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Analysis of gene expression 
from systemic lupus erythematosus 
synovium reveals myeloid 
cell‑driven pathogenesis of lupus 
arthritis
Erika L. Hubbard1*, Michelle D. Catalina1,2, Sarah Heuer1,3, Prathyusha Bachali1, 
Robert Robl1, Nicholas S. Geraci1,4, Amrie C. Grammer1,5 & Peter E. Lipsky1,5

Arthritis is a common manifestation of systemic lupus erythematosus (SLE) yet understanding of the 
underlying pathogenic mechanisms remains incomplete. We, therefore, interrogated gene expression 
profiles of SLE synovium to gain insight into the nature of lupus arthritis (LA), using osteoarthritis 
(OA) and rheumatoid arthritis (RA) as comparators. Knee synovia from SLE, OA, and RA patients 
were analyzed for differentially expressed genes (DEGs) and also by Weighted Gene Co-expression 
Network Analysis (WGCNA) to identify modules of highly co-expressed genes. Genes upregulated 
and/or co-expressed in LA revealed numerous immune/inflammatory cells dominated by a myeloid 
phenotype, in which pathogenic macrophages, myeloid-lineage cells, and their secreted products 
perpetuate inflammation, whereas OA was characterized by fibroblasts and RA of lymphocytes. 
Genes governing trafficking of immune cells into the synovium by chemokines were identified, but not 
in situ generation of germinal centers (GCs). Gene Set Variation Analysis (GSVA) confirmed activation 
of specific immune cell types in LA. Numerous therapies were predicted to target LA, including TNF, 
NFκB, MAPK, and CDK inhibitors. Detailed gene expression analysis identified a unique pattern of 
cellular components and physiologic pathways operative in LA, as well as drugs potentially able to 
target this common manifestation of SLE.

Systemic lupus erythematosus (SLE) is a complex autoimmune disease in which loss of self-tolerance gives rise 
to pathogenic autoantibodies causing widespread inflammation and tissue damage1. Lupus arthritis (LA) is a 
common manifestation of SLE with 65–95% of lupus patients reporting joint involvement during the course of 
their disease2.

Despite the high frequency of LA, an understanding of the underlying pathogenic mechanisms remains 
incomplete. Cytokines, such as IL-6, and anti-dsDNA autoantibodies are thought to play a role3–5. Other autoanti-
bodies including anti-ribonucleoprotein, anti-histone, and anti-proliferating cell nuclear antigen have been impli-
cated in LA along with evidence of increased C-reactive protein (CRP) and erythrocyte sedimentation rate4,6,7.

The lack of a better understanding of the nature of LA relates to the difficulty of obtaining tissue samples and 
the absence of relevant and reliable animal models. Despite this, in most recent clinical trials of potential lupus 
therapies, arthritis is a principal manifestation and the success of a tested therapy can depend on its ability to 
suppress synovial inflammation. Therefore, it is essential to understand more about the pathogenic mechanisms 
operative in LA.

One way to evaluate the pathologic processes involved in LA is to analyze gene expression profiles in the 
affected synovium. Previous work analyzed global gene expression profiles and histology of SLE, rheumatoid 
arthritis (RA), and osteoarthritis (OA) synovium8,9 to begin to elucidate the inflammatory mechanisms in each 
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disease and focused on the type 1 interferon pathway in LA. Here, we expand upon these studies by applying 
contemporary bioinformatic techniques to assess the only gene expression data set available to gain additional 
insight into the pathogenesis of LA. Using a multipronged, bioinformatic and systems biology approach, we 
provide an expanded view of SLE synovitis that might serve as the basis to identify new targeted therapies.

Results
Bioinformatic and pathway analysis of LA and OA gene expression.  Gene expression data was 
collected from the affected (i.e., swollen) knees of 4 female LA and 4 female OA patients by needle arthroscopy 
with active articular and systemic disease at the time of biopsy. Patients had not received immunosuppressive 
therapy or disease-modifying antirheumatic drugs before tissue sampling (see Supplementary Table S1 online for 
complete patient data). RNA was extracted from stored synovial samples and hybridized to Affymetrix Human 
Genome U133 Plus 2.0 microarrays from which differential gene expression (DE) analysis was conducted (see 
“Methods”). DE analysis demonstrated 6496 differentially expressed genes (DEGs) in LA versus OA (Fig. 1a), 
of which 2477 transcripts were upregulated and 4019 transcripts were downregulated. The upregulated DEGs 
included 243 immune cell-specific transcripts (odds ratio of 2.84, p < 2.2e−16, Fisher’s Exact Test), indicating a 
significant immune/inflammatory cell infiltrate. There was considerable enrichment of T-cell, B-cell, plasma-
cell, and myeloid-cell transcripts among the upregulated DEGs (Fig. 1b), whereas fibroblast-associated genes 
were increased in OA. Functional enrichment analysis further indicated immune involvement via upregulated 
cell surface markers and immune signaling signatures. In particular, innate immune processes were enriched 
in LA, including interferon stimulated genes, pattern recognition receptors (PRRs), and MHC Class I and II. A 
number of processes related to cellular uptake and processing/packaging material inside cells were also enriched 
along with apoptotic pathways and the proteasome.

Of the 4019 downregulated DEGs, only 17 were immune cell transcripts and thus downregulated genes 
did not reflect a change in hematopoietic cell composition (odds ratio of 0.0749, p = 1). Notably, however, the 
fibroblast gene signature was downregulated (Fig. 1c). Functional analysis identified several molecular processes 
that were decreased in LA, most of which related to transcriptional activity/nuclear processes and cytoskeletal 
and integrin pathway changes.

Preliminary bioinformatic analysis by examination of DEGs validated previously reported findings that inter-
feron-inducible (IFI) genes are upregulated in LA and transcripts comprising the extracellular matrix (ECM) are 
downregulated9. Our analysis expanded these insights to reveal downregulation of fibroblast-associated genes 
and increased expression of transcripts attributed to specific innate and adaptive immune cell types and pro-
cesses. A list of genes significantly up- and downregulated in LA can be found in Supplementary Data S1 online.

We next employed Ingenuity Pathway Analysis (IPA) on LA and OA DEGs and identified predominantly 
innate immune signaling processes, including a proinflammatory macrophage response, interferon signaling 
and inflammasome pathway activation (Fig. 2a). These were confirmed by functional analysis of IPA-predicted 
upstream regulators (UPRs) of the disordered gene expression profiles in LA, which identified specific intracel-
lular signaling molecules, PRRs, and secreted immune proteins, including type 1, 2, and 3 interferons (Fig. 2b). 
Of note, a number of pro-apoptotic genes, including TNF, TNFSF10, and FAS were predicted UPRs. IPA served 
to inform specific pathways involved in LA that appear to primarily involve myeloid cells as well as specific 
molecules driving disease that may be able to be targeted with specific therapies. The full export of IPA canonical 
pathway and upstream regulator data can be found in Supplementary Data S3–6 online.

To confirm DEG-identified molecular pathways and further interrogate LA gene expression, we implemented 
weighted gene co-expression network analysis (WGCNA), which serves as an orthogonal bioinformatic approach. 
WGCNA identified 52 modules, six of which were highly co-expressed and significantly associated with LA (see 
Supplementary Figs. S1, S2, and Supplementary Table S2 online). Of the six modules with significant, positive 
correlations to features of lupus, some correlated with the presence of LA and some modules correlated with 
SLE disease activity index (SLEDAI) and anti-dsDNA. The associations of the WGCNA modules with features of 
LA can be seen in Supplementary Figs. S1, S3, S4, and Supplementary Data S7–13 online. Many of the modules 
contained immune/inflammatory cell signatures. Notably, plasma cell genes were found in the midnightblue 
module and included IgG1, IgM, and IgD, indicating both pre- and post-switch plasmablasts/plasma cells as 
well as the presence of Igκ, Igλ, and numerous light (VL) chains, signifying a polyclonal population (see Sup-
plementary Fig. S5 online). Midnightblue, however, was upregulated in only two of four lupus patients and 
negatively correlated with systemic disease (see Supplementary Fig. S1 online). The blue module, which was 
negatively correlated with LA, was enriched in synovial fibroblasts (see Supplementary Fig. S4, Supplementary 
Table S3 online), whereas the brown module, which was positively associated with LA, was not enriched for 
synovial fibroblasts (see Supplementary Fig. S3 online). These associations indicate that a polyclonal plasma cell 
population may be present in a subset of LA patients and that the fibroblast population is significantly altered 
in LA compared to OA.

WGCNA modules were enriched in immune/inflammatory processes, most of which overlapped with DEG-
defined functional enrichment, and additionally included enrichment of autophagy pathways and mRNA splicing 
(see Supplementary Fig. S6 online). Further IPA canonical pathway analysis, IPA UPR analysis, and clustering of 
WGCNA modules based on protein–protein interactions (see Supplementary Fig. S7 online) indicated that the 
brown and navajowhite2 modules were characterized by myeloid cell responses, whereas the honeydew1 module 
was most characterized by interferon signaling. The darkgrey module was characterized by cellular activation, 
antigen presentation, and proinflammatory signaling. In contrast, the midnightblue module revealed T-cell: 
B-cell crosstalk, T-cell activation and differentiation, and B-cell signaling. Finally, salmon4 was not enriched 
in immune cells (see Supplementary Fig. S3 online). Functional and pathway analysis of these LA-associated 
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Figure 1.   Overview of gene expression in SLE vs OA synovium. (a) Heatmap of 6496 DEGs from LIMMA 
analysis of SLE and OA synovial gene expression data generated using the R suite and Bioconductor package 
gplots 3.0.3 (https​://CRAN.R-proje​ct.org/packa​ge=gplot​s). Increased (b) and decreased (c) transcripts were each 
characterized by cellular signatures for prevalence of specific cell types. DE transcripts were also characterized 
for functional signatures. Enrichment plots in (b,c) represent odds ratios bound by 95% confidence intervals 
(CI) using Fisher’s Exact Test. Significant enrichment by p-value (p < 0.05) and confidence intervals that exclude 
odds ratio = 1 are colored red and blue for positive or negative association with the sample, respectively. The 
x-axes are plotted on log2 scales. For categories represented by a single point, odds ratio = 0 and the data point 
shown represents the upper bound of the confidence interval.

https://CRAN.R-project.org/package=gplots
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modules suggest that co-expressed genes in LA act in a manner consistent with myeloid-mediated effector phase 
responses, and that involvement of T-cells, B-cells, and plasma cells is present, but less robust.

Lymphocyte trafficking and germinal center (GC) activity in LA.  Next, after establishing the pres-
ence of immune cells and inflammatory signaling in LA, we assessed chemokine receptor–ligand pairs and 
adhesion molecules to understand mechanisms of immune/inflammatory cell localization in LA. Numer-
ous chemokine receptor–ligand pairs were expressed in SLE synovium, including CCR5–CCL4/5/8, CCR1–
CCL5/7/8/23, and CXCR6–CXCL16 (Table 1). Of note, CXCL13 was expressed in the midnightblue module and 
upregulated, although its receptor CXCR5 was not detected in LA-associated WGCNA modules nor in DEGs. 
Adhesion molecules were found in LA-associated WGCNA modules including VCAM1, CD44, CADM3, and 
ITGB2.

Figure 2.   Pathway analysis of LA vs. OA gene expression. (a) Canonical pathways predicted by IPA based on 
DEGs, ordered by significance. (b) Significant upstream regulators predicted by IPA based on DEGs, ordered 
alphabetically by functional category. All canonical pathways and upstream regulators are significant by 
|Activation Z-Score| ≥ 2 and overlap p-value < 0.01.
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Table 1.   Chemokine receptor–ligand pairs and adhesion molecules associated with LA. DEGs and 
LA-associated WGCNA modules were assessed for adhesion molecules and chemokine receptor–ligand pairs. 
Receptor–ligand pairs are grouped together in the table with groupings alternately italicised. Log fold changes 
rounded to 3 significant figures are presented where available; otherwise, n/s not significant.

Gene transcript Name

SLE vs OA analysis

DE LFC
WGCNA
LA-associated module

CCL19 Chemokine (C–C motif) ligand 19 n/s Honeydew1

CCR2 Chemokine (C–C motif) receptor 2 1.50 Midnightblue

CCL2 Chemokine (C–C motif) ligand 2 n/s Darkgrey

CCL7 Chemokine (C–C motif) ligand 7 n/s Darkgrey

CCL8 Chemokine (C–C motif) ligand 8 2.76 Darkgrey

CCR5 Chemokine (C–C motif) receptor 5 1.90 Navajowhite2

CCL4 Chemokine (C–C motif) ligand 4 2.67 Brown

CCL5 Chemokine (C–C motif) ligand 5 1.94 Midnightblue

CCL8 Chemokine (C–C motif) ligand 8 2.76 Darkgrey

CCR1 Chemokine (C–C motif) receptor 1 2.14 Brown

CCL5 Chemokine (C–C motif) ligand 5 1.94 Midnightblue

CCL7 Chemokine (C–C motif) ligand 7 n/s Darkgrey

CCL8 Chemokine (C–C motif) ligand 8 2.76 Darkgrey

CCL23 Chemokine (C–C motif) ligand 23 0.670

CCR3 Chemokine (C–C motif) receptor 3 n/s Darkgrey

CCL5 Chemokine (C–C motif) ligand 5 1.94 Midnightblue

CCL7 Chemokine (C–C motif) ligand 7 n/s Darkgrey

CCL8 Chemokine (C–C motif) ligand 8 2.76 Darkgrey

CCRL2 Chemokine (C–C motif) receptor-like 2 1.04 Navajowhite2

CKLF Chemokine like factor 0.297

CMKLR1 Chemokine-like receptor 1 1.59 Darkgrey, Honeydew1

CXCL2 Chemokine (C–X–C motif) ligand 2 2.98 Honeydew1

CXCL3 Chemokine (C–X–C motif) ligand 3 1.77

CXCL8 Chemokine (C–X–C motif) ligand 8 2.17 Brown, Darkgrey

CXCR3 Chemokine (C–X–C motif) receptor 3 1.45 Midnightblue

CXCL9 Chemokine (C–X–C motif) ligand 9 5.59 Midnightblue

CXCL10 Chemokine (C–X–C motif) ligand 10 4.81 Midnightblue

CXCL11 Chemokine (C–X–C motif) ligand 11 3.32 Midnightblue

CXCR4 Chemokine (C–X–C motif) receptor 4 1.39 Brown

CXCL13 Chemokine (C–X–C motif) ligand 13 3.47 Midnightblue

CXCR6 Chemokine (C–X–C motif) receptor 6 n/s Midnightblue

CXCL16 Chemokine (C–X–C motif) ligand 16 0.768 Navajowhite2

CXCL11 Chemokine (C–X–C motif) ligand 11 3.32 Midnightblue

CX3CL1 Chemokine (C–X3–C motif) ligand 1 0.453

XCL1 Chemokine (X–C motif) ligand 1 n/s Midnightblue

ALCAM Activated leukocyte cell adhesion molecule 1.55

VCAM1 Vascular cell adhesion molecule 1 n/s Navajowhite2

CD44 CD44 molecule 1.25 Brown, Darkgrey

ITGB1 Integrin subunit beta 1 − 0.255

ITGB2 Integrin subunit beta 2 1.56 Brown, Honeydew1

ICAM1 Intercellular adhesion molecule 1 0.861 Darkgrey, Honeydew1, Midnightblue

ICAM3 Intercellular adhesion molecule 3 n/s Midnightblue

PECAM1 Platelet/endothelial cell adhesion molecule 1 0.618 Salmon4

SDK1 Sidekick cell adhesion molecule 1 − 0.892

SDK2 Sidekick cell adhesion molecule 2 − 1.33

CADM1 Cell adhesion molecule 1 − 0.974

CADM3 Cell adhesion molecule 3 n/s Darkgrey

JAM2 Junctional adhesion molecule 2 − 0.587

JAM3 Junctional adhesion molecule 3 − 0.673

MCAM Melanoma cell adhesion molecule − 1.08
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We also examined expression of specific follicular helper T cell (Tfh) and GC B-cell markers to determine 
whether GCs might contribute to LA pathogenesis (see Supplementary Fig. S8 online). ICOS, but not other Tfh 
markers, were found in LA. In addition, several GC B-cell markers were upregulated in SLE synovium, including, 
CXCL13 and IRF4. However, BCL6 and RGS16 were notably downregulated and RGS13 was not differentially 
expressed between SLE and OA. A cluster of GC B-cell markers that tended to be upregulated were co-expressed 
in the midnightblue module, which contained a lymphocyte signal. These analyses indicate that while there may 
be GC-like activity in some LA patients, fully-formed GCs are not a likely feature of lupus synovitis and most 
immune/inflammatory cells probably migrate into the tissue by chemokine signaling.

Gene set variation analysis (GSVA) enrichment of immune and tissue populations and sign-
aling pathways.  To assess the differences between SLE and OA synovitis on an individual sample basis, 
GSVA of various informative gene sets was carried out (Fig. 3, see Supplementary Data S14 online). Enrichment 
of hematopoietic cell types confirmed the presence of an immune infiltrate in LA, but not OA (Fig. 3a). Most 
cell types, including lymphoid and myeloid populations, were enriched. Cytokine signaling was also enriched 
in LA, including both proinflammatory cytokine signaling as well as inhibitory cytokines (Fig. 3b). Of note, 
the downstream signature induced by TNF signaling was significantly enriched in LA (p = 0.00918). Whereas 
antigen presentation markers, cellular activation markers, and the inflammasome pathway were enriched in LA 
compared to OA, a cell cycle/proliferation signature and complement pathways were not significantly enriched 
(Fig. 3c; p = 0.420 and p = 0.169, respectively). Along with upregulation of inhibitory cytokines, inhibitory recep-
tors and negative regulation of T cells were enriched in LA (Fig. 3d). Most of the previously noted IPA-predicted 
canonical signaling pathways were enriched in SLE synovium aside from signaling by the eukaryotic initiation 
factor eIF2 (Fig. 3e). Our initial GSVA results validated findings from DE analysis and WGCNA on a per sample 
basis and implicate broad immune activation in LA.

Conversely, OA synovium was enriched in tissue repair/destruction and markers of fibroblasts (Fig. 4a). 
Querying LA and OA synovial expression profiles with the co-expressed genes from fibroblast subpopulations 
described in human RA and OA synovium10, we found that two resident synovial sublining fibroblast populations, 
CD34+ and DKK3+, were significantly increased in the OA samples over LA (Fig. 4b; p = 0.00148 and 0.00213, 
respectively). However, co-expressed genes characterizing the HLA-DRhi sublining fibroblast population were 
significantly enriched in LA (p = 2.70e−05). Interestingly, using the same approach to assess macrophage popula-
tions also described in human RA and OA10,11 we found quiescent macrophages and interferon (IFN)-activated 
macrophages significantly increased in LA (Fig. 4c; p = 0.0332 and 1.14e−06, respectively), whereas phagocytic 
macrophages were associated with OA. HBEGF+ proinflammatory macrophages tended to be enriched in LA 
but did not reach statistical significance (p = 0.0993).

Given the overlap of features from specific macrophage and fibroblast populations between human RA and 
LA or OA, we thought it pertinent to determine whether LA macrophages additionally share features with other 
unique macrophage subpopulations described in mouse synovium, including a CX3CR1+ resident subtype resem-
bling epithelial cells12. We compared signatures of sorted mouse synovial CD45+CD11b+Ly6G− mononuclear 
phagocytes using marker genes from single-cell RNA sequencing (scRNA-seq) clusters and examined enrich-
ment of these populations characteristic of healthy control mice and an inflammatory murine arthritis model. 
Taking the co-expressed genes of the human orthologs of the macrophage signatures detected in healthy mouse 
synovium, we found that two types of interstitial macrophages, including MHCII+ and RELM-α+ populations, 
were significantly more abundant in LA (p = 0.00549 and 0.00802, respectively) as well as a group of ACP5+ 
osteoclast precursors (Fig. 4d; p = 9.37e−04). The CX3CR1+ lining macrophage population from healthy mice, 
reported to be protective by forming a barrier around the joint cavity12, was not significantly enriched in either LA 
or OA synovium (p = 0.110); however, the CX3CR1+ lining macrophage population from murine inflammatory 
arthritis was increased in LA (Fig. 4e). Additionally, inflammatory arthritis-associated MHCII+ and RELM-α+ 
interstitial macrophages were enriched in LA as were MHCIIhi dendritic cells and CCR2+IL1B+ monocyte-derived 
macrophages. Thus, macrophage subpopulations identified in LA include those that share features with resident 
interstitial populations and inflammatory, monocyte-derived populations in murine arthritis.

Comparison of gene expression in LA and RA synovitis.  To fine-tune our characterization of LA, we 
also compared gene expression data against human inflammatory arthritis. Using seven RA samples as compara-
tors (see Supplementary Table S1 online), we observed fewer genes upregulated in RA; however, 18% of these 
genes identified immune/inflammatory cells compared with 10% of genes upregulated in LA (Fig. 5a). Char-
acterization of upregulated DEGs by cell signatures revealed greater numbers of myeloid and monocyte/mac-
rophage-specific transcripts in LA compared to RA, whereas immune infiltrates in RA were more characteristic 
of T- and B-cells. B-cells, naïve/memory cells, and gamma delta (gd) T cells were significantly increased in RA 
over LA (Fig. 5b; p = 0.0249, p = 0.0121, and p = 0.00689, respectively), whereas monocytes/macrophages, inhibi-
tory macrophages, and M2 macrophages were significantly increased in LA over RA (p = 0.0160, p = 0.00306, and 
p = 0.00719, respectively).

Components of the effector phase including interferon, inflammasome, and complement pathways were 
substantially enriched in LA, whereas negative regulation of T-cells and cell cycle tended to be enriched in RA 
(Fig. 5c–e). Downstream signatures of TNF, IL-1, and IL-6 tended to be enriched in LA compared to RA. Finally, 
other pathways involved in response to stimuli, phagocytosis, chemokine signaling, B-cell receptor signaling, 
and PI3K signaling, were considerably enriched in LA (Fig. 5f).

Given the observed alterations in fibroblast and macrophage compartments in LA compared to OA, we also 
examined these populations in RA versus LA. Transcripts associated with tissue repair/destruction were sig-
nificantly enriched in RA (see Supplementary Fig. S9 online; p = 9.95e−04), but enrichment of general fibroblast 
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Figure 3.   GSVA of hematopoietic cell types (a), cytokine signatures and signaling pathways (b), immune/
inflammatory processes (c), anti-inflammatory processes (d), and IPA-predicted canonical signaling pathways 
from DEGs in SLE vs OA synovium (e) was conducted on log2-normalized gene expression values from OA 
and SLE synovium. Hedge’s g effect sizes were calculated with correction for small sample size for each gene set 
and significant differences in enrichment between cohorts were found by Welch’s t test (p < 0.05), shown in the 
panels on the right. Red and blue effect size bars represent significant enrichment in SLE and OA, respectively.
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Figure 4.   GSVA of synovial tissue processes and specific cell types (a) and recently published synovium-
specific cell subtypes in human RA, OA, and mouse synovium (b–e) was conducted on log2-normalized gene 
expression values from OA and SLE synovium. Hedge’s g effect sizes were calculated with correction for small 
sample size for each gene set and significant differences in enrichment between cohorts were found by Welch’s t 
test (p < 0.05), shown in the panels on the right. Red and blue effect size bars represent significant enrichment in 
SLE or OA, respectively. Literature-derived signatures in (b–e) underwent co-expression analyses before being 
used as GSVA gene sets (see “Methods”).
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Figure 5.   A comparison of immune/inflammatory gene signatures between SLE and RA synovium using 7 RA 
patients from GSE36700. (a) Upregulated DEGs were identified between RA and OA synovium, compared to 
DEGs from SLE vs OA synovium, and characterized by cellular signatures. GSVA of hematopoietic cell types 
(b), cytokine signatures and signaling pathways (c), immune/inflammatory processes (d), anti-inflammatory 
processes (e), and IPA-predicted canonical signaling pathways from DEGs in SLE vs OA synovium (f) was 
conducted on log2-normalized gene expression values from SLE and RA synovium. Hedge’s g effect sizes were 
calculated with correction for small sample size for each gene set and significant differences in enrichment 
between cohorts were found by Welch’s t test (p < 0.05), shown in the panels on the right. Red and blue effect size 
bars represent significant enrichment in SLE or RA, respectively.
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markers was not uniform in either tissue. Nonetheless, HLA-DRhi sublining and CD55+ lining fibroblasts were 
significantly associated with LA (p = 0.00247 and p = 1.39e−04, respectively), whereas the CD34+ and DKK3+ 
sublining populations were depleted in LA compared to RA.

HBEGF+ proinflammatory macrophages and phagocytic macrophages tended to be more enriched in RA 
patients, although not uniformly, whereas quiescent and IFN-activated macrophages were more enriched in 
LA, the latter population reaching statistical significance (see Supplementary Fig. S9 online; p = 0.00857)10,11. 
Interestingly, although serum transfer in K/BxN mice has been used to model RA13, when detected, the normal 
and arthritis murine equivalent macrophage populations trended towards enrichment in LA, including the 
CX3CR1+ lining macrophages12.

Compounds predicted to target LA.  Finally, in addition to analysis of mechanisms involved in LA 
pathogenesis, we aimed to suggest drugs and compounds that could prove useful in the specific treatment of 
arthritis in lupus patients. Drugs predicted to reverse the abnormal gene expression profile of LA were identi-
fied by connectivity mapping to the Library of Integrated Network-Based Cellular signatures (LINCS) database 
(see “Methods”) and are shown in Table 2. Most abundantly predicted compounds include anti-cancer drugs 
targeting tubulin polymerization, MAPK signaling, and EGFR signaling, as well as current lupus standard-of-
care therapies, including corticosteroids and prostaglandin synthesis inhibitors. Interestingly, a few alternative 
medicines were predicted to counteract LA, including capsaicin, resveratrol, and caffeine. In addition to the 
LINCS-predicted compounds, we sought to expand the potential list of therapies to include those targeting 
biological upstream regulators (BURs). The top 50 BURs determined by connectivity scoring with gene expres-
sion generated by knock down or overexpression studies in cell lines are summarized in Fig. 6a along with drugs 
that could potentially directly target these BURs, including TNF, type 1 IFN, bromodomain and casein kinase 
inhibitors. Finally, the UPRs predicted by IPA were also matched with potential targeting drugs (Fig. 6b). Nota-
bly, 26% of drugs targeting IPA upstream regulators were also predicted by LINCS BURs drug–target matches 
(see Supplementary Data S15–16 online), and included inhibitors of TNF, type I interferon, the NFκB pathway, 
JAK, and CDK.

Discussion
Using previously reported data, we applied multiple contemporary bioinformatic approaches to enhance current 
understanding of molecular signatures driving LA pathogenesis. Analyses of DEGs revealed a uniform inflam-
matory infiltrate in LA of mostly myeloid lineage cell types, including monocytes, M1 macrophages, antigen 
presenting cells, and other myeloid and hematopoietic cells. WGCNA indicated enrichment of other immune 
cell types, including activated and effector T-cells, NK cells, B-cells, plasma cells/plasmablasts, and both M1 
and M2-polarized macrophages, suggesting both innate and adaptive mechanisms at play in LA, although the 
involvement of adaptive immune cells was less uniform than that of the innate immune system. Our DE analysis 
confirmed the previous report of an upregulated interferon signature in LA and decreased expression of ECM 
constituents9. Our analysis also confirmed the presence of T-cells, B-cells, plasma cells, and macrophages by 
calculating enrichment (in multiple ways) of gene sets known to be associated with specific cell types, whereas 
the original report indicated the presence of these immune cells by computing semiquantitative scores of singu-
lar cell markers from immunohistochemical staining. We were also able to obtain a more granular view of cell 
types in LA with the identification of M1 and M2 macrophages, neutrophils, granulocytes, activated T-cells, and 
dendritic cells, which suggests a more robust immune infiltrate than originally reported.

Our findings indicated that myeloid-lineage cells were enriched in LA and, therefore, may play a central role 
in the observed inflammation. IPA revealed monocyte/macrophage-mediated phagocytosis and nitric oxide and 
reactive oxygen species production signaling pathways, and GSVA confirmed gene expression profiles of both 
inflammatory M1 and inhibitory M2 macrophages in LA. This aligns with prior histology suggesting the presence 
of infiltrating macrophages9 and recent analysis of myeloid cells in SLE blood associated an M1 inflammatory 
phenotype with active versus inactive disease14. By comparison to single-cell transcriptional profiles from sorted 
murine synovial CD45+Cd11b+Ly6G− cells12, significant enrichment of resident macrophage populations as well 
as non-resident infiltrating populations were identified, as well as anti-inflammatory macrophage subpopulations 
and inhibitory and inflammatory cytokines, indicating that multiple macrophage subtypes and their secreted 
products may contribute to and perhaps protect against LA pathogenesis.

Of particular interest in lupus pathophysiology is the contribution of interferons. The original report of this 
dataset noted significant upregulation of IFI genes through DE analysis confirmed by immunostaining and 
real-time RT-PCR9. Lauwerys et al. (2015) additionally compared gene expression from the same generated 
SLE dataset to RA, OA, psoriatic arthritis, and microcrystalline arthritis synovial gene profiles in which type 
I interferon-induced genes IFI27, ISG15, RAD2, IFI6, IFIT3, and OAS1 were among the top 100 discriminant 
genes defining SLE between the 5 arthritides15. We confirmed this finding in our own differential gene expression 
analysis pipeline and through each individual method employed herein. In addition to enrichment of the core 
type I interferon signature in LA, we also found ongoing signaling by type I, type II, and type III interferons, 
though we could not attribute interferon production to any one cell type.

Fibroblast-unique genes were downregulated in LA, possibly representing local relative loss or diminished/
altered function of resident fibroblasts. Pathologic fibroblast populations, potentially contributing to local tissue 
damage, have been shown to reside in the synovium of patients with leukocyte-rich RA16–18, including a sub-
population of CD34+ sublining fibroblasts, which was decreased in LA. Another fibroblast population enriched 
in leukocyte-rich RA and characterized by higher expression of MHC Class II genes IL6 and CXCL12 appeared 
to also be enriched in LA10. However, this population was mainly characterized by IFN-stimulated and MHC 
Class I/II genes, and, therefore, this signature cannot definitively be attributed to fibroblasts (see Supplementary 
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Fig. S10 online). Furthermore, comparison of SLE and RA synovial gene profiles indicated maintenance of a lin-
ing CD55+ fibroblast layer in LA and tissue repair/destruction mechanisms in RA. Therefore, LA may differ from 
RA and OA in which joint organ pathology is characterized by fibroblast-mediated tissue damage and, rather, be 
characterized by a loss of function or dysregulation of proinflammatory fibroblasts with destructive potential.

LA may also differentiate from RA in its immune cellularity and composition. A greater number of genes 
were found significantly altered in LA than in RA but a smaller portion of these transcripts could be attributed 

Table 2.   Compounds targeting LA. Compounds predicted by LINCS to oppose the LA gene signature were 
summarized by their drug targets for every target with at least two compounds. Compounds were analyzed if 
corresponding connectivity scores fell in the range of − 75 to − 100 to reflect most opposite gene signatures and 
if the connectivity of antagonists and agonists of the same target were acting in opposite directions. Top LINCS 
Drug represents the most negative-scoring compound for a specific target category. Related drug represents 
the most immunologically relevant or well-known drug for a specific target category. Where applicable, CoLTS 
scores (range − 16 to + 11)45 are displayed as integers in superscript. R receptor; Ppreclinical (animal model); 
‡drug in development/clinical trials; †FDA-approved.

Target Count Range Mean ± SEM Top LINCS drug Related drug

PKC 2 (− 97.13)–(− 99.70) − 98.41 ± 1.28 Enzastaurin‡ Midostaurin†1

GSK3 5 (− 81.19)–(− 99.96) − 95.05 ± 3.56 SB-216763P Enzastaurin‡

RAF 3 (− 89.13)–(− 98.35) − 94.91 ± 2.91 Vemurafenib†−6 Sorafenib†−3

CDK 4 (− 81.19)–(− 99.96) − 92.59 ± 4.49 SB-216763P Palbociclib†3

GR agonist 11 (− 83.48)–(− 97.95) − 91.61 ± 1.53 Dexamethasone† Prednisone†

ROCK1/2 3 (− 90.80)–(− 91.72) − 91.15 ± 0.288 Fasudil‡ KD025†7

Cholinesterase 2 (− 88.16)–(− 93.36) − 90.76 ± 2.60 Mestinon† Isoflurophate†

Retinoid R agonist 4 (− 81.80)–(− 95.44) − 90.76 ± 3.05 TTNPBP Acitretin†

VEGFR 2 (− 83.38)–(− 97.26) − 90.32 ± 6.94 Sorafenib†−3 Sunitinib†0

MAP2K1/2 6 (− 80.48)–(− 98.40) − 90.17 ± 2.64 Selumetinib† Vemurafenib†−6

MAPK 4 (− 86.79)–(− 95.39) − 90.00 ± 1.92 FR-180204P Losmapimod‡

mTORC1/2 2 (− 88.13)–(− 91.07) − 89.60 ± 1.47 Sirolimus†−2 N-acetyl cysteine†3

EGFR 6 (− 79.42)–(− 99.14) − 89.58 ± 3.13 Lapatinib†0 Gefitinib†1

Tyrosine kinase 3 (− 81.70)–(− 97.26) − 89.49 ± 4.49 Sorafenib†−3 Nilotinib†0

Tubulin 14 (− 82.65)–(− 96.56) − 88.98 ± 1.24 Epothilone‡ Albendazole†

b2 adrenergic R agonist 3 (− 82.19)–(− 90.15) − 88.82 ± 2.58 Isoxsuprine‡ Albuterol†

5 alpha reductase 2 (− 86.29)–(− 91.18) − 88.73 ± 2.44 Alpha-estradiolP Acexamic acid†

TRPV agonist 2 (− 80.20)–(− 97.26) − 88.73 ± 8.53 Capsaicin† Evodiamine

PARP 6 (− 77.24)–(− 98.35) − 88.28 ± 3.17 Rucaparib† Niraparib†3

Angiotensin R 2 (− 84.35)–(− 92.20) − 88.28 ± 3.93 Candesartan† Azilsartan†

P450 3 (− 81.70)–(− 92.02) − 87.53 ± 3.06 ProadifenP Resveratrol†4

Androgen R 5 (− 81.04)–(− 96.04) − 87.36 ± 2.70 BMS-641988‡ Apalutamide†

Na channel 9 (− 79.66)–(− 98.23) − 87.05 ± 1.95 PhenamilP Benzocaine†

HIV protease 2 (− 86.19)–(− 87.78) − 86.98 ± 0.79 Lopinavir† Nelfinavir†2

TGFBR 3 (− 80.73)–(− 98.13) − 86.93 ± 5.61 SB-525334 Pirfenidone†

PI3K (pan) 2 (− 84.70)–(− 88.90) − 86.80 ± 2.10 PIK-90P Idelalisib†1

HMG-CoA reductase 4 (− 76.32)–(− 93.09) − 86.47 ± 3.62 Atorvastatin†3 Rosuvastatin†3

PRKDC 3 (− 83.42)–(− 90.00) − 86.04 ± 2.02 NU-7026P Caffeine

PDE 6 (− 77.14)–(− 95.12) − 85.63 ± 3.29 BucladesineP Dipyridamole†4

MDM 2 (− 75.96)–(− 94.33) − 85.15 ± 9.18 Serdemetan‡ Idasanutlin‡

NSAID/prostaglandin 9 (− 76.19)–(− 95.07) − 84.93 ± 1.97 SC-560P Aspirin†

HDAC 2 (− 79.79)–(− 90.05) − 84.92 ± 5.13 Valproic acid†2 Vorinostat†6

ACE 2 (− 81.90)–(− 86.18) − 84.04 ± 2.14 Enalapril† Alacepril†

DHFR 2 (− 75.51)–(− 92.42) − 83.96 ± 8.45 Pyrimethamine† Methotrexate†1

AMPA R agonist 2 (− 79.16)–(− 84.63) − 81.90 ± 2.74 Nobiletin Aniracetam†

Topoisomerase II 3 (− 77.89)–(− 88.85) − 81.87 ± 3.50 Razoxane‡ Doxorubicin†

IGF1R 2 (− 78.32)–(− 83.82) − 81.07 ± 2.75 GSK-1904529AP Ceritinib†−4

HSP90AA1 2 (− 76.84)–(− 85.28) − 81.06 ± 4.22 GeduninP Rifabutin†

NAMPT 2 (− 76.91)–(− 84.58) − 80.75 ± 3.83 FK-866‡ GMX-1778‡

Calcineurin 2 (− 79.03)–(− 80.44) − 79.73 ± 0.70 Cyclosporine†−5 Tacrolimus†5

DNMT 2 (− 75.19)–(− 83.44) − 79.31 ± 4.12 Decitabine† Azacitidine†

Carbonic anhydrase 2 (− 78.54)–(− 78.81) − 78.67 ± 0.13 Chlortalidone† Acetazolamide†
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Figure 6.   LINCS biological upstream regulators and IPA upstream regulators operative in LA are potential 
druggable targets. (a) The top 50 targets (BURs) opposing the LA gene signature from LINCS knock down (KD) 
and overexpression (OE) assays summarized by connectivity score and matched to appropriate targeting drugs. 
KD and OE data were filtered for connectivity scores in the [− 75 to − 100] and [50 to 100] ranges, respectively. 
The heatmap was generated using the R suite and Bioconductor package gplots 3.0.3 (https​://CRAN.R-proje​
ct.org/packa​ge=gplot​s). (b) The consensus IPA-predicted UPRs between DEGs and LA-associated WGCNA 
modules summarized by Activation Z-Score, functional category, and also matched to appropriate targeting 
drugs. Drugs and compounds targeting the BURs and UPRs were sourced from LINCS/Connectivity Map-
Linked User Environment (CLUE), IPA, literature mining, CoLTS45, STITCH, and clinical trials databases. Drug 
annotations are grouped together by target and CoLTS scores (range − 16 to + 11) are displayed as integers in 
superscript. Some upstream regulators are matched to groups of drugs (e.g., NFκB pathway inhibitors, bold, 
italicized), for which the full list of drug–target matches can be found in Supplementary Data S15–16 online. 
PPreclinical; ‡drug in development/clinical trials; †FDA-approved.

https://CRAN.R-project.org/package=gplots
https://CRAN.R-project.org/package=gplots
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to immune/inflammatory cell populations, indicating an overall greater immune infiltrate in RA than in LA. Of 
the immune/inflammatory cell-specific transcripts identified, RA upregulated DEGs indicated increased T-cells, 
B-cells, NK/NKT-cells, and other lymphocytes, whereas LA upregulated DEGs were more characteristic of 
monocytes/macrophages and myeloid cells. Thus, LA may be more myeloid-mediated than RA. GSVA replicated 
this finding with significant upregulation of the core type I interferon signature, antigen presentation signature, 
inflammasome pathways, and monocyte/macrophage cell populations in LA including, notably, more inhibi-
tors of inflammation. Specific macrophage and dendritic cell subsets originally identified in mouse synovium12 
were also more enriched in LA. Interestingly, the downstream TNF, IL-1, and IL-6 signatures tended to be more 
enriched in LA than RA, indicating potential for repurposing anti-TNF biologics, the IL-1 antagonists anakinra 
and canakinumab, and IL-6R antagonist tocilizumab to treat LA.

Based on our data, TNF and IL-1 appear to have similar proinflammatory roles in driving LA. TNF and its 
receptors have been reported to be elevated in the serum of active SLE patients19, although treatment of SLE by 
TNF-blockers has been controversial up to this point. Anti-TNF therapies have, in some cases, induced lupus-like 
disease through skin manifestations and elevation of autoantibody levels and may exacerbate systemic disease 
through induction of apoptosis leading to increased exposure of nuclear antigens20–23. However, TNF neutralizing 
agents, including etanercept and infliximab, have been claimed to successfully treat LA22–24 and in a long-term 
observational study, only minor side effects and infrequent adverse events were observed24. Similarly, serum IL-1 
levels have also been reported to correlate with disease activity25. TNF and IL-1 share several functions including 
promotion of local inflammation and induction of the expression of adhesion molecules and cytokines to attract 
proinflammatory leukocytes to sites of inflammation26. Two studies of small numbers of SLE patients indicated 
safety, tolerability, and overall efficacy of anakinra, one of which was focused on treating LA27,28. Controlled trials 
are necessary to inform further potential of inhibiting the TNF and IL-1 signaling axes in LA.

The detection of Ig heavy chain pre- and post-switch plasma cells in LA was notable. IRF4, XBP1, and PRDM1, 
genes essential for plasma cell maturation29, were all detected in LA. There was some evidence of GC formation 
in LA, but BCL6, AICDA, and RGS13 were not upregulated nor detected in an LA-associated WGCNA module. 
However, CXCL13, encoding a chemoattractant that has been reported in RA synovial GCs30, was strongly 
upregulated. These findings suggest that fully-developed GCs are not a routine part of LA. Rather, it is more likely 
that lupus synovium contains lymphoid aggregates that support B-cell proliferation and autoantibody formation, 
as reported in the spleen in immune thrombocytopenia31. An interesting caveat to our data is the strong negative 
correlations of the midnightblue module, which contains the plasma cell signature, to SLEDAI and anti-dsDNA, 
whilst being positively correlated to LA. This suggests that the presence of plasmablasts/plasma cells in lupus 
synovium may not contribute significantly to systemic autoantibody levels and extra-articular lupus disease 
activity. Rather, the nature of the local inflammation may facilitate entry of circulating plasmablasts/plasma cells 
into the synovial space and/or their local differentiation.

The overexpression of numerous chemokines and chemokine receptors suggests chemokine signaling may 
play an important role in the infiltration of immune/inflammatory cells into lupus synovium. CXCR3 and its 
ligands CXCL9, CXCL10, and CXCL11 were all found upregulated and co-expressed in the midnightblue mod-
ule, which contained a robust lymphocyte signature. This signaling axis is known to be induced by IFNγ and 
is involved in the recruitment of activated lymphocytes, particularly of naïve T-cells and their differentiation 
into T helper type I (Th1) cells32. CXCR3 and CXCR4, both of which were upregulated in LA, are additionally 
important for the homing and maintenance of plasma cells33. These chemokine receptors could be involved in 
the recruitment of circulating plasmablasts/plasma cells into lupus synovium and/or their in situ retention and/
or differentiation34–36. Other chemokines and their receptors such as CCR5–CCL4/CCL5 could contribute to 
recruitment of other leukocytes into the synovium, including macrophages, monocytes, and T-cells37.

We utilized gene expression analysis to predict novel drugs that might target abnormally expressed genes or 
pathways and suppress inflammation. Predicted drugs and compounds identified novel potential therapies, but 
also confirmed current treatments by identifying standard-of-care lupus drugs such as glucocorticoids, metho-
trexate, aspirin, and cyclosporine. Notably, a large number of anti-cancer drugs with variable mechanisms of 
action were also predicted.

Drugs targeting the CDK family were predicted to revert the LA gene signature and may point to potential 
repurposing of drugs such as palbociclib or related seliciclib and other CDK inhibitors that have been shown 
to ameliorate nephritis in animal models38, possibly by reducing proliferation of lupus T- and B-cells in vitro39. 
Similarly, bucladesine was one of six phosphodiesterase inhibitors predicted to suppress LA. Other novel drug-
gable therapeutic targets include GSK3, PARP1 and PARP2, and HDAC.

Notably, a large number of sodium channel blockers were predicted to target LA, possibly related to increased 
nervous innervation of the inflamed synovium. Neurologic targets included the acetylcholine, adrenergic, and 
glutamate receptors. These may have been predicted based on changes in the innervation of the inflamed tissue, 
although an effect on immune/inflammatory cells is also possible40.

There are several limitations to this study that need to be addressed. First, of importance, is the small size 
of the dataset. Although we have made statistical corrections for small sample size throughout our analyses as 
needed, these findings require validation in a larger cohort of LA patients. However, there are no other SLE 
synovium gene expression data that we know of and biopsy of lupus synovitis is rare. Second, given the nature of 
the bulk microarray data, identification of discrete cell types present is not certain and we have relied on specific 
transcriptomic signatures to identify relevant immune and inflammatory cell subtypes. As such, comparison 
to signatures identified by scRNA-seq must be interpreted with caution. Finally, of note, is that the majority of 
our analyses use OA as a noninflammatory arthritis comparator in the absence of healthy synovium samples.

Bioinformatic analysis of LA revealed a pattern of immunopathogenesis in which myeloid cell-mediated 
inflammation dominates. The breadth of the immune response underlying LA provides a basis for multiple 
avenues of therapeutic intervention to be considered that mouse models and previous studies have not provided. 
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With these findings we can begin to hypothesize specific candidate target genes and pathways from which to 
develop or repurpose drugs to treat and improve LA specifically.

Methods
Gene expression data sourcing and patient characteristics.  All data analyzed in this study were 
obtained from a publicly available gene set from synovial biopsies (NCBI Gene Expression Omnibus (GEO) 
GSE36700)8. No additional patient samples were employed. The SLE patients assessed had a mean (± s.d.) age of 
32 years (9.49), SLEDAI of 8.25 (1.71), CRP of 12.5 mg/L (4.12), C3 of 82.5 mg/dL (28.0), C4 of 13 mg/dL (3.56) 
and anti-dsDNA of 97.6 IU/mL (77.0), and all patients had active arthritis at the time biopsy was taken. Com-
plete patient data can be found in Supplementary Table S1 online. Data processing and analysis were conducted 
within the R statistical programming platform using relevant Bioconductor packages.

Data normalization.  All raw data files underwent background correction and GCRMA normalization 
resulting in log2 intensity values compiled into expression set objects (e-sets). Outliers were identified through 
the inspection of first, second, and third principal components and through inspection of array dendrograms 
calculated using Euclidean distances and clustered using average/UPGMA agglomeration. GSM899013_OA5 
was consistently identified as an outlier and excluded from further analyses. Low intensity probes were removed 
by visual assignment of a 2.34 threshold cutoff upon a histogram of binned log2-transformed probe intensity 
values.

Differential gene expression.  Identification of DEGs in SLE vs OA samples (n = 8) and RA vs OA samples 
(n = 11) was conducted using the LIMMA package in R. To increase the probability of finding DEGs, both Affy-
metrix chip definition files (CDFs) and BrainArray CDFs were used to create and annotate e-sets, analyzed sepa-
rately, then results merged. Linear models of normalized gene expression values were created through empirical 
Bayesian fitting. Resultant p-values were adjusted for multiple hypothesis testing using the Benjamini–Hochberg 
correction. Significant probes were filtered to retain a pre-specified False Discovery Rate (FDR) < 0.2 and dupli-
cate probes were removed again to retain the most significant probe. The FDR was assigned a priori to avoid 
excluding false negative probes. The full list of DEGs can be found in Supplementary Data S1–2 online.

Weighted gene co‑expression network analysis (WGCNA).  The same normalized and filtered data 
(Affy CDFs only) were inputted into WGCNA to conduct an unsupervised clustering analysis yielding statisti-
cally co-expressed modules of genes used for further biological interrogation. Low-intensity probes were filtered 
as described to remove noise and help optimize the quality of the co-expression network. A scale-free topology 
matrix (TOM) was calculated to encode the network strength between probes with a soft thresholding power of 
30. TOM distances were used to cluster probes into WGCNA modules. Resulting co-expression networks were 
trimmed using dynamic tree cutting and the deepSplit function in R. Partitioning around medoids (PAM) was 
also utilized to assign outliers to the nearest cluster. The resulting network was formed with a minimum module 
size of 100, cut height of 1, and merge height of 0.2. Modules were given random color assignments and expres-
sion profiles summarized by a module eigengene (ME). Final membership of probes representing the same gene 
were decided based on strongest within-module correlation to the ME value. For each module, ME values were 
correlated by Pearson correlation to clinical data including cohort, SLEDAI, anti-dsDNA, C3, C4, and CRP lev-
els. Cohort was represented as a binary variable where SLE = 1 and OA = 0 whereas the remaining clinical data 
were continuous variables. Full module gene lists can be found in Supplementary Data S8–13 online.

Quality control (QC) and selection of WGCNA modules.  WGCNA modules of interest underwent 
a QC process to ensure modules were reflective of disease state. First, ME expression per patient was visually 
inspected to assess consistency of gene expression in a given cohort. Second, module membership, or eigengene-
based connectivity (kME), was plotted against probe correlation to the primary clinical trait of interest (SLEDAI) 
to gauge how well a given module agreed to the clinical trait. Finally, the Pearson correlations of MEs to the 
clinical metadata were examined. Absolute values of correlation coefficients in the range 0.5–1 were considered 
strong and alpha = 0.05 determined significance.

Functional analysis.  Immune/Inflammation-Scope (I-Scope) and Biologically Informed Gene Cluster-
ing (BIG-C) are functional aggregation tools for characterizing immune cells by type and biologically classify-
ing large groupings of genes, respectively. I-Scope categorizes gene transcripts into a possible 32 hematopoietic 
cell categories based on matching 926 transcripts known to mark various types of immune/inflammatory cells. 
BIG-C sorts genes into 52 different groups based on their most probable biological function and/or cellular/sub-
cellular localization. Tissue-Scope (T-Scope) is an additional aggregation tool to characterize cell types found in 
specific tissues. In these analyses only the two T-Scope categories relevant to the synovium were used: fibroblasts 
and synoviocytes. I-Scope and T-Scope were utilized to calculate enrichment of cellular signatures and BIG-C 
was utilized to calculate enrichment of functional signatures of the LA gene expression profile.

Network analysis.  Cytoscape (V3.6.1) software was used to visualize protein–protein interactions based 
on the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database via the stringApp plugin 
application. A confidence score of 0.40 was used. The clustermaker2 plugin application was used to created 
MCODE clusters of interrelated genes using a network scoring degree cutoff of 2, node score cutoff of 0.2, maxi-
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mum depth of 100, and k-Core of 2. Genes not recognized by the STRING database were removed from datasets 
prior to upload into Cytoscape.

Ingenuity pathway analysis (IPA).  The canonical pathway and UPR functions of IPA core expression 
analysis (Qiagen) were used to interrogate DEGs and WGCNA module gene lists. Core expression analyses were 
based on fold change if uploaded genes were differentially expressed; otherwise, a fold change of one was used. 
Canonical pathways and UPRs were considered significant if |Activation Z-Score| ≥ 2 and overlap p-value < 0.01.

Gene set variation analysis (GSVA).  The GSVA R package was used as a non-parametric, unsupervised 
gene set enrichment method. Enrichment scores were calculated using a Kolgomorov Smirnoff (KS)-like ran-
dom walk statistic to estimate variation of pre-defined gene sets. The inputs for the GSVA algorithm were e-sets 
containing log2 microarray expression values (Affy HGU133plus2 definitions) and pre-defined gene sets co-
expressed in SLE datasets. Low-intensity probes were filtered out based on interquartile range (IQR)41. GSVA 
was conducted on the remaining network and Welch’s t test was used to detect significant differences in enrich-
ment between cohorts at an alpha level of 0.05, followed by calculation of Hedge’s g effect size with correction 
for small samples. Welch’s t test was used to account for unequal variances in both the SLE and OA populations 
and RA and OA populations.

Enrichment gene sets containing cell type- and process-specific genes listed in Supplementary Data S14 
online were created through an iterative process of identifying DE transcripts pertaining to a restricted profile 
of hematopoietic cells in 13 SLE microarray datasets and checked for expression in purified T-cells, B-cells, 
and monocytes to remove transcripts indicative of multiple cell types. Genes were identified through literature 
mining, gene ontology (GO) biological pathways, and STRING interactome analysis as belonging to specific 
categories42. Select gene sets were derived directly from in vitro experiments43,44. The M1 signature was edited 
to remove interferon stimulated genes. Additionally, IL-1 and IL-6 gene sets were derived from the first three 
tiers of the respective PathCards signaling pathways.

Co‑expression analysis.  Co-expression analyses of literature-derived signatures published in mouse and 
human synovium were conducted in R. Briefly, Spearman’s rank correlation coefficients and p-values were com-
puted using the rcorr() function based upon input log2 expression values for each gene in each SLE and OA 
sample. Spearman correlations were chosen to avoid assuming linear relationships. The input gene signature 
was refined to contain genes significantly correlating with at least 25% of the original gene signature at an alpha 
level of 0.05, then refined again to contain genes positively correlated with at least 25% of the new signature (i.e., 
Spearman’s rho > 0). The final co-expressed signatures were used as GSVA gene sets. Mouse to human ortholog 
conversion was done using the homologene R package.

LINCS drug–target prediction and biological upstream regulator analysis.  The LINCS perturba-
tion database (https​://data.lincs​cloud​.org.s3.amazo​naws.com/index​.html) is a database of transcriptional signa-
tures generated from functional perturbations (i.e., gene overexpression, gene knockdown, or treatment with 
drugs/compounds) in over 25 reference cell lines to which a user can upload and compare a gene expression 
signature of interest and determine connectivity scores to specific perturbations. We queried this connectivity 
mapping database using a list of significantly up- and down-regulated genes from the SLE and OA samples. 
Comparisons were made based on the LINCS-computed connectivity scores, where − 100 describes a transcrip-
tional program perfectly opposing the user-uploaded gene signature and 100 describes a transcriptional pro-
gram perfectly representative of the user-uploaded gene signature. BURs were identified by the knocked-down 
and overexpressed gene transcripts that resulted in connectivity scores in the − 75 to − 100 and 50 to 100 ranges, 
respectively. Compounds resulting in connectivity scores in the − 75 to − 100 ranges were analyzed and sum-
marized by drug target.

Drug–target matching.  LINCS-predicted BURs and IPA-predicted UPRs were annotated with respective 
targeting drugs and compounds to elucidate potential useful therapies in lupus synovitis (see Supplementary 
Data S15–16 online). Drugs targeting gene products of interest both directly and indirectly were sourced by 
IPA, the Connectivity Map via the drug repurposing tool, GeneCards, Search Tool for Interactions of Chemicals 
(STITCH) database (V5.0), Combined Lupus Treatment Scoring (CoLTS)-scored drugs45, FDA labels, Drug-
Bank, literature mining, and queries of clinical trials databases. The drug repurposing tool was accessed at https​
://clue.io/repur​posin​g-app.

STITCH.  The (STITCH) (V5.0) database (https​://stitc​h.embl.de/) of known and predicted protein–protein 
and protein–chemical interactions was used to predict direct and indirect drug targeting mechanisms. For each 
gene product of interest, the top 10 interactors were analyzed and drugs directly targeting the top interactors 
were matched according to the methods described. A medium confidence score cutoff of 0.4 for interaction pre-
dictions was used. Predicted interactions based solely on text-mining were not considered.

Statistical analysis.  Enrichment statistics in SLE vs OA were calculated by right-sided Fisher’s Exact Test 
in R using the function fisher.test(). Statistical significance was obtained at p < 0.05.

https://data.lincscloud.org.s3.amazonaws.com/index.html
https://clue.io/repurposing-app
https://clue.io/repurposing-app
https://stitch.embl.de/
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Data availability
The dataset analyzed during the current study is available in the NCBI GEO repository, https​://www.ncbi.nlm.nih.
gov/geo/query​/acc.cgi?acc=GSE36​700. Additional data generated from analyses are included in this published 
article (and its Supplementary Information files).
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