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Abstract: Diabetic kidney disease (DKD) remains the leading cause of end-stage kidney disease
despite decades of study. Alterations in the glomerulus and kidney tubules both contribute to the
pathogenesis of DKD although the majority of investigative efforts have focused on the glomerulus.
We sought to examine the differential expression signature of human DKD in the glomerulus and
proximal tubule and corroborate our findings in the db/db mouse model of diabetes. A transcrip-
togram network analysis of RNAseq data from laser microdissected (LMD) human glomerulus and
proximal tubule of DKD and reference nephrectomy samples revealed enriched pathways including
rhodopsin-like receptors, olfactory signaling, and ribosome (protein translation) in the proximal
tubule of human DKD biopsy samples. The translation pathway was also enriched in the glomerulus.
Increased translation in diabetic kidneys was validated using polyribosomal profiling in the db/db
mouse model of diabetes. Using single nuclear RNA sequencing (snRNAseq) of kidneys from db/db
mice, we prioritized additional pathways identified in human DKD. The top overlapping pathway
identified in the murine snRNAseq proximal tubule clusters and the human LMD proximal tubule
compartment was carboxylic acid catabolism. Using ultra-performance liquid chromatography–mass
spectrometry, the fatty acid catabolism pathway was also found to be dysregulated in the db/db
mouse model. The Acetyl-CoA metabolite was down-regulated in db/db mice, aligning with the
human differential expression of the genes ACOX1 and ACACB. In summary, our findings demon-
strate that proximal tubular alterations in protein translation and carboxylic acid catabolism are key
features in both human and murine DKD.

Keywords: gene expression signature; single nuclear RNA sequencing; metabolomics; ribosomal profiling

1. Introduction

Diabetes mellitus (DM) afflicts over 400 million people worldwide [1] and over
30 million in the US [2]. Diabetic kidney disease (DKD) is one of the most serious com-
plications of DM, affecting 19 million people in the United States [3], and is the leading
cause of end-stage kidney disease (ESKD) [4]. DKD is classically viewed as a glomerular
disease; however, focusing solely on glomerular pathology as the primary site of injury
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overlooks key biological alterations in the tubulointerstitial compartment that contribute to
the pathophysiology of DKD [5]. Indeed, the prognosis and progression of DKD frequently
parallel tubular atrophy and the extent of interstitial disease [6,7]. Further germane to
this point is evidence that targeting the proximal tubule with SGLT2 inhibitors slows the
progression of DKD [8].

The cellular mechanisms leading to the development and progression of DKD are
admittedly complex. The diabetic milieu is characterized by metabolic abnormalities,
inflammation, oxidative stress, and alterations in protein homeostasis. All of these derange-
ments contribute to cell stress and the development of DKD. There is growing evidence
that altered translation, the fundamental step in gene expression that creates functional
proteins, is important in both responding and contributing to cell stress [9,10]. Alterations
in translation contribute to imbalances in protein homeostasis and impact human health
and disease [11–14].

Interrogation of human kidney biopsy specimens routinely utilizes light microscopy,
transmission electron microscopy, and immunoreactions to enable the pathologist to render
a diagnosis and prognosis. However, these diagnostic tools have limitations in uncovering
the molecular mechanisms underlying kidney disease including DKD. Consequently, ani-
mal models of DM have historically been used to study the pathophysiological mechanisms
of DKD; however, none of these models appropriately simulate human DKD [15]. Although
recent efforts to apply more advanced molecular interrogation techniques to human kidney
biopsy specimens are encouraging [16], we believe using animal models in parallel with
human kidney tissue remains an important experimental approach to provide unique
insights into the molecular underpinnings of DKD.

We sought to examine the differential expression signature of human DKD in the
glomerulus and proximal tubule. We hypothesized that the proximal tubular transcrip-
tomic signature, in addition to that of the glomerulus, also determines DKD outcomes.
We addressed this hypothesis by interrogating human kidney biopsy specimens with
laser microdissection of glomerular and proximal tubular regions to identify pathways
associated with DKD and its progression. Next, key pathways were corroborated in a
diabetic mouse model using a multi-modal approach of single nuclear RNA sequencing
(snRNAseq), polyribosomal profiling, and metabolomics. In addition to derangements in
protein translation, our findings support a potential role of carboxylic acid metabolism as a
key factor in diabetic kidney disease progression.

2. Materials and Methods
2.1. Human Subjects

This study was approved by the Institutional Review Board of Indiana University
School of Medicine (IRB no. 190657223). Twenty-seven kidney samples were obtained
from the Kidney Precision Medicine Project Consortium and the Biopsy Biobank Cohort of
Indiana [17]. Kidney biopsies were indication biopsies for proteinuria or a decline in renal
function in subjects with diabetes mellitus. Eighteen samples were acquired from adults
with diabetic kidney disease and without a second glomerular lesion. Nine reference sam-
ples without histologic evidence of DKD were acquired from non-neoplastic parenchyma
of nephrectomy specimens or deceased donors. Clinical and histopathologic variables were
extracted from the electronic health record. The baseline estimated glomerular filtration
rate (eGFR) was defined as the value closest to the date of biopsy unless a 20% or greater
decline in eGFR precipitated biopsy referral. In this scenario, an eGFR within 1 year prior
to biopsy and before the 20% decline was set as the baseline for progression calculations.

2.2. Laser Microdissection of Human Kidney Tissue and RNA-Sequencing

Cryosections of 12 µm thickness were cut from frozen tissue blocks preserved in
Optimal Cutting Temperature medium, adhered to polyphenylene sulfide (PPS) membrane
slides, and processed using a Rapid Stain protocol as previously described [18,19]. A
minimum area of 500,000 µm2 was dissected for glomerular and proximal tubular compart-
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ments using the pulsed UV laser on the Leica LMD6500 and a 20× objective. Dissected
tissue was collected in a sterile RNAse-free tube containing RNA Extraction Buffer and
RNA was isolated according to the manufacturer’s instructions (Arcturus PicoPure RNA
Isolation Kit, ThermoFisher, Waltham, MA, USA). RNA quality was determined using
Agilent 2100 Bioanalyzer.

Sequencing was performed at the Indiana University Center for Medical Genomics
Core. Ribosomal RNA was depleted using the RiboGone—Mammalian Kit protocol (Cat
#634847, Takara Bio USA, Mountain View, CA, USA). The SMARTer Universal Low Input
RNA Kit protocol v2 (Cat #634938, Takara Bio USA, Mountain View, CA, USA) was used
for cDNA synthesis and library construction. Sequencing was performed with 2 × 75 bp
paired-end configuration on the Illumina HiSeq 4000 using the HiSeq 3000/4000 PE SBS Kit,
and the sequenced data were mapped to the hg38 genome using STAR. Uniquely mapped
sequencing reads were assigned to the hg38 reference genome genes using Rsubread
featureCounts [20,21].

2.3. Animal Study Approvals

All animal protocols were approved by the Indiana University Institutional Animal
Care Committee and conform to the National Institutes of Health Guide for the Care
and Use of Laboratory Animals. For bulk RNA-sequencing, polyribosomal profiling, and
metabolomics, male mice strains C57BL/6J (#000664, background control/C57 mice) and
B6.BKS–Leprdb/J (#000697, db mice) were obtained from the Jackson Laboratory (Bar
Harbor, ME, USA). Mice were aged 9–12 weeks and weighed ~30 g (C57 mice) or 40–50 g
(db mice). Mice were sacrificed and kidneys harvested (n = 4 or 5 per group).

2.4. Isolation of Mouse Kidney Tissue and Bulk RNA-Sequencing

Kidneys were snap-frozen and RNA was extracted using a QIAGEN RNeasy Plus Midi
Kit with a genomic DNA removal column. RNA quality was determined using an Agilent
2100 Bioanalyzer. The Illumina TruSeq Stranded mRNA Library Prep Kit was used for
library construction. Sequencing was performed with 2 × 75 bp paired-end configuration
on Illumina HiSeq 4000 using the HiSeq 3000/4000 PE SBS Kit, and the sequenced data
were mapped to the mm10 genome using STAR. Uniquely mapped sequencing reads were
assigned to the mm10 reference genome genes using Rsubread featureCounts.

2.5. Isolation of Mouse Kidney Tissue and Single-Nuclear RNA-Sequencing

Mice aged 5, 8, 11, 16, and 20 weeks were evaluated (n = 5 total, BKS.Cg-Dock7m+/+
Leprdb/J #000642). Heterozygotes from the same strain were used as background controls
(n = 3). Urine albumin was measured by a mouse albumin ELISA kit (Bethyl Laboratories,
E99-134, Montgomery, TX, USA) and urine creatinine was measured by a QuantiChrom
creatinine assay kit (Bioassay System, DICT-500, Hayward, CA, USA). On ice, a portion
of each kidney was added to 1 mL of Nuclei EZ lysis buffer supplemented with 2%
protease inhibitor (Thermofisher), and 1% Superase (Thermofisher). After mincing, 1 mL of
buffer was added and tissue was homogenized using the KONTES Dounce Tissue Grinder
(Kimble Chase, Rockwood, TN, USA). Homogenate was gently mixed with 2 mL of buffer
and incubated on ice for 5 min. Homogenate was filtered through a 40 µm strainer and
treated with lysis buffer supplemented with 1% Superase, then filtered again through a
30 µm strainer, and subsequently resuspended in PBS supplemented with 2% BSA and 1%
Superase. This suspension was then filtered through a 5 µm filter and the concentration
was adjusted to 1–3 million nuclei/mL prior to submission for sequencing.

Single nuclear 3′ RNA-sequencing was performed at the Indiana University Center
for Medical Genomics Core using the Chromium single-cell system version 3 (10× Ge-
nomics, San Francisco, CA, USA) and the NovaSeq6000 sequencer (Illumina, San Diego,
CA, USA). Cell Ranger 4.0 was utilized to generate sample-specific FASTQ files and reads
were aligned to the mm10 reference genome using STAR. Seurat v 3.0.1 was used to inte-
grate samples using the following quality control metrics: included gene counts between
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200–3000 and percent mitochondrial gene less than 50%. In total, 58,405 cells were retained
for downstream analysis. Standard preprocessing, feature selection, dimension reduction
(20 principal components), identification of anchors between samples, and integration were
performed according to Seurat v3 anchoring methods. Clusters were annotated based on
common gene expression markers [22] and using Kidney Cell Explorer [23].

2.6. Isolation of Mouse Kidney Tissues and Polyribosomal Profiling

Background control and db mice were sacrificed at 9 and 12 weeks of age. Cardiac
perfusion via the left ventricle was performed with 6 mL of cycloheximide (100 µg/mL
in PBS). Harvested kidneys were immediately placed in a lysis buffer consisting of 1%
Triton X-100, 0.1% deoxycholate, 20 mM Tris-HCl, 100 mM NaCl, 10 mM MgCl2, EDTA-free
Protease Inhibitor Cocktail Tablet (Roche, Penzberg, Germany), 50 µg/mL cycloheximide,
and RNAsin (1:500 dilution). Tissues were homogenized at 4 ◦C using a Precellys tissue
homogenizer (Precellys, Montigny-le-Bretonneux, France). Tissue homogenates were
incubated on ice for 10 min, then centrifuged at 9600× g for 10 min. The supernatant was
added to the top of a sucrose gradient generated by BioComp Gradient Master (10% sucrose
on top of 50% sucrose in 20 mM Tris-HCl, 100 mM NaCl, 5 mM MgCl2, and 50 mg/mL
cycloheximide) and centrifuged at 284,000× g for 2 h at 4 ◦C. The gradients were harvested
from the top in a Biocomp harvester (Biocomp Instruments, Fredericton, NB, Canada),
and the RNA content of eluted ribosomal fractions was continuously monitored with UV
absorbance at 254 nm.

2.7. Metabolomics

To assess metabolomic signatures, samples of background control and db mice (n = 5
per group) were prepared using the automated MicroLab STAR® system (Hamilton Com-
pany, Reno, NV, USA). Metabolomic analysis was performed at Metabolon Inc. Briefly,
snap-frozen kidney tissues were processed following the Metabolon standard extraction
method as per company protocol. The extracts were analyzed on a Waters ACQUITY
ultra-performance liquid chromatography (UPLC) with a C18 column (Waters UPLC BEH
C18-2.1 × 100 mm, 1.7 µm) and a Thermo Scientific Q-Exactive high resolution/accurate
mass spectrometer interfaced with a heated electrospray ionization (HESI-II) source and
Orbitrap mass analyzer operated at 35,000 mass resolution.

Raw data were extracted, peak-identified and QC processed using Metabolon’s
(Durham, NC, USA) hardware and software. Peaks were quantified using area-under-
the-curve. Standard statistical analyses with Welch’s two-sample t-test was performed in
ArrayStudio on log-transformed data.

2.8. Differential Gene Expression, Pathway Analysis, and Statistics

Human LMD and mouse kidney tissue expression data from RNA-sequencing was
quantile normalized and differential expression was determined using an exact test in
edgeR with p values < 0.05 considered statistically significant after Benjamini–Hochberg
false discovery rate (FDR) multiple testing correction. For mouse kidney samples that
underwent snRNA-sequencing, differential expression was determined using a Wilcoxon
Rank Sum test with Bonferroni adjusted p values < 0.05 considered statistically significant.
However, uncorrected p-values are provided in the manuscript.

Gene expression data were investigated for enriched pathways in Gene Ontology, Kegg,
and Reactome using a transcriptogram network analysis as previously described [19,24–26].
Briefly, all protein-coding genes, regardless of p-value, are ordered by protein–protein inter-
action networks. A Monte Carlo algorithm was used to cluster genes by shared biological
functions. Significance is determined using a two-tailed Welch’s t-test after 500 random
permutations to estimate the false discovery rate with p values < 0.05 considered statistically
significant.

Since only a subset of genes is expressed in any given cell for snRNA-seq data, the
transcriptogram method is not feasible for this data type. Pathway analysis for snRNA-
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seq involved enrichment of differentially expressed genes in Gene Ontology, Kegg, and
Reactome according to Fisher’s exact test, without accounting for protein–protein network
interactions. All proximal tubular cell clusters across all time points were merged to
identify enriched genes between control and db mice. The single podocyte cluster was
also merged across time points. This method was applied to human RNA-seq data as well
when assessing overlap with the snRNAseq dataset. FDR-corrected p values for pathways
were used to identify overlap between matching sub-segments. PAM (partitioning around
medoids) was used to cluster human diabetic samples according to the genes involved
in each overlapping pathway. Differential clinical features were determined using the
Wilcoxon Rank Sum test between clustered groups.

3. Results
3.1. Human Subjects

Kidney tissue samples from 18 subjects with DKD and 9 reference subjects without
DKD were acquired and studied (Table 1). The mean age at tissue acquisition was 55.0 years
of age in subjects with DKD and 50.0 in the reference nephrectomy subjects. Subjects
with DKD were 61.1% female and 27.8% were Black. Most DKD subjects had nodular
glomerulosclerosis and about half had greater than 80% effacement of podocyte foot
processes. Nephrotic range proteinuria was observed in 55.6% of DKD subjects. Baseline
eGFR was 63.2± 26.2 mL/min. Subjects lost an average of 14.5 mL/min/year of eGFR over
follow-up duration, which was 47.7 months on average. As a molecular comparator group,
nine reference nephrectomy samples were obtained. These samples were evaluated by a
blinded renal pathologist (C.P.) and did not show histologic evidence specific for diabetic
kidney disease; however, clinical and demographic data such as race, proteinuria, and
eGFR were not available.

3.2. Differential Gene Expression and Pathway Analysis in the Diabetic Human Glomerulus and
Proximal Tubule

Differential gene expression and pathway analyses were performed in the DKD
and reference groups. Differentially expressed genes (DEGs) were identified in laser
microdissected glomeruli and proximal tubules of both groups (Supplemental Table S1;
https://doi.org/10.6084/m9.figshare.14450190.v1, accessed 23 January 2022). Known
glomerular markers were down-regulated in DKD, including nephrin (NPHS1, 3-fold
decrease, p = 1.0 × 10−4) and phospholipase C epsilon 1 (PLCE1, 2.56-fold decrease,
p = 3.3 × 10−4). Likewise, proximal tubule markers including the sodium–hydrogen ex-
change cofactor 3 (PDZK1, 4.2-fold decrease, p = 1.9 × 10−5) and the sodium–phosphate
cotransporter (SLC34A1, 3.2-fold decrease, p = 8.1 × 10−4) were down-regulated in DKD,
likely reflecting chronic injury.

We examined pathway enrichment via a transcriptogram network analysis in the
human glomerulus and proximal tubule of DKD and reference samples. This analysis
incorporates the magnitude of differential expression, direction of effect, level of signifi-
cance, and proximity of protein-coding genes ordered along the x-axis according to known
protein–protein interactions. The most enriched pathways of the glomerulus included
GTPase mediated signal transduction (p = 4.3 × 10−6) and G-protein coupled receptor
(GPCR) ligand binding (p = 8.1 × 10−6). In the proximal tubule, the top pathways were
Rhodopsin-like receptors (p = 4.1 × 10−6) and olfactory signaling (p = 1.9 × 10−4). In-
terestingly, the ribosome (translation) pathway was enriched in both the glomerulus and
proximal tubule (Figure 1). A complete list of differentially regulated pathways is included
in Supplemental Table S2; (https://doi.org/10.6084/m9.figshare.14450196.v1, accessed
23 January 2022)

https://doi.org/10.6084/m9.figshare.14450190.v1
https://doi.org/10.6084/m9.figshare.14450196.v1


Cells 2022, 11, 1166 6 of 16

Table 1. Summary clinical characteristics of samples.

Variable
Mean ± SD or n (%)

Diabetic Kidney Disease
n = 18

Reference
n = 9

Age 55.0 ± 9.3 50.0 ± 14.2

Gender, Female 11 (61.1) 6 (66.7)

Race, Black A 5 (27.8) NA

Baseline eGFR (mL/min) B 63.2 ± 26.2 NA

Baseline proteinuria >3 gm 10 (55.6) NA

Endpoint eGFR (mL/min) 22.4 ± 19.2 NA

Rate of progression (mL/min/year) 14.5 ± 19.6 NA

Patients with > 10 mL/min/yr GFR loss 11 (61.1) NA

Duration of follow-up data (months) 47.7 ± 23.7 NA

Histopathologic diabetic kidney disease 18 (100) 0 (0)

Histopathologic arterionephrosclerosis 18 (100) 0 (0)

Glomerular obsolescence (% of glomeruli
affected) 24.7 ± 18.7 23.9 ± 21.2

IFTA (% of cortex affected) 48.9 ± 12.8 20.0 ± 13.8

Arteriolar Hyalinosis severity (scale of 0–3) 2.4 ± 0.6 0.9 ± 0.4

Presence of nodular glomerulosclerosis 15 (83.3) 0 (0)

Presence of effacement (>80% of foot processes) 9 (50) 0 (0)
A Other subjects were white (n = 12) and other, not specified (n = 1). B The baseline eGFR was defined as the pre-
biopsy eGFR value within a year of biopsy, but prior to any decline of 20% or greater in eGFR. IFTA—interstitial
fibrosis and tubular atrophy. eGFR—estimated glomerular filtration rate, according to the CKD-EPI equation,
NA—not available.

To determine the direction of effect for translation pathways enriched in the DKD
samples, the pathview schematic of the KEGG equivalent pathway, ribosome hsa03010,
was compiled for both the glomerulus and proximal tubule. Genes within the translation
and metabolism of amino acids and derivatives GO pathways aligned with the ribosome
KEGG pathway with an overlap of 130 and 87 out of 186 genes, respectively. The overall
expression of ribosomal genes was up-regulated in both the glomerulus and proximal
tubules of DKD subjects (Figure 2).

3.3. Translation Is Altered in the Diabetic Mouse Kidney

To better understand the significance of pathway enrichment in the human DKD
biopsy specimens, we queried differential expression in the db mouse as compared to a
background control strain using bulk RNA sequencing. Pathway analysis (at 9 weeks of
age) between the diabetic mice versus the control strain revealed the top enriched pathway
was cGMP-protein kinase G signaling (p = 2.0 × 10−6) (Figure 3A). Among the enriched
pathways was translation-related ribosome biogenesis (p = 0.047), which “overlapped”
with the human DKD pathway enrichment dataset.

To directly examine the functional consequence of increased transcription and expres-
sion of proteins regulating translation, we performed polyribosomal profiling on kidneys
from db and background control mice. This assay quantifies the general level of translation
based on mRNA occupancy by ribosomes. Polyribosomal profiling demonstrated that the
polysome-to-monosome area-under-the-curve ratio is increased in diabetic mice (9.76) com-
pared to control mice (7.73, p < 0.05 for the difference of ratios), consistent with increased
global translation in the kidney in diabetes (Figure 3B).
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 Figure 1. Transcriptogram of pathway enrichment between human diabetic and reference kidney sub-
segments. X-axis: Genes ordered by network association. Y-axis: (top) Log2 fold change expression
between diabetic and reference (A) glomerulus and (B) proximal tubules. (mid) gene expression
p-values. (bottom) pathway enrichment score ranging from 0–1.
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creased expression in diabetics. Blue indicates decreased expression in diabetics. White boxes indi-
cate that genes involved in the subunit were not detected. 

Figure 2. Ribosome pathway schematic highlighting gene expression changes in diabetic kidney
disease. Gene expression changes between diabetic and reference kidneys are mapped to the KEGG
ribosome pathway. Each box represents the fold change in expression between diabetic and reference
in the glomerulus (left half of box) and proximal tubules (right half of box). Red indicates increased
expression in diabetics. Blue indicates decreased expression in diabetics. White boxes indicate that
genes involved in the subunit were not detected.

We attempted to correlate the glomerular and proximal tubule-specific human expres-
sion signatures to cell-type-specific signatures in the mouse model by examining snRNAseq
derived expression in podocytes and proximal tubule cells. Furthermore, we examined
whether these changes had a temporal association before and after the onset of albuminuria.
For this purpose, we selected a db strain on a BKS background (Kallis strain) that is known
to more reliably develop albuminuria as evidence of diabetic nephropathy and compared
these to age-matched heterozygote controls (Figure 4). In these mice, the albumin-creatinine
ratio at 16 weeks was 1.24 ± 0.60 µg Alb/µg creatinine which corresponds to previously
reported values for this mouse strain at this age.
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concentration of sucrose gradient. Y-axis: Absorbance of RNA at 254 nanometers.
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Unbiased clustering of the snRNAseq dataset yielded seventeen clusters correspond-
ing to the expected cell types of the kidney (Figure 4A). Clusters were defined by known
expression markers (Figure 4B). Differential expression between diabetic and control mice
was assessed in both podocytes and in a merged set of all three proximal tubule clusters.
Although a number of important translation pathway genes were differentially expressed,
the overall pathways did not reach statistical significance for enrichment (Figure 4C,
Supplemental Table S1; https://doi.org/10.6084/m9.figshare.14450190.v1, accessed 23
January 2022). Access to an interactive link of the snRNA seq data is provided here:
https://connect.rstudio.iu.edu/content/21/, accessed 23 January 2022.

3.4. Single Nuclear RNA Sequencing Reveals Highly Enriched Pathways in the db Mouse Model

In the translation pathway analysis above, we first filtered potential pathways using
the human datasets, then validated the relevance of translation with the mouse bulk
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expression signature and polyribosomal profiling. In order to broaden our search for
clinically relevant pathways, we next reversed the analysis order, starting with the murine
snRNAseq dataset, and then assessed the overlap within the human dataset.

DEGs of each snRNAseq cluster were identified (Supplemental Table S1; https://doi.
org/10.6084/m9.figshare.14450190.v1, accessed 23 January 2022). Based on this differen-
tial expression, pathway analysis was undertaken. As mentioned above in the method
section, the nature of snRNAseq data precludes a transcriptogram network analysis be-
cause individual nuclei lack sufficient diversity of expressed genes to construct a protein–
protein interaction network. Thus, pathways were assessed by standard Fisher’s ex-
act test enrichment. In the mouse glomerulus, the top altered pathways included the
coenzyme metabolic process (p-value: 2.1 × 10−8), organic anion transport (p-value:
1.35 × 10−7), and small molecule catabolic process (p-value: 1.58 × 10−6; and Supple-
mental Table S2; https://doi.org/10.6084/m9.figshare.14450196.v1). In the mouse prox-
imal tubular cell clusters, the top altered pathways included the coenzyme metabolic
process (p-value: 2.59 × 10−13), organic anion transport (p-value: 6.56 × 10−12), and car-
boxylic acid catabolic process (p-value: 1.28 × 10−11; Figure 5A and Supplemental Table S2;
https://doi.org/10.6084/m9.figshare.14450196.v1, accessed 23 January 2022).

We applied the same methodology to human sample enrichment between DKD and ref-
erence samples. Enriched human glomerular pathways included alpha-defensins (p-value:
2.26 × 10−17), membrane disruption (p-value: 1.1 × 10−16) and innate immune response
in mucosa (p-value: 3.94 × 10−15). Enriched proximal tubule pathways were membrane
disruption (p-value: 1.56 × 10−16), alpha-defensins (p-value: 6.33 × 10−16) and positive
regulation of peptidyl-serine phosphorylation of STAT protein (p-value: 5.14 × 10−15;
Figure 5B and Supplemental Table S2; https://doi.org/10.6084/m9.figshare.14450196.v1,
accessed 23 January 2022).

Pathway overlap between the human and mouse datasets was assessed for the
glomerulus and proximal tubule cell types. When comparing pathways that overlap
for both human and mouse kidneys, the kidney development pathway was altered in
the glomerulus and four pathways including carboxylic acid catabolic process, steroid
hormone biosynthesis, glutathione metabolism, and biological oxidations were enriched
within the proximal tubule cells. The top pathway identified in the murine snRNAseq that
was also enriched in the human dataset was the carboxylic acid catabolic process, identified
in proximal tubule cells of murine snRNAseq and the proximal tubule compartment of the
human LMD transcriptomics.

3.5. Altered Regulation of the Carboxylic Acid Catabolic Processes in the Proximal Tubule Is
Associated with Progression of Kidney Failure

As an exploratory analysis, we queried whether the clinical features of the DKD
subjects in Table 1 might be associated with carboxylic catabolic acid process genes or
translation pathway genes. After clustering human diabetic samples by expression of
genes involved in the carboxylic acid catabolism pathway, two DKD sub-groups were
identified in the principal component analysis based on gene expression (Figure 5C). Each
group was then assessed for a binary outcome of progression rate, wherein “moderate
progressors” were defined by a slope of ≤10 mL/min/year eGFR loss (average loss of
3.3 ± 3.8 mL/min/year) and “rapid progressors” had a slope of >10 mL/min/year eGFR
loss (average loss of 23.4 ± 22.7 mL/min/year). Carboxylic acid catabolic process expres-
sion in the proximal tubule was associated with rapid eGFR loss (p = 0.034) (Figure 5D).
The top genes driving the clustering in this pathway included ACOX1, ACADVL, ACACB,
CD44, and SHMT2. Overall, SHMT2 and CD44 expression was upregulated in Group 2
whereas ACADVL, ACACB, and ACOX1 had higher expression in Group 1. Other clinical
and pathological features including proteinuria, age, race, glomerular obsolescence, inter-
stitial fibrosis, and tubular atrophy (IFTA) were not associated with carboxylic acid process
catabolism. Finally, no clinical or pathological features were associated with translation
pathway expression after clustering.

https://doi.org/10.6084/m9.figshare.14450190.v1
https://doi.org/10.6084/m9.figshare.14450190.v1
https://doi.org/10.6084/m9.figshare.14450196.v1
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Figure 5. Carboxylic acid catabolic process gene expression associated with increased progression of
diabetes. Pathway analysis between diabetic and controls in the proximal tubules of (A) mice and (B)
humans. X-axis: Pathways ordered by p-values. Y-axis: −Log10 of p-values. (C) Principal component
analysis of human diabetic proximal tubule samples clustered with carboxylic acid catabolic process
genes using partitioning around medoids. Arrows represent the degree of impact and direction of
relationship for the top five genes influencing the clusters. (D) Bar graph depicting the frequency of
moderate progressors and rapid progressors, as defined by rate of decline in kidney function, within
the two carboxylic acid groups identified in (C).

3.6. Metabolomics

We sought to further assess critical metabolites in the carboxylic acid catabolic process
pathways by performing a metabolomic analysis in db and control mice. Many pathways
related to carboxylic acid catabolism were dysregulated in the metabolomic dataset for
fatty acid metabolism (Figure 6) and amino acid metabolism (Supplemental Figure S1;
https://doi.org/10.6084/m9.figshare.14450277.v1, accessed 23 January 2022). For example,
a number of acyl carnitine fatty acids and acyl choline fatty acids were up-regulated
in the db mouse. In contrast, several long-chain fatty acids, such as eicosenoate, were
down-regulated in the db mice. The observed dysregulation of fatty acids is potentially
consistent with the human gene expression signatures, demonstrating alterations in very-
long-chain specific acyl-CoA dehydrogenase (ACADVL) expression. ACADVL is an Acyl-
CoA dehydrogenase and an important first step in mitochondrial fatty acid beta-oxidation.

https://doi.org/10.6084/m9.figshare.14450277.v1
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Figure 6. Heatmap of differentially regulated metabolites profiled between diabetic and control
mice in fatty acid pathways. X-axis: Biochemicals. Y-axis: Fatty Acid Pathways. Legend represents
the log2 fold changes with red meaning higher concentrations in diabetics and blue meaning lower
concentrations in diabetics compared to controls. * Indicates annotated compounds without official
confirmation based on a standard.

A single metabolite was up-regulated in the ketone pathway, 3-betahydroxybutyrate.
Finally, Acetyl-CoA was down-regulated in db mice, aligning with the human differential
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expression in ACOX1 and ACACB. Both of these metabolites are known to be differentially
expressed in diabetes mellitus [27,28]. Among the amino acid metabolism pathways, most
were down-regulated in db mice, except for leucine, isoleucine, and valine metabolism.

4. Discussion

In the present study, we employed a multi-modal omics network to explore the
signature of DKD, translating observed findings across organisms and spanning bench to
bedside. This approach allowed us to distill salient pathophysiologic features of DKD in
humans, despite heterogeneity and a small sample size. Key dysregulation was identified
in both mice and humans in the translation and carboxylic acid catabolism pathways.

Our results confirm and augment the current understanding of the molecular patho-
genesis of DKD. Translation is the fundamental biologic process by which mRNA is read
and converted into functional proteins. The examination of translation in the kidney during
diabetes has historically focused on mTOR/AMP kinase signaling [29–31]. Thus, a compre-
hensive understanding of translation in DKD currently escapes the field. Interestingly, prior
evidence underscores the importance of dysregulated translation in the murine glomerulus
of DKD [32]. Our results in the db mouse align with these prior investigations, demon-
strating alterations in translation pathway gene expression, corroborated by polyribosomal
profiling. However, our investigation expands upon these animal studies to also identify
translational dysregulation in human DKD, both in the glomerulus and importantly, in the
proximal tubule. Dysregulated translation can alter the balance between protein synthesis
and protein degradation. This imbalance can promote endoplasmic reticulum (ER) stress
and the subsequent development and progression of DKD [33].

Analogously, our multi-omics approach identified carboxylic acid catabolism as a
priority pathway in the proximal tubule in the snRNAseq dataset of the db mice and the hu-
man proximal tubule LMD dataset. Metabolomic analysis in the db mice revealed a variety
of fatty acid metabolites differentially expressed in diabetes. Both 3-betahydroxybutyrate
and acetyl-CoA were differentially expressed metabolites and the results observed in our
study align with the expected direction of effect in diabetes mellitus [27,28].

In our exploratory analysis, five genes in the carboxylic acid catabolism pathway were
found to drive clustering in human subjects according to their DKD progression. This
pathway has been previously identified as dysregulated in the tubulointerstitium of human
diabetic kidneys [34]. In our study, increased expression of ACADVL, ACACB, and ACOX1
were associated with reduced progression in our carboxylic acid group 1. ACADVL
is an important mediator of mitochondrial fatty acid beta-oxidation. Protein levels of
this acyl-CoA dehydrogenase have been shown to be decreased in the brain of diabetic
mice [35]. After chronic fitness training, ACADVL expression in the muscle increases,
further suggesting improved outcomes in diabetic individuals [36]. A second gene co-
expressed with ACADVL was ACOX1. ACOX1 expression was shown to be up-regulated
after phellinus linteus treatment, reducing blood glucose levels and improving insulin
resistance in diabetic mice [37]. Finally, ACACB polymorphisms have been associated
with diabetes mellitus, suggesting this gene is important in the regulation of metabolic
disorders [38]. While the direction of effect for these prioritized genes is supported in the
literature (i.e., up-regulation is associated with better outcomes), we are cautious to draw
conclusions because both of our carboxylic acid groups had DKD.

Two genes, CD44 and SHMT2, were up-regulated in the carboxylic acid group 2,
comprised of individuals with rapid progression of DKD. CD44 acts as both a receptor for
hyaluronan and osteopontin, of which both molecules are associated with the pathogenesis
of DM. For example, hyaluronan promotes muscle insulin resistance [39]. There is also
a critical role for osteopontin in DKD. Studies have revealed that osteopontin expression
in DKD mouse models enhances glomerular damage while its deletion protects against
disease progression [40]. Furthermore, studies in cultured primary renal tubular epithelial
cells (TECs) showed administration of the saturated fatty acid palmitate resulted in an
upregulation of osteopontin and CD44. These findings support the significance of CD44
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and osteopontin expression in fatty acid-induced tubular cell damage in DKD [41]. We
identified no studies directly connecting SHMT2 to DKD. Nonetheless, Shmt2 expression
has been implicated in oxidative stress [42,43]. Oxidative stress is a known contributor to
insulin resistance and the pathogenesis of DKD [44].

Our investigation has several limitations. Foremost amongst these limitations is the
small human sample size. This sample size is not large enough to correct for clinical covari-
ates. Therefore, orthogonal datasets in the mouse were used to increase the confidence in
our results. In the human analysis, only a small number of genes passed an FDR-corrected
level of significance. Accordingly, the analysis emphasized network-based analyses of path-
ways that were corrected for multiple testing corrections. In the murine analysis, rapidly
acquired fresh tissue is required for both polyribosomal profiling and metabolomics. Thus,
we did not examine translation or metabolism specific to the glomerulus or proximal tubule.
Translation-related pathways were not dysregulated in the snRNAseq data, potentially
due to the fact that snRNAseq expression is measured in the nucleus as opposed to the
cytoplasm. Two pathway enrichment methodologies were used: a Fisher’s exact test and
a transcriptogram network analysis, each of which identified different pathways. The
Fisher’s exact test emphasizes the distribution of DEGs above a significance threshold. A
transcriptogram network analysis balances magnitude, the direction of effect, significance,
and protein–protein interactions of all protein-coding genes. Finally, an additional limi-
tation was the use of male mice at multiple ages. We did not have the sample size in the
human cohort to examine age or sex differences.

In conclusion, we utilized a multi-omics approach to demonstrate that alterations in
protein translation and carboxylic acid catabolism are key features in both human DKD
and a murine model of DKD, thus underscoring the value of murine models in the study of
DKD. Interestingly, these alterations are prominent in the proximal tubule which highlights
the importance of tubular dysfunction in the pathophysiology of DKD. In addition, we
identified prominent genes expressed in the carboxylic acid catabolism pathway from the
proximal tubule that were associated with more rapid eGFR loss in DKD. This finding
provides promise for the development of novel markers of DKD progression as well as
new therapeutic targets.
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