point to. In particular, in the red box
of comparison results, we observed that the images generated by CycleGAN have some
artifacts and missing details. These results demonstrate that switchable CycleGAN is also
superior qualitatively to CycleGAN in synthesizing T1w and T2w images.

3.3. Robustness to Small Dataset

Since switchable CycleGAN utilizes a single generator, the number of parameters of
the model are reduced, which results in robust training, even for small datasets. We set
out to investigate the robustness of two generative models to various training sizes using
the ABCD dataset. We varied the number of image samples in the dataset as 300, 3000,
and 30,000. We then calculated the SSIM results of CycleGAN and switchable CycleGAN
(Table 2).
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Table 2. Structural similarity index (SSIM) evaluation of different data sizes using CycleGAN versus
switchable CycleGAN. For SSIM, higher values indicate better performance.

Data Size
CycleGAN [11] Switchable CycleGAN

T1w→T2w T2w→T1w T1w→T2w T2w→T1w

30,000 0.682 ± 0.150 0.651 ± 0.113 0.747 ± 0.169 0.732 ± 0.128
3000 0.614 ± 0.214 0.587 ± 0.146 0.696 ± 0.156 0.686 ± 0.130
300 0.578 ± 0.126 0.498 ± 0.158 0.681 ± 0.136 0.641 ± 0.135

CycleGAN suffers from greater loss in SSIM performance as compared to switchable
CycleGAN as dataset size decreases. From data size 30,000 to 300, the SSIM of CycleGAN
dropped 15.2% for the synthesis from T1w to T2w images and decreased 23.4% for the
synthesis from T2w to T1w images; comparatively, SSIM values for switchable CycleGAN
demonstrated less dramatic decreases of 8.81% and 12.4%, respectively. This illustrates that
switchable CycleGAN is more robust on small datasets than CycleGAN. For the t-test on
the SSIM results between CycleGAN and switchable CycleGAN, the p-values are less than
0.001 when the number of image samples in the dataset are 300, 3000, and 30,000. From
these analyses, we could see that switchable CycleGAN shows significantly improved
performance in generating T1w and T2w MR brain images.

3.4. Time Efficiency

We further investigated the training time efficiency of switchable CycleGAN. We timed
the training process of 30,000 dataset size on one single NVIDIA GeForce RTX 3080 GPU,
and the training epochs in the two methods were both 200 epochs.

Table 3 shows that the training time of switchable CycleGAN is 50.3% less than
CycleGAN under the same experiment settings, indicating that switchable CycleGAN
outperforms CycleGAN in model training efficiency.

Table 3. Training time efficiency comparison between CycleGAN and Switchable CycleGAN.

Method Training Time
(Number of Hour of 200 Epochs)

CycleGAN [11] 74.4
Switchable CycleGAN 36.9

4. Discussion

To develop a deep learning model that performs cross-contrast MRI image synthesis,
it is desirable to collect a large dataset of paired training data to train a generative model
(e.g., GAN) [12,17]. However, collecting all paired MRI images for different scanners,
imaging protocols, and conditions is a very challenging task that requires careful data
collection plans. Thus, we are particularly interested in developing image synthesis models
that utilize unpaired data. CycleGAN has achieved promising results on a number of image
synthesis tasks without paired data [17,19–22]. More recently, a novel switchable CycleGAN
was developed to reduce the model complexity of CycleGAN so as to improve the model
training efficiency, and its effectiveness has been demonstrated using CT data [27,28]. Here,
we conducted a comprehensive evaluation of the switchable CycleGAN using a large
dataset of T1w and T2w images.

We believe this is the first study to develop a switchable CycleGAN model for multi-
contrast T1w-T2w structural MRI synthesis. The main innovation of switchable CycleGAN
is that it designs an AdaIN coder (Figure 2) outside the autoencoder module (Figure 2). The
benefit of this design is twofold. First, it reduces the number of generators from two to one.
Consequently, this decreases the trainable parameters and computational time. Second, it
improves image quality and model robustness on smaller datasets due to decreased model
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complexity. Previously, these benefits have been illustrated with CT data [27,28]. In the
current work, our results seem consistent with prior findings. We observed that switchable
CycleGAN outperformed the original CycleGAN model with regards to image synthesis
quality, robustness on small datasets, and time efficiency.

It is beneficial to design a U-net as the Autoencoder module within the switchable
generator (Figure 2). In this way, MRI image features from the contracting path layers
are combined with expansive path layers. The input image features can be easily taken
into account by the generator so that the brain structure (“image content”) of the real MRI
images can be attained by the generated MRI images [43]. This attribute is appealing for our
image-to-image task: we expect our model to maintain the same structure of brain tissue.
In addition, the skip-connections in U-net can mitigate the gradient vanishing/exploding
problem, which often haunts deep learning models [44].

Similar to [27,28], in this paper, we used both identity and cycle-consistency loss. The
identity loss, which is equal to the autoencoder loss, plays a role in preserving the structure
with target domain images by providing pixel-wise constraints. The cycle-consistency loss
also poses a strong pixel-wise constraint in that it forces self-consistency when reverting
to the original domain, which prevents unexpected brain structures from being created.
The generative models (e.g., GANs) lack these two constraints, and it has been reported
that falsified structures were observed [27,28]. Thus, we believe that both identity and
cycle-consistency loss have their own contributions during model training.

In our experiments, we observed that switchable CycleGAN outperformed baseline
CycleGAN in terms of PSNR, SSIM, robustness on small datasets, and time efficiency.
We believe that the image quality improvement is mainly due to the inclusion of AdaIN
layers. AdaIN [29] was first proposed to better control image style transfer by adjusting
the mean and variance of images [30]. Despite its simplicity, AdaIN has been formally
justified by recent theoretical work [45] in which image to image translation by AdaIN
implements the optimal transport map between two spatial distributions of image features,
which are equipped with the i.i.d. Gaussian distributions. Therefore, AdaIN finds the
optimal approximations of transport map from the input image distribution to the reference
target image distribution. The model efficiency improvement is mainly attributed to
the design of switchable AdaIN-enabled single shared generator. The shared generator
enables the common latent representation learning of two contrasts and boosts the cross-
contrast correlation learning. Compared to two generators in CycleGAN, the single shared
image generator of switchable CycleGAN leads to a tremendous reduction in the trainable
network parameters, which accelerates the training process and, in turn, enables handling
of overfitting issues with relatively smaller training datasets. Such desirable robustness
and reliability make the switchable CycleGAN a more practical solution for multi-contrast
T1w and T2w structural MRI synthesis.

It is also noticed that the performance of pix2pix GAN heavily relies on the quality
of image registration. Unfortunately, there is typically a lack of perfect medical image
registration approaches. Any less-than-perfect registered image pairs may influence the
performance of pix2pix GAN. Our proposed unpaired switchable CycleGAN outperformed
paired pix2pix GAN. Besides the contributions of AdaIN laters, such performacne improve-
ment also partially attributes to the CycleGAN’s cycle-consistent loss, which facilitates
learning the mapping between two contrasts without paired data supervision. This miti-
gates the impact of less-than-perfect registered image pairs.

The multi-contrast data have been registered prior to modeling efforts. We do not
expect this registration step to influence training in CycleGAN and switchable CycleGAN as
training images were provided in a randomized unpaired way, making it unlikely that both
a T1w/T2w image and its registered corresponding T1w/T2w image were simultaneously
shown to the GAN model. In addition, images were randomly cropped into small patches
of size 128× 128 and randomly flipped both horizontally and vertically during the training,
which partially cancels the efforts of registration. The registration is mostly and mainly for
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the test set, to make the testing evaluation metrics values more accurate and trustworthy.
The same training strategy can be found in [11,19].

Our study has some limitations. First, there is large data heterogeneity in our testbed
multi-contrast MRI data. As shown in Section 2, data were collected from the largest
pediatric brain study, and their MRI data were acquired using multiple scanners from
three different vendors. The scanner bias might be a confounding factor that impacts
the quality of generated images. However, we believe this presented a good opportunity
to test the generalizability of switchable CycleGAN without using well-planned, well-
harmonized training data. Second, although generated MRI images using switchable
CycleGAN demonstrated higher SSIM and PSNR values than the original CycleGAN
model, much work remains in the area of cross-contrast image synthesis. The highest
SSIM value generated by switchable CycleGAN was 0.7468. Further investigations can
be conducted to improve the quality of generated MRI images. Third, it is unclear how
the model synthesizes brain pathology, if there is any, in the brain MRI images. This is
an interesting study that requires a large scale of MRI images with pathological regions.
Finally, we only focused on a portion of brain tissues (10 slices of axial brain MRI images
in each subject). Further study may be necessary to synthesize the whole volume of the
pediatric brain. In the current study, we mainly focused on providing a unified environment
to conduct a fair comparison between switchable CycleGAN and original CycleGAN.

5. Conclusions

In this paper, we conducted pediatric brain image synthesis between T1w and T2w
MRI data, which, to our best knowledge, is the first multi-contrast MRI image synthesis
study using switchable CycleGAN model. The model performance was evaluated both
quantitively and qualitatively. Experimental results demonstrate that switchable CycleGAN
outperformed the original CycleGAN and pix2pix GAN models with higher PSNR and
SSIM. We further illustrated that switchable CycleGAN was more robust on small datasets
than CycleGAN model. Additional time efficiency analysis showed that training time of
switchable CycleGAN was 50.3% less than that of CycleGAN.

The proposed work can be extended to generate super-resolution MRI images, as
in [30], where AdaIN was used to modify the relative importance of features for the
subsequent convolution operation to synthesize higher spatial resolution (e.g., 512× 512,
1024× 1024). The proposed work can also be implemented for three-modality learning, as
in [27]. As the AdaIN is able to disentangle arbitrary high-level attributes in source and
target modalities, the image synthesis between T1w and T2w can be naturally extended
into the conversion among T1w, T2w, and diffusion-weighted imaging, as well as other
non-standard contrasts. The performance of the proposed switchable CycleGAN may be
further enhanced by incorporating transformer blocks [46,47] as transformers are proven to
be robust in natural language processing and computer vision domains.
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