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Hepatocellular cancer is the sixth most frequently diagnosed malignant disease
worldwide, and was responsible for tens of millions of deaths in 2020; however,
treatment options for patients with advanced hepatocellular carcinoma remain limited.
Immunotherapy has undergone rapid development over recent years, especially in the
field of immune checkpoint inhibitors (ICIs). These drugs aim to activate and enhance
antitumor immunity and represent a new prospect for the treatment of patients with
advanced cancer. Nevertheless, only a small proportion of liver cancer patients currently
benefit from ICI-based treatment, highlighting the need to better understand how ICIs and
tumors interact, as well as identify predictive biomarkers for immunotherapeutic
responses. In this review, we highlight clinical trials and basic research in hepatocellular
carcinoma, with a particular focus on predictive biomarkers for the therapeutic efficacy of
ICIs. Predictive biomarkers for immune-related adverse events are also discussed.

Keywords: hepatocellular carcinoma, biomarkers, immune checkpoint inhibitors, immune-related adverse
events, immunotherapy
INTRODUCTION

Hepatocellular carcinoma (HCC) accounts for over 80% of all primary liver malignancies, while
liver cancer ranked as the sixth most frequently diagnosed cancer in 2020, resulting in 83 million
deaths (1). Despite these statistics, HCC treatment remains a major healthcare challenge globally.
Additionally, because symptoms and physical characteristics of HCC are not easily detected, 80% of
patients diagnosed with HCC miss out on curative treatment (2).

HCC typically develops in a background of underlying inflammatory liver disease, especially that
associatedwithhepatitis B (HBV) orhepatitis C virus (HCV) infection (3),while nonalcoholic fatty liver
disease (NAFLD) is rapidly becoming a key etiological factor forHCC inmanyWestern countries (4, 5).
Current treatment modalities for patients with nonadvanced HCC include resection, transplantation,
ablation, or chemoembolization, while patients with advanced HCC receive systemic treatment (6).
However, progress in the development of treatments for advancedHCC has been limited, partly due to
the complex and heterogeneous etiology of this disease. Additionally, the most common driver
mutations (TERT promoter, CTNNB1, TP53, and ARID1Amutations) have not yet been shown to be
suitable therapeutic targets (7). Althoughfirst-linemultikinase inhibitors (sorafenib and lenvatinib) can
prolong the survival of patients with advanced HCC (8–10), and multitarget tyrosine inhibitors
(e.g., regorafenib and cabozantinib) and vascular endothelial growth factor (VEGF) receptor inhibitors
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(e.g., ramucirumab) can provide benefit for patientswhopreviously
tolerated sorafenib (11), most cases of HCC show tolerance or
become refractory to these agents during the clinical course of the
disease (12). Accordingly, the median overall survival (OS) for
patients treated with these agents remains under 15 months.

Cancer immunotherapy has undergone rapid development in
recent years, especially in the field of immune checkpoint inhibitors
(ICI). Immune checkpoint-relatedmolecules, such as programmed
cell death-1 (PD-1), cytotoxic T-lymphocyte-associated antigen 4
(CTLA-4), T-cell immunoglobulin, mucin domain-3 (TIM-3), and
lymphocyte activating-3 (LAG-3), are importantcomponentsof the
negative feedback regulatory mechanism that serves to suppress
excessive immune responses. They are constitutively upregulated in
various tumors, generatingT-cell exhaustionoranergy, and thereby
helping tumors evade immune surveillance (13). The rationale
behind utilizing ICIs is to restore and enhance antitumor
immunity by relieving the immunosuppressive effects of immune
checkpoint-relatedmolecules. The development of anti-PD-1, anti-
programmed cell death-ligand 1 (PD-L1), and anti-CTLA-4
monoclonal antibodies has advanced the treatment for advanced
cancer, resulting in numerous attempts to apply ICIs for the
treatment ofmultiple advanced solidmalignancies, includingHCC.

Based on encouraging results from the CheckMate 040 and
KEYNOTE-224 clinical trials, the United States Federal Drug
Administration (FDA) has granted accelerated approval for the
PD-1 inhibitors nivolumab and pembrolizumab as second-line
treatments for advanced HCC. The CheckMate 040 phase I/II
trial obtained objective response rates (ORRs) of 15% (dose-
escalation phase) and 20% (dose-expansion phase) in patients
treated with nivolumab (14). Meanwhile, the KEYNOTE-224
phase II trial reported an ORR of 17% for pembrolizumab
monotherapy for HCC patients previously treated with
sorafenib (15). Disappointingly, however, both the CheckMate
459 and KEYNOTE-240 phase III trials, which evaluated
nivolumab versus sorafenib and pembrolizumab versus best
supportive care, respectively, failed to meet their predetermined
primary endpoints of OS (16, 17). Overall, ICI monotherapy has
shown limited efficacy in HCC, benefiting only a limited subgroup
of patients. More results of clinical trials for ICIs in HCC are
summarized in Table 1.
Frontiers in Oncology | www.frontiersin.org 2
In contrast, the results from the IMbrave150 phase III trial
have been encouraging (22). This trial enrolled 501 patients with
advanced HCC who had not previously received systemic
treatment, two-thirds of whom received atezolizumab (anti-
PD-L1 blockade) plus bevacizumab (VEGF monoclonal
antibody), while the others received sorafenib monotherapy.
The median progression-free survival (PFS) was 6.8 months in
the combination arm and 4.3 months in the sorafenib group. In
addition, OS at 12 months was 67.2% with atezolizumab +
bevacizumab and 54.6% with sorafenib. The two subgroups
displayed similar toxic effects, with an incidence of 56.5% for
grade 3 or 4 adverse events in the combination arm and 55.1% in
the sorafenib arm. Of note, these data are momentous, as they
identify the first therapy to improve OS and PFS beyond the
standard of care sorafenib in treatment-naïve patients (23). After
more than a decade of stagnation in the treatment of advanced
HCC, these therapeutic strategies changed the status quo and
have entered into clinical practice. The mechanisms underlying
the effects of ICI/anti-VEGF-agent combination treatment have
also been elucidated, and have been reviewed in detail (24, 25).

Even though the prospect for ICIs seems to be excellent,
numerous difficulties remain to be resolved. Pivotal among these
is the low response rate in patients treated with ICI monotherapy,
with treatment benefiting only 15%–20% of patients with
advanced HCC (14, 15). The incidence of immune-related
adverse events (irAEs) is another important concern. A better
understanding of the dialog between ICIs and tumors is essential,
as is the identification of predictive biomarkers for treatment
response and toxicity. In this review, we focus on clinical trials and
basic research in HCC, with particular emphasis on predictive
biomarkers for the therapeutic efficacy of ICIs. Predictive
biomarkers for irAEs are also discussed.
POTENTIAL PREDICTIVE BIOMARKERS
FOR ICI-BASED TREATMENT

Because immunotherapy for HCC is still in its infancy, studies
relating to predictive biomarkers for ICI treatment response are
scarce. Nevertheless, several valuable data on potential
TABLE 1 | Clinical trials of immune-checkpoint inhibitors in hepatocellular carcinoma.

Study Name PFS OS Estimated
(Reference) Agent ORR (%) DCR (%) (median, months) (median, months) Phase Enrolment (n)

CheckMate 040 (14) Nivolumab 19.6 64.5 4.0 15.0 I/II 214
CheckMate 040;
Asian cohort
analysis (18)

Nivolumab 15.2 49.4 NA 14.9 I/II 85

NCT01693562 (19) Durvalumab 10.3 33.3 NA 13.2 I/II 39
NCT01008358 (20) Tremelimumab 17.6 76.4 6.5 8.2 II 20
NCT02658019 (21) Pembrolizumab 32.1 46.4 4.5 13.0 II 28
Keynote-224 (15) Pembrolizumab 17.3 61.5 4.9 12.9 II 104
CheckMate 459 (17) Nivolumab vs.

sorafenib
15.4 vs. 7.0 NA 3.7 vs. 3.8 16.4 vs. 14.7 III 743 (371 vs. 372)

Keynote-240 (16) Pembrolizumab
vs. placebo

18.3 vs. 4.0 62.2 vs. 53.3 3.0 vs. 2.8 13.9 vs. 10.6 III 413 (278 vs. 135)
September 2021
 | Volume 1
ORR, overall response rate; DCR, disease control rate; OS, overall survival; PFS, progression-free survival; NA, not available.
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biomarkers have emerged in recent years, including genetic and
protein markers, immune-related cells, and host-related factors
(Figures 1, 2), which are described below.

PD-L1 Expression
PD-L1 is dynamically and widely expressed on the surface of
tumor cells, antigen-presenting cells, and other immune cells.
PD-L1 expression is reported to be generally low in HCC (~10%
of tumor cells) (26) and is associated with recurrence and shorter
OS (27). In addition, high PD-L1 expression in inflammatory
cells within the tumor microenvironment (TME) correlates with
high serum alpha-fetoprotein (AFP) levels, macrovascular
invasion, and poor differentiation, resulting in increased tumor
aggressiveness (28). PD-L1 was the first proposed predictive
biomarker for responses to ICIs, and the relationship between
PD-L1 expression and ICI treatment response has been
extensively explored in HCC-related clinical trials.

Several results of clinical trials in which PD-L1 was evaluated
as a predictive biomarker for ICI responses have been published
(the data are summarized in detail in Table 2). In the CheckMate
459 phase III trial, although nivolumab did not elicit prominent
improvements in OS as a first-line treatment for HCC, PD-L1-
positive tumors nevertheless showed a better response to
nivolumab compared to sorafenib (17). This agreed with the
results of the KEYNOTE-224 trial, which showed that PD-L1
expression was associated with the response to pembrolizumab,
even though the results were not statistically significant (15).
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However, the predictive value of PD-L1 remains unclear.
Disappointing response rates were consistent across all patients
in both the CheckMate 040 and NCT02658019 trials, regardless
of PD-L1 expression levels (14, 18, 21). Even so, further analysis
of patients in the CheckMate 040 trial showed that tumor PD-L1
expression was associated with improved OS, although objective
responses could still be observed in PD-L1-negative patients
treated with nivolumab. These observations highlight that PD-L1
expression alone may not serve as an adequate biomarker for
responses to ICI treatment (29). Although these trials provide
valuable clinical data that allow the evaluation of the predictive
effect of PD-L1 expression, they have their limitations. First,
these are retrospective analyses with small sample sizes.
Secondly, there are limitations associated with the detection of
PD-L1 expression (discussed in detail later), as well as
inconsistencies in sample sources; although they are all
collected at baseline, some samples are fresh and some
are archival.

The contradictory results of these clinical trials may be partly
due to limitations in the detection of PD-L1 levels, including a
lack of standard methods for evaluating PD-L1 expression and
its spatial and temporal heterogeneity, as well as the absence of
standard thresholds that allow the determination of
“overexpression” (30, 31). The expression of PD-L1 is
measured using immunohistochemistry on formalin-fixed
paraffin-embedded (FFPA) sections; however, two methods are
used for defining PD-L1-positive expression, namely, the ratio of
FIGURE 1 | The classification of biomarkers. The biomarkers introduced in this review can be divided into protein markers, gene markers, immune-related cells, and
host-related cells. Moreover, according to their localization in vivo, they can be further subdivided into intratumoral and extratumoral biomarkers as they are detected
using different methods.
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PD-L1-positive tumor cells—the so-called tumor proportion
score (TPS)—and the ratio of PD-L1-stained tumor and
immune cells, the so-called combined positive score (CPS).
The KEYNOTE-224 phase II trial evaluated PD-L1 using both
scoring methods, with the CPS turning out to be a more
applicable biomarker (15). In addition, the predictive value of
PD-L1 expression may be underestimated as it is commonly
evaluated at a single time point, even though PD-L1 expression is
dynamic and inducible (32, 33). PD-L1 is heavily glycosylated
and such modifications significantly affect the detection
performance and therapeutic efficacy of PD-L1 antibodies (34,
35). A method was developed to resolve this issue that involved
removing the glycan moieties from cell-surface antigens via
enzymatic digestion, which boosted the positivity rate of PD-
L1 detection in tumor samples (35).

Tumor Mutational Burden/Microsatellite
Instability
Neoantigens, arising as a consequence of tumor-specific
mutations, are hypothesized to generate robust immune
responses (36). The tumor mutational burden (TMB) refers to
the number of nonsynonymous mutations found in the genome
of a single tumor, including alterations in DNA damage response
genes and those encoding the DNA polymerase epsilon (POLE)
and delta (POLD) catalytic subunits, and has been assessed for its
potential as a biomarker in multiple tumor types (37, 38). It is
thought that tumors with a greater TMB can produce a greater
number of neoantigens. One cross-cancer study reported that
tumors with a high TMB are positively correlated with responses
to anti-PD-1/PD-L1 therapy, and a greater TMB is also
associated with higher PD-L1 expression in tumor cells (39).
Frontiers in Oncology | www.frontiersin.org 4
To examine this association more broadly, another study
analyzed the clinical and genomic data of thousands of
patients with advanced cancer and identified an association
between a higher TMB and improved survival linked to ICI
treatment in most of the cancer types assessed (40). Several
studies have shown that a higher TMB is associated with immune
microenvironment diversification and worse prognosis in HCC
patients (41, 42). However, its putative role as a predictive
biomarker has not been reported in HCC patients treated with
either nivolumab or pembrolizumab, and whether the TMB has
value as a predictive marker for ICI efficacy remains unclear.

A study evaluated the frequency of genomic biomarkers of
ICI response in 755 HCC patients and found that the median
TMB was four mutations/Mb, with only six tumors (0.8%) found
to be TMB-high (43). Furthermore, in a small case series (N=17),
the TMB showed no correlation with ICI response. As in the case
of PD-L1 expression, however, TMB determination lacks
standardized thresholds and there is variability in quantification
methods (44). Thus, the clinical value of TMB should be
interpreted with caution. Recently, Wong et al. evaluated the
TMB in 29 HCC patients through targeted next-generation
sequencing (tNGS) on both fresh and archival samples. The
authors reported that, while fresh HCC samples were better
sources of tumor DNA (45), the low median TMB values
observed may limit the usefulness of the TMB as a predictor of
response to immunotherapy in HCC.

DNA mismatch repair (MMR) represents a key mechanism
for the maintenance of genomic integrity and stability. A
deficiency in MMR activity results in a hypermutator
phenotype known as microsatellite instability (MSI) (46). High
mutation rates in somatic cells are believed to amplify the
FIGURE 2 | A schematic representation of biomarkers for predicting treatment responses to immune checkpoint inhibitors (ICIs) in vivo and their interactions with
each other. Both the genetic characteristics and the expression of PD-L1 in tumor cells, as well as the density and diversity of tumor-infiltrating CD8+ T cells, have
the potential to predict the efficacy of ICI treatment in hepatocellular carcinoma (HCC). Other tumor-infiltrating lymphocytes in the tumor microenvironment affect T-
cell activity by secreting cytokines (such as IFN-g and TGF-b), thereby affecting the efficacy of ICI treatment. The gut microbiota also affects the responses to ICI
treatment by influencing the activity of tumor-infiltrating lymphocytes (TILs), while circulating biomarkers in peripheral blood can also be used as predictors of
immunotherapeutic efficacy.
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neoantigen load, leading to lymphocyte activation and enhanced
cancer susceptibility to immunotherapy (47, 48). A study
assessed the efficacy of PD-1 blockade with pembrolizumab
monotherapy in 86 patients with advanced MMR-deficient
cancers across 12 different cancer types. Based on ORRs and
complete response (CR) rates of 53% and 21%, respectively, the
results of this study support that MSI may serve as a predictor of
the clinical response of solid tumors to PD-1 blockade (49).
Although MSI is considered useful as an agnostic histological
indicator for the selection of responders to ICI therapy, there is
nonetheless a lack of data for HCC patients. Ang et al. assessed
542 HCC specimens for MSI and found that only one (0.2%) was
MSI-high and TMB-high (43), while several other studies have
reported that the prevalence of MSI in HCC is also generally low
(50, 51). These findings highlight that MSI may not be an ideal
biomarker to predict responses to ICIs in HCC patients.

The low frequency of high TMB and high MSI limits their
exploration as predictive biomarkers in HCC, while the number
of cases included in existing studies is also relatively low (44).
However, given that MSI has shown good predictability in
immunotherapy for other types of cancers, research efforts
should continue to focus on exploring its predictive potential
in HCC, including combining data frommultiple clinical trials to
obtain a sufficiently large sample size that would allow the
evaluation of its role in HCC-targeted immunotherapy.

Tumor-Infiltrating Lymphocytes
Because T-cell infiltration within the TME is a prerequisite for
immune checkpoint blocking (52), baseline intratumoral T-cell
density and phenotype have been extensively studied and closely
connected with ICI responses in melanoma and other tumors
(53, 54). A retrospective biomarker analysis undertaken in the
CheckMate 040 trial indicated that, although not statistically
significant, increased numbers of CD3+ or CD8+ tumor-
infiltrating T cells were correlated with a trend towards
improved OS in nivolumab-treated HCC patients (29). This
study further indicated that an association existed between an
Frontiers in Oncology | www.frontiersin.org 5
increased frequency of CD3+ T cells and the best overall
response. A different study reported that an increase in CD8+
T cells in six-week tumor biopsies was connected with clinical
benefits for HCC patients who received tremelimumab plus
ablation combination therapy (55). Furthermore, Kaseb et al.
found that the clinical response of HCC patients who received
perioperative immunotherapy (nivolumab plus ipilimumab)
followed by surgical resection was correlated with an increase
in CD8+ T-cell infiltration, and, specifically, with two effector T-
cell clusters (CD3+CD8+CD45RO+Eomes+ and CD3+CD8+
CD45RO+Eomes+CD57+CD38low) (56).

The connection between TILs and ICI treatment response has
also been investigated in other immune cell types. Ng et al.
analyzed 49 HCC samples from patients treated with ICIs and
reported that patients with a high intratumoral CD38+CD68+
macrophage density had a better median OS compared with
those with low CD38+CD68+macrophage density (34.43 vs. 9.66
months) (57), likely because CD38hi macrophages produce
greater amounts of interferon-gamma (IFN-g) and related
cytokines. Notably, some of these 49 patients had received
combination immunotherapy. The influence of immune cell
infiltration on the effectiveness of ICIs has also been studied in
multifocal HCC, with the results showing that small nodules are
more sensitive to anti-PD-1 therapy than large nodules, while
small tumors exhibit greater immune cell infiltration and an
upregulated interferon signature compared with large
tumors (58).

Deep single-cell RNA sequencing was performed on 5,063 T
cells isolated from peripheral blood, tumor tissue, and adjacent
normal tissues of six HCC patients (59). The results
demonstrated that specific subsets, such as exhausted CD8+ T
cells and regulatory T cells (Tregs), were preferentially enriched
in HCC. The authors further identified that increased expression
of layilin (encoded by LAYN) was associated with tumor-
infiltrating Tregs and activated CD8+ T cells. While these
findings need to be validated in a larger cohort, they will
undoubtedly open a new avenue for further research into the
TABLE 2 | Predictive biomarkers in clinical trials of immune-checkpoint inhibitors in hepatocellular carcinoma.

Biomarker Cut-off Agent Significant
Association

Findings Study Name
(reference)

Phase

PD-L1
expression

CPS ≥1 Pembrolizumab Better ORR and
PFS

PD-L1 expression was correlated with ORR and PFS KEYNOTE-224 (15) II

TPS ≥1 Pembrolizumab No No correlation between PD-L1 expression and ORR or PFS KEYNOTE-224 (15) II
TPS ≥1 Nivolumab Better OS Median OS: 28.1 vs. 16.6 months CheckMate 040 (29) I/II
TPS ≥1 Nivolumab No ORR: 29% vs. 20% (ITT population)

ORR: 13% vs. 22% (Asian cohort)
CheckMate 040
(Asian cohort) (18)

I/II

NA Nivolumab vs.
sorafenib

Better ORR ORR: 28% vs. 12% CheckMate 459 (17) III

NA Pembrolizumab No No correlation between PD-L1 expression and ORR NCT02658019 (21) II
Four-gene
signature

/ Nivolumab Better OS Four-gene inflammatory signature (CD274, CD8A, LAG3, and
STAT1) was associated with improved OS

CheckMate 040 (29) I/II

Plasma TGF-b TGF-b <200
pg/mL

Pembrolizumab Better OS and
PFS

Median OS: >25 months vs. 7 months; median PFS: >25 months
vs. 2 months

NCT02658019 (21) II

NLR or PLR / Nivolumab Better OS OS was longer in patients with NLR or PLR in the lower tertile CheckMate 040 (29) I/II
Serum AFP AFP <400

µg/L
Nivolumab Better OS Median OS: 16.8 vs. 13 months CheckMate 040 (29) I/II
September 202
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CPS, combined positive score; TPS, tumor proportion score; ORR, overall response rate; PFS, progression-free survival; ITT, intent-to-treat; NA, not available; OS, overall survival; NLR,
neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio.
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potential of utilizing CD8+ T-cell infiltration as a biomarker
in HCC.

Although it is important to focus on lymphocytes in the TME,
applying them as biomarkers in the clinic remains a distant
prospect. How to select lymphocytes with specific characteristics,
how to define the positive criteria are among the many
unanswered questions. Joint evaluation of the number of
multiple immune cells and PD-L1 expression to develop TME
scores may be one of the answers.

Specific Gene Alterations
Over recent years, molecular profiling associated with the advent
of NGS has provided information on actionable targets and
identified specific gene alterations associated with responses to
ICIs (60).

Mutations in the CTNNB1 gene, which lead to the activation
of the WNT/b-catenin signaling pathway, are characteristic of
immune-excluded HCC types (cold tumors) and are associated
with significantly lower enrichment scores for several immune
signatures (61, 62). Harding et al. employed NGS to determine
which type of patient with advanced HCC might benefit from
systemic treatments (63). For a subgroup of 31 patients treated
with diverse ICIs, activating alterations in the WNT/b-catenin
pathway were associated with lower disease control rates (DCRs)
(0% vs. 53%), shorter median PFS (2.0 vs. 7.4 months), and
shorter median OS (9.1 vs. 15.2 months) compared with those in
WNT wild-type HCC. Additionally, b-catenin-driven tumors
were reported to be resistant to PD-1 therapy in a mouse model
of HCC, while the expression of chemokine (C-C motif) ligand 5
(CCL5) could restore the b-catenin-associated loss of immune
surveillance (64).

In addition, TP53 gene alterations were the most frequently
identified mutations in HCC patients and were mutually
exclusive with CTNNB1 mutations (65). Studies have shown
that TP53 alterations are strongly related to the immune
microenvironment in HCC, with less CD8+ T cell infiltration
and more FOXP3+ Treg infiltration, resulting in the
downregulation of the immune response (66–68). TP53
dysfunction was shown to be linked to chromosomal instability
(defined as high broad copy-number alteration loads) and
immune-excluded traits in HCC (69). Conversely, Yang et al.
reported that HCC patients carrying TP53 neoantigens showed
higher cytotoxic lymphocyte infiltration and longer OS (70).

Recent studies have indicated that immune-related long
noncoding RNAs (lncRNAs) may predict ICI treatment
responses in HCC. Peng et al. reported that the host gene of
lncRNA MIR155 was strongly positively correlated with the
expression of CTLA-4 and PD-L1 in HCC tissues, and showed
predictive value for the curative effect of ICI therapy (71).
Additionally, Zhang et al. identified an immune-related
lncRNA signature that correlated with worse survival and was
an independent prognostic biomarker for HCC patients (72).
That this signature was associated with immune cell infiltration
and ICI treatment-related molecules (including PD-L1, PD-L2,
and IDO1) suggests that it may have the potential to measure the
response to ICI immunotherapy. Several studies have reported
on the ability of immune-related lncRNAs to predict prognosis
Frontiers in Oncology | www.frontiersin.org 6
in HCC patients (73–76). However, prospective validation in
HCC patients who received ICI treatment is still lacking.
MicroRNAs and circular RNAs have also been reported to
reshape the immune microenvironment in HCC (77, 78). Mo
et al. identified 5-methylcytosine (5mC)-associated molecular
subtypes in HCC and found that they were associated with
responses to immunotherapy (79).

Several studies have indicated that cancer cell-intrinsic
epigenetic alterations are associated with carcinogenesis and
tumor progression (80–83), as well as with changes in the
TME, such as infiltration of tumor-associated lymphocytes and
expression of immune checkpoint molecules (84, 85), indicative
of their potential as predictors of immunotherapy. Furthermore,
given that DNA methylation can be measured in liquid biopsies,
epigenetic biomarkers may provide additional advantages, such
as low patient invasiveness (86). In patients with melanoma
receiving anti-PD-1 immunotherapy, the hypermethylation of
the T-cell costimulatory receptor TNFRSF9 was reported to be
correlated with poor PFS and treatment response (87). In a
multicenter study, Duruisseaux et al. established an epigenomic
profile based on a microarray DNA methylation signature
(EPIMMUNE) in a discovery set of tumor samples from
patients with advanced nonsmall cell lung cancer (NSCLC)
who had received anti-PD-1 therapy (88). The authors found
that the unmethylated status of the T-cell differentiation factor
forkhead box P1 (FOXP1) was associated with improved PFS
and OS, and, therefore, possessed good predictive value for the
efficacy of anti-PD-1 treatment. Another study identified a broad
DNA methylation signature in peripheral blood mononuclear
cells and T cells of HCC patients that differed from that of non-
HCC patients (89). Additionally, differences in immune
infiltrates related to the methylation levels of cell division
cycle-associated (CDCA) family genes in HCC were reported
to have potential as predictive biomarkers for responses to
immunotherapy (90). Notably, Llopiz et al. reported that an
epigenetic drug/ICI combination exerted synergistic antitumor
effects in a murine model of HCC (91), thereby providing further
evidence that DNA methylation signatures may be related to the
efficacy of immunotherapy, and also have the potential to serve
as biomarkers of combination therapy.

Combined, these observations indicate that the presence of
specific gene alternations, especially those related to CTNNB1,
TP53, noncoding RNAs, and methylation, may influence the
response to ICI treatment through interacting with the immune
microenvironment. Although these studies are still preliminary,
such alterations could represent novel biomarkers for HCC
patient selection, and patient exclusion in particular.

Immune-Related Gene Signatures
Comprehensive analyses of tumor transcriptomic profiling data
have recently been conducted to characterize the responsiveness of
the immune microenvironment to ICI treatment. Ayers et al.
identified an 18-gene T-cell-inflamed expression profile and a 6-
gene IFN-g signature that could predict responses to
pembrolizumab therapy across multiple solid tumors (92). Based
on gene expression profiles, Sia et al. classified 25% of HCCs as an
“immune-specific class” characterized by high expression levels of
September 2021 | Volume 11 | Article 716844
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PD-L1 and markers of cytolytic activity. This class further
comprised two subtypes, namely, an active immune subtype,
characterized by significant enrichment of T cells and IFN
signatures, and an exhausted immune subtype, associated with a
T-cell exhaustion signature and immunosuppressive components
(TGF-b and M2 macrophages) (62).

The previously-mentioned retrospective analysis of the findings
of the CheckMate 040 trial also included the evaluation of the
predictive value of a four-gene inflammatory signature (CD274
[PD-L1],CD8A,LAG3, and STAT1). This signaturewas found tobe
associated with improved response and OS related to nivolumab
therapy, both in the dose-escalation and dose-expansion phases
(29), and may be indicative of IFN-g/STAT1-dependent CD8+ T-
cell expansion, LAG-3-dependent T-cell exhaustion, and/or an
immune-suppressed TME with high PD-L1 expression.
Importantly, however, although the differences in the above-
mentioned clinical trial data were reported to be statistically
significant, this gene signature does not adequately distinguish
between responders and nonresponders. Recently, a five-gene
immune-related signature (LDHA, PPAT, BFSP1, NR0B1, and
PFKFB4) was identified and used to establish a prognostic model
for responses to HCC treatment that could stratify patients who
were sensitive to immunotherapy (93).Other studies using different
gene combination strategies have also reported their potential to
predict ICI responsesbyreflecting the characteristicsof the immune
microenvironment (94, 95). Nevertheless, these signatures need
further testing for clinical application.

Immune-related gene signatures are associated with the same
obstacles as TILs, namely, how to select the best gene
combinations and positive cut-off values. A feasible strategy
involves undertaking a wide-ranging bioinformatics analysis of
the existing databases to identify possible gene combinations and
then verify them through basic research and clinical trials.

Biomarkers in Peripheral Blood
The continuous availability of tumor samples from ICI-treated
patients is crucial for biomarker research; however, this is
difficult to achieve owing to the invasive nature of biopsies. In
contrast, circulating biomarkers can be easily collected and
repeatedly measured after treatment, rendering them more
convenient for use in the clinic.

Studies have shown that TGF-b plays a central role in
immune suppression within the TME and tumor immune
evasion (96). In HCC, the potent immune inhibitory function
of Tregs is a major obstacle to generating an effective antitumor
response, and Treg activation is modulated by the TGF-b
pathway (97). In addition, TGF-b enables tumor evasion from
host immune responses in part through enhancing SMAD3-
mediated PD-1 expression on TILs (98). The TGF-b signaling
pathway is activated at the transcriptional level in most HCCs
(99, 100). A strong association was identified between the TGF-b
signature and the exhausted immune signature in HCC (62, 99).
In a phase II trial, several representative circulating biomarkers
were analyzed in 29 patients with unresectable HCC treated with
pembrolizumab, with the results showing that baseline plasma
TGF-b levels of <200 pg/mL were an effective predictor of better
Frontiers in Oncology | www.frontiersin.org 7
OS and PFS (21). The therapeutic co-administration of TGF-b-
blocking and anti-PD-L1 antibodies was reported to facilitate T-
cell penetration into the center of tumors and elicit strong
antitumor immunity (101). Clinical trials of the TGF-b
receptor I inhibitor galunisertib have been conducted, and
have reported median OS durations of 16.8 months in patients
with advanced HCC with baseline AFP <1.5 × ULN (102).
Briefly, TGF-b may serve as a negative predictive biomarker
for ICI therapy given that HCCs with strong TGF-b and
exhausted immune signatures may be resistant to PD-1
blockade, while HCC patients with an activated TGF-b
signature are expected to benefit from a combination of ICI
and TGF-b inhibitor therapy (99). Thus, it seems likely that
drugs targeting both TGF-b and PD-1/PD-L1, such as bintrafusp
alfa, will play a role in the treatment of HCC in the future.

Several soluble immune checkpoint-related proteins were
recently shown to have promising predictive value in various
cancer types. Chen et al. reported that metastatic melanomas
released exosomes carrying PD-L1 that suppressed CD8+ T-cell
function and supported tumor growth. Additionally, the authors
reported that the magnitude of the increase in the levels of
circulating exosomal PD-L1 during the early stages of treatment
could discriminate clinical responders from nonresponders
(103). One preclinical study using mouse models indicated that
the removal of exosomal PD-L1 inhibits tumor growth, even in
models resistant to PD-L1 blockade (104).

Soluble PD-L1 (sPD-L1) has been reported to be correlated
with responses to immunotherapy in patients with NSCLC (105).
Additionally, several studies have focused on the prognostic
value of sPD-L1 and identified high serum sPD-L1 levels as an
independent predictive factor for poor outcomes in HCC
patients (106–108). Whether an association exists between
sPD-L1 and intratumoral PD-L1 expression levels remains
unclear, with contradictory results having been reported (106,
108). Moreover, there is a lack of data on the ability of exosomal
PD-L1 or sPD-L1 to predict clinical outcomes in HCC patients
following ICI therapy, which warrants further study.

Circulating immune cells in peripheral blood have been
extensively evaluated as predictive biomarkers (105, 109).
Agdashian et al. tested the combination of anti-CTLA-4 treatment
(tremelimumab) with locoregional therapy in HCC patients and
found that the frequency of CD4+PD-1+ cells among peripheral
blood mononuclear cells at baseline was higher in patients
responding to therapy than in nonresponding patients (110). In
addition, low baseline peripheral B cell PD-1 positivity and constant
posttreatment monocyte PD-L1 positivity were observed to be
associated with disease control in 16 HCC patients treated with
nivolumab (111). Dharmapuri et al. evaluated the relationship
between the neutrophil–lymphocyte (NLR) and platelet–
lymphocyte (PLR) ratios and survival outcomes in HCC patients
treated with nivolumab and reported that patients who achieved a
partial or CR had significantly lower posttreatment NLRs and PLRs
(112). The predictive value of the NLR and the PLR was also
indicated in the CheckMate 040 trial (29).

Necrotic or apoptotic tumor cells release DNA carrying
tumor-related genetic and epigenetic alterations into the
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bloodstream, thereby helping to overcome the limitations related
to sample availability. Circulating tumor DNA (ctDNA) can
reportedly predict tumor responses to ICI therapy in several
types of tumors; specifically, it can be used to distinguish
pseudoprogression from true progression (113–115). However,
a study analyzing the mutational landscape of advanced HCC
using ctDNA reported that WNT pathway-related mutations
were not associated with clinical outcomes after ICI therapy (65),
highlighting that further investigation is needed to determine
whether ctDNA can indeed serve as a predictive biomarker in
HCC. Meanwhile, although the blood TMB was reported to have
good predictive value in some types of cancer (116, 117),
evidence is lacking for HCC. Winograd et al. sought to detect
PD-L1-expressing circulating tumor cells (CTCs) in HCC
patients and found that there was a strong association between
the presence of PD-L1+ CTCs and favorable treatment responses
to PD-1 blockade (118).

High AFP levels are considered to be a prognostic marker for
poor clinical outcomes in HCC patients. Recently, a posttreatment
decline in serum AFP levels was reported to be associated with
higher ICI treatment efficacy in advanced HCC (119, 120). In
addition, Spahn et al. reported that baseline levels of AFP of <400
µg/L at the start of ICI treatmentwere associatedwithhigher rates of
CR or partial response (PR) as best responses (121). However, the
results of the checkmate040 clinical trial showed that although
baseline AFP <400 µg/L was associated with longer OS compared
with AFP ≥400 µg/L, the ORR and DCR were similar regardless of
baselineAFP levels (29).Given that theAFP level is closely related to
the baseline characteristics of patients, its predictive effect should be
interpreted with caution.

Biomarkers in peripheral blood have the great advantage of
low invasiveness, while a large number of studies have also
shown their potential as predictors of immunotherapeutic
efficacy. However, supporting data from large-sample clinical
trials are still lacking. In addition, there is currently no evidence
that the predictive accuracy of blood samples is better than that
of tissue samples for any given biomarker. Nevertheless, these
studies provide insights for future research into biomarkers for
HCC immunotherapy.

Gut Microbiota
Increasing evidence has indicated that the gut microbiota plays a
crucial role in the development and regulation of innate and
adaptive immunity, while several studies have described its value
in predicting the efficacy of ICIs. For instance, analysis of
baseline gut microbiota composition of fecal samples from
patients with melanoma or NSCLC before immunotherapy
treatment has indicated that commensal microbial composition
is associated with an ICI response (122, 123).

Ameta-analysis undertakenon2,424 samples through16SRNA
gene sequencing andmachine based-learning indicated that among
several major dysbiosis-related diseases, liver cirrhosis is the
condition where changes in the gut microbiome most accurately
predict the presence of disease (124). Given that there is an
anatomical connection between the liver and the gut, and that
HCC occurs in the context of chronic liver inflammation
concomitant with a defective intestinal barrier and increased
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hepatic exposure to bacterial products, it seems likely that a
relationship exists between the gut microbiota and responses to
ICI therapy. Indeed, increasing evidencepoints towardsakey roleof
the bacterial microbiome in promoting the development of HCC
(125). In the context of chronic inflammation, intestinal bacterial
translocation is detected by Toll-like receptor (TLR) 4 present on
resident liver cells through its ligand lipopolysaccharide, which
leads to the upregulation of the expression of the hepatomitogen
ep i r e gu l i n and , con s equen t l y , t h e p romo t i on o f
hepatocarcinogenesis (126). Microbiota-derived metabolites can
also affect the development ofHCC. For instance, the gut microbial
metabolite deoxycholic acid acts in concert with lipoteichoic acid to
enhance the tumor-promoting phenotype of hepatic stellate cells
and promote the expression of COX2 through TLR2, resulting in
the suppression of antitumor immunity (127). Additionally, gut
microbial-dependent bile acid metabolism modulates liver tumor
growth by regulating the hepatic expression ofCXCL16, amediator
of natural killer T (NKT) cell recruitment (128). Furthermore,
Arpaia et al. found that microbe-derived short-chain fatty acids
facilitate extrathymic Treg generation (129). Studies have also
shown that the gut microbiota may play an important role in
regulating ICI treatment responses (130, 131). For instance, fecal
microbiota transplantation from cancer patients who responded to
ICIs into sterile or antibiotic-treatedmice improved the response to
anti-PD-1 therapy (122, 123). Moreover, Zheng and colleagues
recently reported the dynamic variation in the composition of the
gut microbiome during anti-PD-1 immunotherapy in HCC by
metagenomic sequencing (132). They observed that fecal samples
from patients responding to immunotherapy showed higher
taxonomic richness and greater gene counts compared with those
ofnonresponders;microbial composition remained relatively stable
in the responder group, whereas in nonresponders, Proteobacteria
abundance markedly increased from week 3 and became
predominant at week 12. In addition, antibiotic administration at
the initiation of ICI treatment was reportedly associated with worse
outcomes, indicative of the influence of the gutmicrobiota onHCC
treatment (121). A clinical trial (NCT03785210) to evaluate the
effects of combined antibiotic (vancomycin) and ICI therapies is
currently underway.

However, in the aforementioned studies, there was no overlap
in gut microbiota associated with responses, which may be due to
differences in etiology, geographic location, nutritional intake,
and techniques used to analyze the samples. Moreover, Rosshart
et al. found that the gut microbiome of laboratory mice differs
significantly from that of closely related species in the wild (133),
implying that caution is needed when generalizing these research
results. The gut microbiota can be influenced by many
environmental, dietary, and lifestyle factors, all of which can
potentially affect the immune system and, consequentially,
regulate the response to ICIs (134). Given these complications,
the application of gut microbiota as a biomarker for clinical use
remains a distant possibility.

Others
The T-cell receptor (TCR) is composed of multiple antigen-
specific peptide chains. Recent studies have used high-
throughput sequencing for the in-depth elucidation of the
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composition and distribution of the TCR. There have been
several attempts to use the TCR as a predictive biomarker for
ICI responses. A more clonal TCR repertoire or oligoclonal TIL
expansion is associated with a better response to PD-1 blockade
in melanoma patients (135, 136). In addition, baseline TCR
diversity in peripheral blood has been associated with clinical
outcomes following ipilimumab treatment in metastatic
melanoma (137). Despite the lack of data regarding the
suitability of employing TCR as a biomarker in HCC, its
predictive potential nevertheless warrants further investigation
given the novel TCR analysis approaches proposed (138, 139).
Lin et al. found that the combination of TCR repertoires and
TNM stage could serve as an efficient prognostic indicator in
patients with HBV-associated HCC (140). Additionally, Han
et al. identified several specific TRBV–TRBJ combinations that
could distinguish the TCR repertoires of HCC patients from
those of healthy adults and thus have the potential to serve as
novel biomarkers (141).

Pfister et al. conducted a meta-analysis that incorporated
more than 1,600 patients with advanced HCC in three
randomized phase III clinical trials and reported that PD-L1 or
PD-1 inhibitors did not improve survival in patients with
nonviral HCC, particularly NAFLD (142). This was likely due
to the progressive accumulation of exhausted, unconventionally
activated CD8+PD-1+ T cells, which contributed to inducing
NAFLD/HCC rather than carrying out or enhancing immune
surveillance. However, in the CheckMate 040 phase I/II trial,
which enrolled HCC patients with or without HBV or HCV
infection, responses to nivolumab were observed irrespective of
HCC etiology (14).

Epithelial-to-mesenchymal transition (EMT) has been
implicated as a resistance mechanism that helps to promote
the immune evasion of cancer cells (143). High expression of
PDL1 in HCC patients is reported to be associated with an EMT
phenotype and be a predictor of poor survival (41). The
correlation between PD-L1 expression and EMT presents a
theoretical foundation to investigate EMT as a negative
biomarker for ICI responses.

Matrix metalloproteinase 9 (MMP-9) secreted by tumor-
associated macrophages was recently reported to be a potential
predictor of immune characteristics and immunotherapeutic
responses in HCC (144, 145). One study measured ADAM9
mRNA levels in blood samples derived from patients with
advanced HCC. Among four patients treated with nivolumab
therapy, two who exhibited a clinical response also showed
significant decreases in serum ADAM9 mRNA levels, whereas
the two who displayed no response to nivolumab did not.
Although the sample size was small, the results of this study
nevertheless suggested that ADAM9 mRNA might serve as a
predictive biomarker for clinical responses (146).

In addition, Qayyum et al. undertook an interesting
prospective study that included 15 patients with advanced
HCC treated with pembrolizumab and found that the changes
in HCC stiffness as measured by magnetic resonance
elastography (MRE) at 6 weeks was significantly associated
with OS (147). This was the first proposed imaging-based
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predictor of immunotherapy outcome in HCC and opens up
new avenues for predictor selection.

Potential Biomarkers for irAEs
Between 15% and 25% of ICI-treated HCC patients undergo
grade 3/4 treatment for immune-related adverse events,
including fatigue, pruritus, rash, diarrhea, and increases in
aspartate aminotransferase and alanine aminotransferase levels
(14, 15). Although ICI treatment-related adverse events are
manageable and less frequent than those seen with
chemotherapy, it is still necessary to identify biomarkers that
can predict irAEs to alleviate unnecessary suffering in patients.

Most studies have focused on identifying biomarkers for
predicting the efficacy of immunotherapy, while relatively few
studies have investigated biomarkers relating to irAEs. Moreover,
a large proportion of research findings come from patients with
melanoma (148). Nevertheless, these studies can serve as a
reference for identifying biomarkers that can predict irAEs in
HCC. Baseline serum IL-6 and IL-17 levels were significantly
associated with an increased risk of severe toxicity in patients
treated with ipilimumab (149, 150), with IL-17 being related to
severe diarrhea/colitis. A retrospective review involving 167 adult
patients with solid tumors indicated that increased baseline
lymphocyte counts are associated with a greater risk for irAEs
in patients treated with nivolumab or pembrolizumab (151). The
detection of autoantibodies has been suggested to predict the
development of irAEs related to the autoantibodies, and two
studies evaluating antithyroid antibodies and diabetes-related
autoantibodies have been reported (152, 153). Baseline gut
microbiota enriched in Faecalibacterium spp. and other
members of the Firmicutes is associated with a more frequent
occurrence of ipilimumab-induced colitis (154).

Rogado et al. reported that ICI treatment was markedly more
beneficial for patients with advanced cancer presenting with
irAEs than for those without irAEs (ORR: 82.5% vs. 16.6%;
PFS: 10 vs. 3 months) (155). Cutaneous or early irAEs are
associated with improved survival in melanoma patients
treated with nivolumab (156, 157). Future studies should
address this association to explore the underlying biological
mechanisms related to ICI efficacy, while how to balance the
incidence of irAEs and the immunotherapeutic response also
merits serious consideration.
CONCLUSION

In HCC, although several studies have been conducted to identify
predictive biomarkers that would allow the stratification of
patients who could benefit from ICI treatment, few have been
prospectively validated and none have resulted in the rewriting of
the current clinical guidelines or entered into clinical practice.
Here, we summarized the progress of immunotherapy for HCC
over recent years, with a particular emphasis on predictive
biomarkers. However, as HCC-related immunotherapy is still in
its infancy, basic research and clinical trials exploring the
predictive efficacy of immunotherapy biomarkers are still
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limited, and it is not yet possible to determine which biomarker(s)
can effectively predict the efficacy of immunotherapy. It is
particularly noteworthy that biomarkers represent continuums
and undergo dynamic changes in a population of patients.
Accordingly, it is pivotal to obtain samples from patients both
before and during treatment to evaluate these dynamic changes
and properly determine the predictive value of the assessed
biomarkers, while adequate consideration should be given to
their application in clinical practice. Furthermore, we only
reviewed the biomarkers that predict responses to immune
monotherapy, especially anti-PD-L1 and anti-PD-1 agents.
However, given the success of the IMbrave150 phase III clinical
trial, it is clear that antivascular therapy combined with
immunotherapy has great potential in patients with advanced
HCC, and combination therapy may be the direction of cancer
treatment in the future. But while combination therapy can
prolong the OS of HCC patients, it also complicates the patient
selection process. The development of research techniques such as
NGS, single-cell RNA sequencing, and artificial intelligence should
allow for a more comprehensive understanding of the various
components of the TME and their interactions, and potential
Frontiers in Oncology | www.frontiersin.org 10
biomarkers could be widely screened on a genomic scale to
identify the predictors of treatment efficacy.
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