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Abstract

Evaluating the permeability of potential barriers to movement, dispersal and gene exchanges can help describe spreading
patterns of wildlife diseases. Here, we used landscape genetics methods to assess the genetic structure of the striped skunk
(Mephitis mephitis), which is a frequent vector of rabies, a lethal zoonosis of great concern for public health. Our main
objective was to identify landscape elements shaping the genetic structure of this species in Southern Québec, Canada, in
an area where the raccoon rabies variant has been detected. We hypothesised that geographic distance and landscape
barriers, such as highways and major rivers, would modulate genetic structure. We genotyped a total of 289 individuals
sampled across a large area (22,000 km2) at nice microsatellite loci. Genetic structure analyses identified a single genetic
cluster in the study area. Major rivers and highways, however, influenced the genetic relatedness among sampled
individuals. Sex-specific analyses revealed that rivers significantly limited dispersal only for females while highways only had
marginal effects. Rivers and highways did not significantly affect male dispersal. These results support the contention that
female skunks are more philopatric than males. Overall, our results suggest that the effects of major rivers and highways on
dispersal are sex-specific and rather weak and are thus unlikely to prevent the spread of rabies within and among striped
skunk populations.
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Introduction

Studies investigating patterns of gene flow and dispersal among

and within populations can help understand evolution on

ecological time scales (reviewed in [1,2]). Gene flow and the

resulting genetic structure of populations are typically shaped by

landscape heterogeneity (reviewed in [3–5]). For example, in

addition to geographical distance, landscape barriers to animal

movement, whether of natural or anthropogenic origin, have been

shown to often cause a reduction in gene flow among populations

[6–9]. Landscape genetics approaches have been developed to

detect reductions in gene flow caused by these elements at different

spatial scales [10–12]. They offer a robust framework to improve

our understanding of the evolutionary processes affecting a species

in a given area, as well as insights into habitat preferences, sex-

biased dispersal and community association [13–16].

Recently, landscape genetic approaches have been increasingly

used for applied purposes [17–20], especially in the study and

management of wildlife diseases [21–23]. As several diseases are

propagated by wild animals, identifying landscape elements that

can limit or prevent gene flow can be used to better target

intervention actions [13,24,25] or to make predictions about the

most probable paths for disease spread [22,26]. For instance, in

order to prevent further raccoon rabies in Ontario, the Ontario

Ministry of Natural Resources and its partners have designated

oral rabies vaccination (ORV) zones on the New York/Ontario

international border along the St. Lawrence River [27] and along

the Niagara River [28], where raccoons tested positive for rabies

were euthanized. The efficiency of these ORV zones can be

improved if integrated along landscape features that naturally limit

disease vector dispersal. Assessing the permeability of landscape

elements is therefore important for such applied purposes.

Landscape features and geographic distance may influence gene

flow differently for each vector species depending on their ecology,

their life-history traits, and the scale at which the system is studied.

Generally, geographic distance has a stronger effect on gene flow

in species with a limited dispersal potential compared to those able

to disperse over great distances (e.g., [29]). For example, pairwise

geographic distance explained more of the observed genetic

variation between sampling sites for the American mink (8%,

Neovison vison; [30]), than for American martens (0.3%, Martes

americana; [31]), the latter exhibiting generally greater average

dispersal distances than the former [32]. Barriers to gene flow will

also have differential permeability depending on the capacity of a
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species to cross or bypass them and it is thus important to

characterize broad and fine scale genetic structure of each specific

disease vector independently.

A fine-scale genetic structure can be detected using patterns of

genetic relatedness among individuals (e.g., [33–35]). Such fine-

scale structure analyses are helpful to assess population kin

structure [36] and have been shown to be linked with the rate of

inbreeding (e.g. [37]). In addition, it allows detecting landscape

features that may have sex-specific effects. Male-biased dispersal

and female philopatry have been suggested as possible mecha-

nisms for inbreeding avoidance in mammals because the direction

of dispersal bias is tightly linked to the mating system (reviewed in

[38]) and most mammals are polygynous with mate defence

(reviewed in [39]). In carnivores for instance, evidence shows that

most species exhibit male-biased dispersal, as previously docu-

mented in American black bears (Ursus americanus, [40]), wolverines

(Gulo gulo, [41]) and American mink [30].

The main objective of this study was to assess the extent of

genetic structuring in striped skunks (Mephitis mephitis: Mephitidae)

in an area where cases of the raccoon rabies variant were found in

skunks and raccoons [42] in order to evaluate the permeability of

landscape barriers (highway and rivers) to gene flow. The striped

skunk is a medium-sized nocturnal North American mesocarni-

vore [43], which is often abundant in cities [44,45] and is also

abundant in farmsteads and cropfield edges where prey items are

abundant [46,47]. Home range size in this species is generally

around 3 km2 [48]. It has been suggested that striped skunks in

their native North American range originated from a common

ancestor in the Texas-Mexico region and expanded north into

several clades, one of which is present in northeastern North

America, where our study took place [49]. Striped skunks are

known to host several strains of rabies, a zoonotic disease of great

concern for public health in North America [50], including the

raccoon (Procyon lotor) variant of the rabies virus [51]. This rabies

variant has been involved in one of the most important outbreaks

of wildlife rabies in the United States [52]. In the last decade, rabid

skunks have been found in Ontario and Québec, including in our

study area [42]. Despite the close proximity of striped skunks to

human infrastructure and the zoonotic risks involved, information

is still lacking about the spatial organization and movement of this

species. Identifying the determinants of the genetic structure in this

species could provide insights into the potential of disease spread

among striped skunk populations, which could then be used to

predict the extent and most probable locations of epidemiologic

outbreaks.

Specifically, we tested the hypothesis that geographic distance

and landscape barriers (rivers and highways) are drivers of genetic

structure in our study area. The purpose of our study is to

determine if some landscape barriers can be targeted to improve

efficiency of ORV zones. We hypothesized that isolation by

distance (IBD) in the population would be detected, because daily

movement rates of skunks are thought to be small (e.g., 1.25 km,

[53]) and dispersal is typically ,3 km ([54], but see [55] for a

documented distance of 119 km in a marked individual). In

comparison with average distances traveled by similar-size

mesocarnivores, skunks can be regarded as relatively sedentary

[56]. We also predicted that large rivers (physical barriers) and

roads (behavioural avoidance and sources of mortality) would limit

gene flow in skunks, as previously reported in other mesocarni-

vores (raccoons [24,35] and badgers, Meles meles [10]). Finally, we

hypothesized that males are more likely to disperse than females

and thus, that sex-biased dispersal could be detected indirectly

through differences in observed patterns of pairwise genetic

relatedness in each sex. This study uses current genetic methods

to provide useful information on the dispersal behavior in a lesser

known rabies vector, the striped skunk.

Materials and Methods

Ethics Statement
All field operations were conducted by the personnel of the

Ministère des Ressources Naturelles et de la Faune (MRNF)

Québec government agency and its partners in a disease

management perspective in areas of Québec where rabies was

detected. Animal trapping and handling methods complied with

the Agreement on International Humane Trapping Standards

(Government of Canada, 1998). Biopsy sampling protocol was

approved by the Canadian Council on Animal Care (protocol

numbers are CPA-FAUNE 2009–12 and CPA-FAUNE 2010–29).

Captured live animals were anesthetised by trained professionals

under the supervision of a veterinarian.

Study Area and Sample Collection
Skunks were sampled over two years in a fragmented

agricultural landscape in Southern Québec, Canada (45u 239 N,

72u 439 W), in an area of approximately 22 000 km2 (Figure 1).

Tissue samples used in this study were collected by the MRNF and

its partner agencies in 2009 and 2010 during the surveillance and

control activities conducted against the raccoon variant of rabies,

such as the recovery of roadkills for rabies testing and vaccination

operations [42]. Each time an animal was recovered, its location

was recorded using a handheld global positioning system. A skin

biopsy was collected from the ear with a 2-mm punch for

subsequent genetic analyses. Samples were stored in 95% ethanol

until DNA extraction. Because many skunks were sampled over

small areas due to control operations conducted for a specific zone

(< 20 individuals/100 km2 zones), a random subset of individuals

(up to 3 individuals/25 km2) was selected for each year to generate

a balanced sample over the study area (Figure 1).

Landscape Characterization
Major rivers and highways were mapped using aerial photo-

graphs of Southern Québec provided by the MRNF (Figure 1)

with ARCGIS 9.2 (Environmental Systems Research Institute,

Redlands, CA, USA). Major rivers were determined based on

their mean water flow (m/sec) [57]. We selected rivers with a

water flow greater than 0.6 m/s because they are known to

maintain substantial discharge throughout the year, potentially

limiting gene flow. Based on this characteristic, four rivers were

retained for our analyses (rivers a, c, d and e in Figure 1). The

Richelieu River (river b, Figure 1) was also considered because it

was previously found to affect the genetic relatedness structure of

female raccoons in this area [35]. Lakes in the course of each river

were also taken into account. Highways were selected based on the

definition provided by the Ministère des Transports du Québec,

which defines major highways as being roads with high speed limit

(100 km/h) and without crossroads (Figure 1; note that the

highways considered here have no veterinary fences). To

determine the number of highways and rivers separating each

pair of individuals, we calculated how many times the shortest

geographical distance between each pair of samples intersected

with a section of a river or with a section of a highway using

Hawth’s Tools (an extension of ARCGIS 9).

DNA Extraction and Genetic Analyses
DNA extraction was conducted using a salting out protocol as

described in Chambers and Garant [58]. Microsatellite poly-

morphism was then analyzed at the following nine polymorphic
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loci developed specifically for striped skunks: Meph42-15,

Meph22-16, Meph22-70, Meph42-73, Meme84, Meph22-14,

Meme15, Meme75, Meph22-19 ([59,60]; see Table S1 for

details). DNA amplification was performed using GeneAmp

System 9700 thermocyclers (Applied Biosystems, Foster, CA,

USA). Further details on polymerase chain reaction (PCR)

reagent volume, concentrations and amplification conditions for

each locus are supplied in Tables S2 and S3. Genotyping was

performed using an AB 3130 DNA sequencer (Applied

Biosystems). For each sample, a volume of 1 mL of PCR

product was added to 8.9 mL of Hi-Di Formamide and 0.1 mL

of Genescan Liz 600 (Applied Biosystems). Allele size was scored

using GENEMAPPER 4.0 (Applied Biosystems).

Molecular sexing was conducted using a protocol modified from

Shaw et al. [61]. Amplification was performed in a 25 ml solution

containing final concentrations of 0.3 mM of each primer (LGL331

and LGL335), 0.4 mM of nucleotide triphosphate, 0.9 mM of

MgCl2, 2.5 mg of bovine serum albumin, 1x PCR buffer (50 mM

KCl, 20 mM Tris HCl, pH 8.4), 1 unit of Taq polymerase (Life

Technologies) and 25 ng of DNA. PCR products were visualized

after a 10 minutes electrophoresis migration at 300 volts on 1%

agarose gels in a sodium borate buffer (10 mM NaOH pH 8.5

adjusted with H3BO3) with ethidium bromide. A 100-bp DNA

ladder (Life technologies) was used each time to standardize the

migration.

Despite the high reliability of the method, sex could not be

determined for 19% of the selected samples, possibly due to

degraded DNA (some animals died several days before their

recovery). Consequently, we had a smaller sample size of known-

sex individuals (104 females and 129 males).

Microsatellite Polymorphism
We tested all loci for departure from Hardy-Weinberg

equilibrium and calculated inbreeding coefficient (Fis) for each

locus using the software GENEPOP 4.0 [62]. We also tested for

linkage disequilibrium using the software FSTAT 2.9.3.2 [63].

Finally, we used CERVUS 3.0 [64,65] to calculate the number of

alleles, observed and expected heterozygosities, and to test for the

presence of null alleles. Significance of these tests was assessed after

Bonferroni correction [66].

Population Genetic Structure
To estimate the most likely number of genetic clusters in the

sample, we used the Bayesian clustering software STRUCTURE 2.3.3

[67]. We performed the analyses using a model with admixture,

separate admixture coefficients (a) for each genetic cluster, allele

frequencies correlated (using allele frequency prior (l) = 1.0)

among genetic clusters, and without using prior information on

sampling location. For each value of K (K being the number of

genetic clusters considered: from 1 to 5), we ran 10 independent

models with 500 000 iterations, plus a burn-in period of 100 000

iterations. Means of the ln-probabilities of all independent runs for

a given K were then calculated. We ran these analyses for all

individuals together and then for each sex separately.

Relatedness Genetic Structure
To estimate the effects of landscape features on pairwise genetic

relatedness among individuals, we used Multiple Regressions on

distance Matrices [68]. This method is an extension of Mantel tests

[69] and partial Mantel tests [70] with more than two explanatory

matrices, and we used permutations to calculate type 1 error

probability values [71]. These analyses account for pseudo-

Figure 1. Map of the study area in Southern Québec, Canada. The location of sampled striped skunk (Mephitis mephitis) in this study is shown
by a black star for 2009 (n = 148) sampling year and a grey circle for 2010 (n = 141) sampling year. Grey shapes are major bodies of water such as rivers
and lakes in and around the study area. Thin black lines represent major highways found in the study area. St Lawrence River and the 5 selected rivers
for our analyses (a: Châteauguay, b: Richelieu, c: Yamaska, d: Magog, e: Saint-François) are identified on the map. The city of Montréal is also
identified.
doi:10.1371/journal.pone.0049736.g001
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replication in pairwise individual relationships and thus allow

regression on distance matrices. We performed Multiple Regres-

sions on distance Matrices analyses using the package ECODIST

V1.2.2 [72] in R 2.11.1 (R Foundation for Statistical Computing,

Vienna, Austria), with 10 000 permutations and Pearson’s

correlation coefficient. Genetic distances among individuals were

calculated using the pairwise genetic relatedness (rxy) estimator of

Wang [73], with the program SPAGEDI V1.3 [74]. Relatedness

estimators are measures of genetic similarity between pairs of

individuals. In the analyses, we used 1- rxy to generate a pairwise

genetic distance metric, as in Côté et al. [35]. Geographic distance

(km) between each pair of individuals was measured using Hawth’s

Tools to account for a possible pattern of IBD in our study system.

Matrices of geographic distances (km), number of major rivers,

number of highways and year of sampling (to assess temporal

stability) between each pair of individuals were used both in

separate models (univariate analyses) and in a single model where

total variance explained was parted among the four factors

(multivariate analyses). We also ran the analyses for each sex

separately to test for differences between sexes. In each case, we

applied jackknife resampling, removing one individual from each

replicate, to estimate the standard error of model coefficients

following Efron and Tibshirani [75]. This allowed the computa-

tion of 95% confidence intervals. In addition, it allowed testing

whether slopes estimated for each sex in multivariate models were

significantly different or not, using Student’s t test.

Results

Microsatellite Polymorphism
A total of 289 skunks were genotyped at nine microsatellites.

Number of alleles identified per locus varied between 7.0 and 19.0

(mean = 11.9) and expected heterozygosity varied between 0.615

and 0.899 (mean = 0.807; see Table 1). We found neither a

significant heterozygote deficit nor excess in our sample, and no

evidence suggesting the presence of null alleles (lower than 5%,

Table 1) or linkage disequilibrium (results not shown).

Population Genetic Structure
The results obtained with STRUCTURE indicated that the most

likely number of genetic clusters was K = 1 (Figure 2), suggesting

that striped skunks found in our study area were not subdivided in

many distinct clusters. When sexes were analysed separately,

STRUCTURE also provided evidence for K = 1 (results not shown),

suggesting that the genetic structure within each sex was similar to

that detected using the whole sample.

Relatedness Genetic Structure
Univariate regression analyses showed significant relationships

between geographic distance, number of major rivers, number of

highways and genetic distance among individuals (models 1, 2 and

3 in Table 2). However, multivariate regression analysis only

recovered a significant relationship for rivers and a marginally

non-significant relationship for highways, whereas the effect of

geographic distance was no longer significant (model 5 in Table 2).

This loss of significance observed here is likely due to collinearity

between geographic distance and barrier variables (r = 0.705 with

number of rivers and r = 0.451 with number of highways). No

significant effect of the year of sampling was detected (models 4

and 5 in Table 2).

In the analyses performed for each sex separately, differences in

the association between pairwise genetic relatedness and landscape

features were observed between sexes. Univariate regression

analyses (models 1, 2 and 3 in Table 3) again showed positive

and significant relationships between geographic distance, number

of major rivers, number of highways and genetic distance for

females, but showed only non-significant relationships for males.

In females, multivariate regression analyses also showed a

significant and positive effect of major rivers and a marginally

non-significant and positive effect of highways on genetic distance

among individuals, but no effect of geographic distance (model 5

in Table 3). In males, multivariate regression analyses also showed

that none of the landscape features considered constituted a

significant predictor of the genetic distance among males (model 5

in Table 3). Despite a 20-fold difference, slopes were not

statistically different between sexes (Table 3), which is a reflection

of the large standard errors for males. Again, no significant effect

of the year of sampling was detected (models 4 and 5 in Table 3).

Table 1. Number of alleles (A), observed (HO) and expected
(HE) heterozygosity, inbreeding coefficient (Fis), and the
probability for null alleles for the nine microsatellite loci of the
striped skunk (Mephitis mephitis) used in our study in
Southern Québec, Canada (N = 289) in 2009 and 2010.

Locus A HO HE Fis Null alleles

Meph42–15 7 0.578 0.615 0.060 0.033

Meph22–16 10 0.752 0.780 0.036 0.015

Meph22–70 19 0.877 0.899 0.024 0.012

Meph42–73 13 0.801 0.829 0.034 0.016

Meme84 12 0.815 0.852 0.043 0.021

Meph22–14 15 0.869 0.852 20.019 20.011

Meme15 9 0.751 0.765 0.018 0.012

Meme75 13 0.876 0.871 20.005 20.004

Meph22–19 9 0.782 0.804 0.028 0.015

Overall 11.9 0.789 0.807 0.024 N/A

doi:10.1371/journal.pone.0049736.t001

Figure 2. Number of genetic clusters observed in the study
area. Mean and standard deviation of estimated ln-probabilities of data
are presented for genetic clusters K = 1 to 5, calculated with the
STRUCTURE software for striped skunks (Mephitis mephitis) in the study
area in Southern Québec, Canada, in 2009 and 2010.
doi:10.1371/journal.pone.0049736.g002
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Discussion

The goal of our study was to investigate the population genetic

structure of the striped skunk in a heterogeneous landscape in

Southern Québec, Canada. We hypothesised that geographic

distance and landscape barriers, such as highways and major

rivers, would create genetic structure for this species in our study

area, and that structure would be greater for females than for

males. Our results suggest the presence of a single genetic cluster at

the spatial scale studied (22 000 km2). Using a pairwise genetic

relatedness estimator at the individual level, however, we found

that landscape features, such as highways and major rivers,

influenced the structure of genetic relatedness between individuals

and especially females. Our results thus support the contention

that males disperse more than females in this species and would

likely be more active vectors of rabies propagation.

Population Genetic Structure
Analyses performed with STRUCTURE suggested a single genetic

cluster, indicating a low level of genetic differentiation over our

study area. Similar results were obtained in two studies in the USA

on this species. No genetic structure was found among groups of

skunks in a 61.6 km2 study area in Texas [76], and a more recent

study also failed to find significant genetic population structure

over a larger area encompassing parts of North Dakota to

Oklahoma (1,250 km2, [77]). Altogether, our results and previous

evidence suggest a relatively high level of gene flow among groups

of skunks which prevents population differentiation over a large

scale. It should also be noted that a lack of genetic structure was

reported for raccoon individuals sampled in southern Québec

(over the same area as in our study – see [35]), suggesting that

admixture among groups of individuals might be a common

pattern for these two mesocarnivores in this area.

Relatedness Genetic Structure
At first, univariate regression analyses assessing the effect of

geographic distance on pairwise genetic relatedness revealed

significant patterns of isolation by distance (lower relatedness

among individuals located further apart). However, when major

rivers and highways were taken into account in multivariate

analyses, the IBD signal was no longer detected. In cases where

past or current barriers to gene flow are present in a study area, a

relationship between geographic distance and genetic distance

might potentially reflect the effect of barriers to gene flow rather

than the simple effect of geographic distance (e.g., [58,78]).

We also found that major rivers and, to some extent, highways

affected genetic relatedness of striped skunk individuals sampled in

Southern Québec and that this effect was detected in females but

not in males. More specifically, female individuals located on

Table 2. Results of univariate and multivariate regression analyses of genetic distance matrices with the MRM [68], using 10 000
permutations, for striped skunks (Mephitis mephitis) originating from Southern Québec, Canada, in 2009 and 2010.

Type of test Model Explanatory variable(s) Slope (95% CI) P

Univariate 1 Geographic distance 0.0002 (0.0001,0.0003) 0.026

2 Number of rivers 0.0089 (0.0041,0.0137) , 0.001

3 Highways 0.0069 (0.0023,0.0115) 0.002

4 Year 20.0002 (20.0045,0.0041) 0.88

Multivariate 5 Geographic distance 2261025 (20.0002,0.0002) 0.83

Rivers 0.0073 (0.0008,0,0138) 0.007

Highways 0.0051 (20.0001,0.0103) 0.052

Year 20.0008 (20.0052,0.0036) 0.59

doi:10.1371/journal.pone.0049736.t002

Table 3. Results of univariate and multivariate regressions analyses of genetic distance matrices with the MRM [68], using 10 000
permutations for each sex separately in striped skunks (Mephitis mephitis) originating from Southern Québec, Canada, in 2009 and
2010 (P values for slopes between sexes were calculated using Student’s t test).

Sex Females Males

P of slope
difference
between sexes

Type of test Model Explanatory variable Slope (95% CI) P Slope (95% CI) P

Univariate 1 Geographic distance 0.0003 (0.0001,0.0005) 0.011 0.0001 (20.0001,0.0003) 0.27 –

2 Number of rivers 0.0154 (0.0070,0.0238) , 0.001 0.0048 (20.0043,0.0139) 0.26 –

3 Number of highways 0.0129 (0.0038,0.0220) 0.001 0.0036 (20.0041,0.0113) 0.34 –

4 Year 0.0059 (20.0113,0.0231) 0.46 0.0016 (20.0105,0.0137) 0.73 –

Multivariate 5 Geographic distance 20.0001 (20.0005,0.0003) 0.56 0.0001 (20.0002,0.0004) 0.55 0.42

Number of rivers 0.0138 (0.0025,0.0250) 0.005 0.0007 (20.0109,0.0123) 0.89 0.11

Number of highways 0.0088 (20.0017,0.0193) 0.058 0.0017 (20.0068,0.0102) 0.70 0.30

Year 0.0053 (20.0117,0.0223) 0.51 0.0018 (20.0102,0.0138) 0.70 0.74

doi:10.1371/journal.pone.0049736.t003
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opposite sides of these landscape elements were generally less

related than individuals located on the same side. A similar effect

was detected for raccoons separated by the Richelieu River in this

area (river b on Figure 1; [35]). Individual raccoons that were

separated by the Richelieu River were more distant genetically

than individuals located on the same side and this effect was

detected in females, but not in males [35]. Our results are also

similar to those reported in a study of a badger population

structure in England where the presence of a large river and

motorway were shown to influence patterns of relatedness among

individuals [10]. In this previous study, however, the possibly

differential effect on both sexes was not considered.

Previous evidence, obtained from studies using live trapping and

radio-tracking methods, suggested a greater dispersal in male than in

female striped skunks ([55], but see also [54,56]). Furthermore, in

their study of skunks in Texas, Hansen et al. [76] reported that males

within a given sampled group had lower average genetic similarity

than females of the same group, also suggesting greater dispersal for

males. Here, we found that genetic distance among males was not

affected by the presence of highways and major rivers, also suggesting

a stronger dispersal in males. Stronger male dispersal and female

philopatry are thus also consistent with the patterns observed in the

majority of mammals (reviewed in [38,39]).

Studies of habitat selection have shown that skunks are often found

near roads. For instance, Frey and Conover [48] showed that skunks

tend to include roadsides in their home range more often than by

chance and Hwang et al. [79] found that den sites were often closer to

roads than to random sites. These studies suggest that striped skunks

may often attempt to cross roads. In contrast to this presumption, our

results suggest a marginally positive effect of the number of roads on

femalegeneticdistance.Onepossibleexplanation for these seemingly

opposing results is that the study by Frey and Conover [48] was

conducted in an area were most roads are secondary roads (Bear

River Migratory Bird Refuge, United States) while here only

highways (higher driving speed limit and more driving lanes) were

considered in our analysis. Thus, while skunks could use areas along

small roads to increase their foraging opportunities, they probably

avoid crossing large highways. While this still remains to be properly

tested, we suggest the existence of a threshold in the permeability of

the roads under which striped skunks may attempt to cross them (e.g.,

width, noise, traffic flow).

Our study is the first to characterize fine-scale genetic differenti-

ation and population structure in striped skunks over a large-spatial

scale. Although we found no evidence of strong genetic structuring

over the scale of our study area, our results indicate reduced dispersal

across riversandhighwaysandsuggest that theeffectsof thesebarriers

mostly affect females. Our study also provides evidence for male-

biased dispersal supporting the hypothesis of sex differences in

dispersal in this species and thus, our results offer additional insights

into the dispersal behaviour of the striped skunk.

From a disease management perspective, our results indicate

that major roads and rivers are insufficient to halt or slow the

spread of rabies in striped skunks. Using oral rabies vaccination

over the landscape, regardless of the presence of barriers, is thus

essential in an attempt to eradicate rabies.
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