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ABSTRACT Pediococcus pentosaceus strain PP16CC comes from the intestine of
Crassostrea corteziensis. A 1.82-Mbp draft genome of this strain was assembled using
A5-miseq from illumina reads, resulting in 4 contigs and 1,856 predicted protein cod-
ing genes. Additionally, 23 proteins belonging to various glycosyl hydrolase families
and 6 prophage regions were identified.

C rassostrea corteziensis is a potential alternative in oyster farming of Mexican Pacific
(1). However, a main problem has been diseases (2); therefore, probiotic Pediococcus

pentosaceus has been studied to improve oyster survival during seed production (3).
P. pentosaceus belongs to the Lactobacillaceae family, and in a core genome phylogenetic

analysis of this family, it forms a monophyletic clade with the heterofermentative Lactobacillus
plantarum group and the pediococci (4). The pangenome and core genome of P. pentosaceus
have 7,938 and 1,240 genes, respectively, and the main differences between strains were
found in carbohydrate metabolism and horizontally transferred DNA (5).

P. pentosaceus strain PP16CC was isolated on May 2011 using MRS agar at room tempera-
ture in anaerobiosis from C. corteziensis harvested from the Pacific Ocean and preserved with
glycerol at285°C. DNA of the strain was extracted using theWizard genomic DNA purification
kit (Promega, USA). The quality and quantity of DNA were determined via the Quant-iT
PicoGreen double-stranded DNA (dsDNA) assay kit on the Qubit 2.0 fluorometer (both
from Thermo Fisher Scientific, USA). The DNA library was prepared using the Nextera DNA
Flex library prep kit (Illumina) and sequenced with the MiSeq reagent kit v2 (300 cycles),
yielding 627,419 paired-end reads with an average length of 151 bp. Reads were quality
filtered and assembled with the A5-miseq pipeline v. 20160825 (6) and SSPACE v. 3.0 (7),
resulting in a draft genome with a G1C content of 37.0235%, a total length of 1,820,443 bp
in 4 contigs (N50, 527,937 bp), and an average coverage of 84-fold.

Taxonomy was established by the Microbial Genome Atlas (MiGA) (8), determined that the
PP16CC strain belongs to the genus Pediococcus (P = 0.00153) and to the species P. pentosa-
ceus (P = 0.0198). And its closest relatives are P. pentosaceus GCA_004354495.1 (98.86% aver-
age nucleotide identity [ANI]) and P. pentosaceus GCA_001437285.1 (98.83% ANI).

The contig order was obtained via mauve contig mover (9) using the genome of P. pen-
tosaceus ATCC 25745 as a reference (NC_008525.1). The genome annotation was performed
using PGAP v. 6.0 (10) and predicted 1,794 coding sequences, 7 rRNA genes, 52 tRNA genes,
and 3 noncoding RNA genes.

Glycosyl hydrolase (GH) enzymes were annotated with the dbCAN metaserver (11, 12)
using the carbohydrate-active-enzyme database (13), identifying 23 proteins belonging to
GH families, of which some were repeated. Seven of eight families that Jiang et al. (5) found in
most P. pentosaceus genomes were GH1 (3.2.1.86), GH25 (3.2.1.17), GH73 (Unspecified NA),
GH65 (2.4.1.8), GH2 (3.2.1.23), GH126 (NA), and GH13_29 (3.2.1.93); in addition, 5 families
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were identified, namely, GH31 (3.2.1.177), GH78 (3.2.1.40), GH43_26 (3.2.1.-), GH23 (NA), and
GH170 (NA).

Integrated prophages were predicted using PHASTER (14), six prophage regions,
three intact and three incomplete were identified (Table 1). The phages with the highest
number of proteins (values in parenthesis, Table 1) similar to prophage regions 2, 4, and
6 were Listeria virus LP101, Lactococcus phage P335 sensu lato, and Lactobacillus phage
phig1e, respectively. All three belong to the Siphoviridae family. Software packages were
used with default parameters.

Data availability. The whole-genome shotgun project for P. pentosaceus PP16CC was
deposited at DDBJ/ENA/GenBank (JALCZR000000000) and under BioProject number
PRJNA814659, BioSample number SAMN26563464, and SRA SRR18292892.
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TABLE 1 General characteristics of the prophage region

Region
Region
length (Kbp) Completeness Score

Total no.
of proteins Region position

Accession no. for the
most common phage

1 14.8 Incomplete 20 20 Scaffold2 102192–117013 NC_031036 (3)
2 25.9 Intact 130 31 Scaffold2 122233–148190 NC_024387 (11)
3 29 Incomplete 40 12 Scaffold2 284517–313522 NC_023719 (2)
4 26.5 Intact 150 35 Scaffold2 425474–452037 NC_004746 (6)
5 24.1 Incomplete 30 21 Scaffold2 452054–476230 NC_019489 (2)
6 51.8 Intact 150 75 Scaffold3 236382–288269 NC_004305 (14)
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