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Abstract

Epidemiological data shows a discrepancy in COVID‐19 susceptibility and outcomes

with some regions being more heavily affected than others. However, the factors

that determine host susceptibility and pathogenicity remain elusive. An increasing

number of publications highlight the role of Transmembrane Serine Protease 2

(TMPRSS2) in the susceptibility of the host cell to SARS‐CoV‐2. Cleavage of viral

spike protein via the host cell's TMPRSS2 enzyme activity mediates viral entry into

the host cell. The enzyme synthesis is regulated by the TMPRSS2 gene, which has

also been implicated in the entry mechanisms of previously reported Coronavirus

infections. In this review, we have investigated the pathogenicity of SARS‐CoV‐2 and

disease susceptibility dependence on the TMPRSS2 gene as expressed in various

population groups. We further discuss how the differential expression of this gene in

various ethnic groups can affect the SARS‐CoV‐2 infection and Coronavirus disease

(COVID)‐19 outcomes. Moreover, promising new TMPRSS2 protease blockers and

inhibitors are discussed for COVID‐19 treatment.
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1 | INTRODUCTION

In early December 2019, hospitals located in Wuhan (the capital of

Hubei Province, China) started reporting patients with pneumonic in-

fections “of unknown origin” and related it to a kind of coronavirus

infection.1 On January 10, 2020, the first whole‐genome sequence of

the novel coronavirus was published, which indicated the novel cor-

onavirus to produce symptoms similar to the earlier reported SARS‐like
viral infections.2 Later in January 2020, human‐to‐human transmissi-

bility of the virus in the pneumonia outbreak was reported.3 The cor-

onavirus responsible for this disease condition was later termed SARS‐
CoV‐2 and the associated disease was named coronavirus disease or

COVID‐19, by the World Health Organization (WHO) and International

Committee on Taxonomy of Viruses (ICTV) on February 12, 2020.4

Since the reporting of first known COVID‐19 cases in Wuhan, SARS‐
CoV‐2, the causative agent of COVID‐19 has spread to 191 countries

and has infected more than 90.29 million people around the world

claiming more than 1.93 million lives. The United States and India lead

the world in the total number of confirmed cases and deaths.5 SARS‐
CoV‐2 primarily infects the respiratory and gastrointestinal tract,6

however, the main target organ seems to be the lungs.7 The reported

symptoms include fatigue, muscular pain, difficulty in breathing, dry

cough, sore throat, diarrhea, etc. with fever and dry cough being the

most common of all the symptoms.8 It is noteworthy to mention that

COVID‐19 shares all the symptoms with other viral diseases except

breathing difficulties and diarrhea.6 Phylogenetic studies based on the

analysis of open reading frame 1a and 1b (ORF1a/1b), nucleocapsid (N)

and Spike (S) genes imply that SARS‐CoV‐2 is a new virus that jumped
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independently from an animal to a human host.9 The COVID‐19 pan-

demic has a zoonotic origin which could have been triggered, in a

broader context, by consumption of bushmeat, contact with wild

animals, or environmental destruction caused by human activities.10

Currently, it is believed that SARS‐CoV‐2 originated in bats and then

probably passed onto Malayan pangolins as intermediate hosts before

infecting humans.11,12 However, there is no clear indication of the

involvement of Malayan pangolins intermediary role in SARS‐CoV‐2
spread to humans and the virus could directly have jumped from bats to

humans.12 On the basis of the RNA‐dependent RNA polymerase (RdRp)

gene, SARS‐CoV‐2 shares 99% similarity with BtCoV/4991, a horseshoe

bat coronavirus strain.12 As we understand, the RdRp gene is a con-

served retroviral gene and thus is used for the evolutionary classifica-

tion of viruses.13 On the basis of whole‐genome, SARS‐CoV‐2 bears

80% similarity with SARS‐CoV and 50% similarity with MERS‐CoV, both
of them also being coronaviruses that were responsible for major viral

outbreaks in the recent past.14,15 To infect humans, spike (S) protein

anchored in the envelope of SARS‐CoV‐2 is critical for the virus to bind

and infect its host. The receptor‐binding domain (RBD) present in the

S‐protein of SARS‐CoV‐2 is also similar to SARS‐CoV, suggesting a

mechanism of infection shared by both viruses. SARS‐CoV‐2 binds to

the peptidase domain of angiotensin‐converting enzyme‐2 abbreviated

as the ACE2 of host cell before fusing and entering the host cell.7

Moreover, like SARS‐CoV and MERS‐CoV, SARS‐CoV‐2 is also depen-

dent on host protease TMPRSS 2 for its priming and entry into the host

cells.16 This protease has been shown to be crucial for SARS‐CoV‐2
infection and disease outcomes as cells expressing higher levels of

TMPRSS2 yield higher SARS‐CoV‐2 cells have a higher viral damage.17

In a short period of time, SARS‐CoV‐2 has virtually engulfed the

whole world and caused high mortality.5 The condition is further ex-

acerbated as social and economic aspects of life around the globe have

been heavily affected due to high infection rates and social distancing

measures implemented in response to it.18 These social distancing

measures can slow down but cannot stop the spread of SARS‐CoV‐2
unless a significant population of the world has contracted the virus.19

In addition to the destruction caused by SARS‐CoV‐2, the nonavail-

ability of viable drugs like antivirals against this new disease makes the

condition challenging to deal with.20 In the review, we have evaluated

the role of TMPRSS2 protease in SARS‐CoV‐2 infection and how dif-

ferences in respiratory expression of this protease can explain the as-

sociated discrepancy in SARS‐CoV‐2 infection and COVID‐19 outcomes.

Moreover, therapeutic interventions that are based on the inhibition

and blocking of TMPRSS2 are also elucidated.

1.1 | Mechanism of SARS‐CoV‐2 infection and role
of TMPRSS2 protease

Coronaviruses (Coronaviridae family) belong to a group of positive‐
sense single‐stranded RNA viruses21 that cause a variety of re-

spiratory, nervous system, and enteric infections in various animal

species including humans.22 These viruses are subdivided at the level

of the genus into four types called Alpha‐(α), Beta‐(β), Gamma‐(γ) and

Delta‐(δ) coronaviruses.23 SARS‐CoV‐2 is a member of β‐
coronaviruses, which have four lineages (A–D) with SARS‐CoV as

well as SARS‐CoV‐2 belonging to the B lineage, which contains

roughly 200 sequenced viral genomes.24 To be able to infect, a virus

has to first bind to the host surface and subsequently initiate a

complex entry mechanism. For coronaviruses in B‐lineage, interac-
tion with the host cell involves attachment of viral spike (S) protein

with a specific host cell receptor25 followed by protease‐mediated

cleavage of S‐protein that allows viral entry into the host cells.24

Both attachment and cleavage have been found to be crucial for

lineage B β‐coronaviruses to circumvent species‐specific barriers and
infect human cells.24,25 Structural analysis of the S‐protein through

cryogenic electron microscopy has revealed that it is a trimeric

protein, with each ‐mer containing two functional subunits namely,

S1 and S2. The S1 subunit is necessary for recognition of receptors

on the surface of a susceptible host cell while the S2 subunit is re-

sponsible for fusion of the virus with the cell membrane of the host

cell. The S1 subunit also contains an important region called RBD

that helps S‐protein in binding with ACE2.26 The RBD domain con-

tains all the information necessary for host receptor binding as well

as folding independently from the rest of the viral S‐protein. The
distal S1 domain is cleaved when it binds with the hACE2 receptor.27

TMPRSS2 is a serine protease that is vital for the SARS‐CoV‐2
infectivity because it causes proteolytic activation and intake of SARS‐
CoV‐2 into the host cells. It has been shown that a higher number of

SARS‐CoV‐2 viral particles are isolated from the TMPRSS2 expressing

cells than non‐expressing cells.28 Moreover, respiratory cells lacking

TMPRSS2 protease are shown to have reduced lung pathology follow-

ing SARS‐CoV and MERS‐CoV infections. This has been demonstrated

by infecting TMPRSS2 knockout and TMPRSS2 proficient mouse models

(wild type or WT) with both coronaviruses. The WT batch of mice lost

considerable body weight and had observable damaged lungs few days

after being infected with SARS‐CoV and MERS‐CoV. These symptoms

were not observed, postinfection, in mutant mice. Moreover, as the

SARS‐CoV‐2 infection in the lungs results in lung damage followed by a

local immune response characterized by the release of cytokines and

chemokines,29 immunological assays of these mutant mice also showed

lower lung immunopathology and weakened cytokine and or chemokine

mediated immune response as compared with the mutants.17 This study

provided interesting data, which, if proven for humans, could help ex-

plain the reasons for higher susceptibility of some population groups to

show poor prognosis for COVID‐19 compared with other less suscep-

tible groups. In this review, we explored the currently available data on

the role of TMPRSS2 protease in SARS‐CoV‐2 infection and differences

in TMPRSS2 gene expression across various population groups, and the

associated susceptibility to SARS‐CoV‐2 disease outcomes.

1.1.1 | TMPRSS2 protein structure and multiorgan
expression

The TMPRSS2 gene located on chromosome 21 expresses a 492

amino acid long cell surface protein of the same name that contains
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four different domains which include the serine protease (SP) do-

main, scavenger receptor cysteine‐rich (SRCR) domain, LDL receptor

class A (LDLRA) domain and transmembrane (TM) domain.30 The

protein can be divided into a catalytic chain containing and non-

catalytic chain containing parts. In the catalytic chain, the amino acid

residues HIS 296, ASP 345, and SER 441 provide the catalytic triad

binding site, which is involved in catalysis (Figure 1). These amino

acid (aa) residues are also involved in the catalytic cleavage of the

SARS‐CoV‐2 S‐protein that results in entry of the virus into a host

cell. Hence, inhibitors that target these aa residues can be promising

drug candidates.31 The structure of TMPRSS2 including the positions

of noncatalytic and catalytic domains, protein domains, and catalytic

aa residues is shown in Figure 1.

Serine proteases are usually involved in protein cleavage and are

thus important in various physiological processes such as blood

coagulation, digestion, tissue remodeling, and programmed cell

death.32,33 The TMPRSS2 gene is highly expressed in androgen‐rich
environments.34 Androgen is a hormone that is responsible for the

development of male sex characteristics in all vertebrates.35 Besides

androgens, TMPRSS2 activity is also upregulated in the presence of

other steroid hormones such as estrogen and glucocorti-

coids.36,37 TMPRSS2 gene is expressed in a variety of organs, albeit at

different levels. The highest level of expression of the gene is re-

ported in the prostate region while lungs also have significantly high

expression levels.38 This high expression could be explained in terms

of the fact that TMPRSS2 contains androgen‐regulated elements

(AREs) located upstream of transcription start site and first intron.34

In androgen‐regulated prostate cancer cells, TMPRSS2 is upregulated

by androgen hormones while the opposite is true for androgen‐
independent prostate cancer cells. Besides this, TMPRSS2 also

regulates inflammation by proteolytically activating the protease‐
activated receptor‐2 (PAR‐2) in the prostate, whereas in the lungs,

TMPRSS2 controls sodium currents in the epithelium by proteolyti-

cally cleaving epithelial sodium channels.39 Still, the exact function of

TMPRSS2 protein is not fully understood because the TMPRSS2 gene

deletion in mice does not affect their normal growth.40

1.1.2 | SARS‐CoV‐2 respiratory invasion

In humans, SARS‐CoV‐2 primarily enters the respiratory tract to in-

itiate infection. The main route of entry of SARS‐CoV‐2 into the

human body is through the nasal epithelium as evidenced by re-

covery of high virus titers from both symptomatic and asymptomatic

patients.41 Therefore, SARS‐CoV‐2 can spread through both symp-

tomatic as well as asymptomatic individuals.42 Person‐to‐person viral

transmission occurs through respiratory droplets causing invasion of

the upper respiratory tract by SARS‐CoV‐2.43 The host binding re-

ceptor ACE2 and the serine protease TMPRSS2 responsible for

priming are localized on the surface membrane of nasal epithelial

cells. Due to viral attachment, nasal swab samples collected from the

upper respiratory tract can be used to detect the virus via an RT‐
PCR,44 and nasal epithelium yields the highest CT values for viral

RNA in this region.41 The bronchial pathway which the virus uses to

reach the lungs contain ACE2 and TMPRSS2 protein receptors in the

epithelium.45 The lower respiratory tract, which the virus employs for

replication also expresses ACE2 and TMPRSS2, mainly in the alveolar

epithelium Type II cells. The viral replication in this region of the

respiratory tract can lead to severe conditions such as pneumonia

and acute respiratory distress syndrome or ARDS.46

F IGURE 1 Functional domains of TMPRSS2
protein and their location in the protein sequence.
TMPRSS2 contains the noncatalytic chain(1–255)
and catalytic chain (256–492). The catalytic chain

contains HIS 296, ASP 345, and SER 441 residues,
which function as the binding and catalytic
sites. ASP (D), HIS (H), LDL receptor class A

(LDLRA) domain, scavenger receptor cysteine‐
rich (SRCR) domain, SER (S), serine protease (SP)
domain, and transmembrane (TM) domain
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Both ACE2 receptor and TMPRSS2 proteins are also expressed

in a variety of cells in organs besides the respiratory tract such as

cholangiocytes, colonocytes, esophageal keratinocytes, gastro-

intestinal epithelial cells, pancreatic β‐cells, renal proximal tubules,

and so on. This broad‐spectrum infectivity explains the ability of the

virus to damage organs beyond the immediate exposure of lungs,

however, the mechanism by which SARS‐CoV‐2 infects other organs

besides lungs is poorly understood.47

1.1.3 | TMPRSS2 protease priming of the SARS‐
CoV‐2 S‐protein

Binding of RBD with ACE2 serves as the entry point for the initiation

of viral infection. The high binding affinity of S‐protein of SARS‐CoV‐2
with the ACE2 receptor can partly explain the high infection and

transmissibility rate than those of the earlier similar coronavirus known

as SARS‐CoV.43,48,49 Despite high binding affinity, the RBD domain of

the viral S‐protein is less than optimum for binding with the host ACE2

receptor compared to the earlier SARS‐CoV7 suggesting that SARS‐
CoV‐2 employs some other technique to bypass this problem. The ex-

planation offered for this high infectivity despite a low affinity for ACE2

protein is that the virus might have evolved through natural selection

for optimum ACE2 receptor binding50 as the high plasticity of the

genome allows coronaviruses to adapt specifically to a host.51 Binding of

SARS‐CoV‐2 S‐ protein with ACE2 receptor is then followed by host

TMPRSS2‐mediated cleavage of the viral S‐protein. The processing

known as priming involves cleavage of the S‐protein at S1/S2 and S2

sites which is essential for the viral fusion with the host cell membrane

before entry into the cell.16,28 Besides the TMPRSS2 protein, it has

been suggested that SARS‐CoV‐2 can use other proteases such as

cathepsin B/L for S‐protein in the absence of TMPRSS2 receptors.

However, in the lungs (the primary organ for SARS‐CoV‐2 infec-

tion), cathepsin B/L cannot substitute for TMPRSS2 protease

activity as the latter is indispensable for viral entry as observed for

SARS‐CoV and MERS‐CoV.52

F IGURE 2 Role of TMPRSS2 protease in SARS‐CoV‐2 in infection. After binding of the SARS‐CoV‐2 S‐protein with the ACE2 receptor, the
S‐protein is primed by TMPRSS2 protease that results in the viral entry. Plus (+) sign indicates all the factors that increase TMPRSS2
protease expression and SARS‐CoV‐2 priming. Inhibitor (‐‐‐) sign indicates therapeutic targets that can have inhibitory action against TMPRSS2 protease
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1.1.4 | Temporary loss of smell (anosmia) in COVID‐
19 linked to TMPRSS2

One of the most common and distinguishing features of COVID‐19
compared with other viral diseases is the temporary loss of sense of

smell, known as anosmia, in many but not all of the symptomatic and

asymptomatic patients.53,54 Anosmia could be hypothesized to be

linked to the damage caused by SARS‐CoV‐2 to the epithelial layer

and subsequent inflammation or impairment of the receptor neurons

in the olfactory organ. The latter condition is of particular concern as

SARS‐CoV has been found to initially infect olfactory receptors and

then proceed onto infecting brains of transgenic mice, bred to ex-

press human ACE2 proteins.55 If the same is true for SARS‐CoV‐2
then the olfactory epithelium (OE) should comprise cells that express

ACE2 and TMPRSS2, which should facilitate the viral infection.56,57 To

address this, Bilinska et al.,58 analyzed olfactory epithelial cells of

mice for expression of ACE2 and TMPRSS2 by RNA sequencing,

RT‐PCR analysis, in situ hybridization, Western blot, and im-

munocytochemistry assays. The researchers found expression of

both proteins in the sustentacular OE cells, however, for olfactory

receptor neurons (ORNs), ACE2 expression was not detected while

TMPRSS2 was only expressed at low levels in mature ORNs only. The

preferential target of SARS‐CoV‐2 for sustentacular cells leads to

infection and buildup of the viral cells that interfere with the meta-

bolism of these cells. This disturbance in the normal functioning of

sustentacular cells could provide an explanation for the loss of ol-

faction as these cells are important for olfaction because of their role

in secretion of odor binding proteins and endocytosis of olfactory

binding protein‐odorant complex.59 This does not however explain

whether SARS‐CoV‐2 also the ability has to target brain cells. Further

studies are needed to explain whether SARS‐CoV‐2 has the ability to

infect ORNs on route to infecting the brain.58 The investigators,

Bilinska et al.,58 reported that the murine OE contains a compara-

tively denser cluster of ACE2 proteins than respiratory epithelium

cells do, which could make OE more susceptible to SARS‐CoV‐2
infection than the respiratory epithelial cells. This is an important

finding, which could be replicated in humans to compare levels of

ACE2 as well as TMPRSS2 proteins in human OE and respiratory

epithelium. If the same is true for human OE as well as for the murine

OE, then detecting SARS‐CoV‐2 viral particles in the OE could be

more reliable than respiratory epithelium which helps reduce the

rate of false‐negative COVID‐19 test results.

1.1.5 | Role of TMPRSS2 in previous viral outbreaks

The role of the TMPRSS2 gene in previous major pathogenic viral

outbreaks or epidemics of the 21st century is well docu-

mented.60,61 The H1N1 influenza pandemic that started in 1918

was among the deadliest epidemics in recorded human history that

killed between 50 and 100 million people.62 Though finding an

association between TMPRSS2 and 1918 H1N1 was unlikely to

occur at the time of the viral pandemic, it was made possible

through a strategic revival of the H1N1 virus and examining the

role of TMPRSS2 by infecting TMPRSS2 deficient and proficient

mice with the 1918 H1N1 virus.63 The later outbreaks/epidemics,

though being responsible for a far smaller number of causalities,

still impacted a significant number of people around the globe.

The first major 21st century viral epidemic also caused by a

coronavirus termed as severe acute respiratory syndrome virus

(SARS‐CoV) was first reported in Foshan city in Guangdong pro-

vince, China on November 16, 2002.64 The second major viral

outbreak that later became a pandemic caused by H1N1 influenza

A virus first emerged in Mexico in April of 2009.65,66 Next, in June

2012, another novel coronavirus later termed as the Middle East

Respiratory Syndrome Coronavirus (MERS‐CoV) emerged in Jed-

dah, Saudi Arabia.67 Again, in March 2013, another influenza virus,

H7N9 emerged in Shanghai and Anhui cities in China.68 Both

viruses that caused these major outbreaks or epidemics can be

divided into influenza viruses and coronaviruses. Both H1N1 and

H7N9 are influenza‐A viruses that contain hemagglutinin (HA)

and neuraminidase (NA) proteins that are essential for host entry

and also serve as the basis of classification for these viruses.69 The

HA protein mediates binding of the virus to the sialic acid (SA)

residues of the host cell terminus while the NA protein is re-

sponsible for the viral release from the SA residues thereby be-

ginning the infection in host cells.70 SARS‐CoV and MERS‐CoV on

the other hand use different proteins and receptors for host cell

entry. SARS‐CoV uses spike S‐protein to bind with ACE2 receptor

while S‐protein of MERS‐CoV targets dipeptidyl peptidase‐4
(DPP4) for host cell attachment.71,72 In mice models, infection

with H1N1 and H7N9 has caused a mortality rate of 20% and 100‐,
respectively, while TMPRSS2 knockout has been shown to render

H1N1 and H7N9 viruses apathogenic thus, suggesting primal im-

portance of TMPRSS2 in activation of the viruses’ HA protein that

leads to viral infection.63 TMPRSS2 (+) positive cell lines have

shown a 100‐fold increase in susceptibility to MERS‐CoV infection

than TMRPSS2 (−) negative cell lines. Moreover, treatment of

TMPRSS2 containing cell lines treated with camostat (serine pro-

tease inhibitor) completely blocks the ability of MERS‐CoV to in-

fect these cells which explains the dependency of MERS‐CoV on

TMPRSS2 protease for its infectivity.73 SARS‐CoV entry into host

cells is dependent on cathepsin‐L in addition to TMPRSS2 priming,

and the inactivation of these receptors is necessary for complete

blockage of SARS‐CoV entry.74

1.2 | Differential TMPRSS2 lung expression and
COVID‐19 susceptibility among different population
groups

The previous section dealt with a detailed explanation of the SARS‐
CoV‐2 infection mechanisms and the role of TMPRSS2 protease in

infection. This section deals with the various susceptibility factors

noticed among population groups that are associated with differ-

ential expression of TMPRSS2.
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1.2.1 | Age as a susceptibility factor

Progression of COVID‐19 pandemic and hospitalization and mortal-

ity rate is highly correlated with population age structure. In the

United States, the hospitalization rate due to COVID‐19 has been

recorded and published by COVID‐NET, a COVID‐19 case surveil-

lance and data collection program. According to COVID‐NET, the

hospitalization rate due to COVID‐19 increases with increasing age.

For example, the hospitalization rate for Americans between the age

0–4 was 0.3%, for 50–64 years old, it was 7.4% and 13.8% in in-

dividuals ≥65 years of age as of March 30, 2020.75 Old age also

increases the mortality risk for COVID‐19, particularly for those in-

dividuals who are aged 80 and above compared with younger

members of a population.76 Indeed, case fatality rate (CFR) estimates

from China and Italy have shown that being old increases the risk of

dying from COVID‐19 manifold.77 In China, CFR for 40–49 years old

individuals was 0.4% while for those aged above 80 was 14.8% as of

February 11, 2020.78 In Italy, the CFR values estimated until March

30, 2020 were 0.7% for individuals aged between 40 and 49 years

while it was 22.7% for individuals aged 80 and above.79 In the United

States, between February 12 and March 16, 2020, about 80% of the

COVID‐19 related deaths occurred in individuals who were 65 years

or older.80 Table 1 describes CFR for different age groups in some

countries.

In the case of MERS‐CoV, it was reported that juveniles have

higher chances of contracting the virus than adults.83 For

SARS‐CoV‐2, data on infection rates among different age groups is

not known. However, down the age group, we see a steady decrease

in the number of SARS‐CoV‐2 morbidity and mortality rates as

children and infants represent one of the least affected among all

population groups. This has been evidenced by the decreased num-

ber of children and infants admitted to hospitals due to COVID‐19
related symptoms.84 On the other hand, younger age groups such as

infants and children are highly prone to be admitted into a hospital

after viral respiratory infections caused by influenza or syncytial

virus which could be associated with an immature immune system,85

suggesting that there must be other factors at play for the higher

probability of worse outcomes in the upper age group.

TMPRSS2 expression and its contribution to age susceptibility to

COVID‐19
One of the reasons for the decreased infection rate among children

and adults as compared to the elderly could be due to decreased

expression of ACE2 and TMPRSS2 in organs for which the

SARS‐CoV‐2 has a natural tropism in children and adults as compared

with the elderly. An experiment in murine models has shown that

ACE2 and TMPRSS2 expression in the OE increases with age.57 OE is

a part of the nasal cavity, which then is a component of the upper

respiratory tract,86 acting as the primary route for SARS‐CoV‐2 in-

fection.45 A preprint study by Schuler et al.,87 has shown that the

TMPRSS2 expression in the lung epithelium also increases with age. In

the study, lung epithelial cells studied for TMPRSS2 expression in-

cluded ciliated cells, secretory cells, and alveolar type (AT) 1 and 2

cells while the age groups included infants (up to 2 years old), chil-

dren (aged between 3 and 17) and adults (aged 54–69) and the re-

sults showed that except for AT2 cell types, a significant difference in

all other cells was found in the order; infants < children < adults. The

study also showed that AT1 and ciliated cells tend to have higher

TMPRSS2 expression levels and SARS‐CoV‐2 viral load in severely

affected patients while in children and infants, these cells have a

lower expression of TMPRSS2 indicating that low levels of TMPRSS2

in the latter two groups have protective effects. In contrast, an

earlier report from China highlighted an equal SARS‐CoV‐2 infection

risk among children and adults.88 However, children remain un-

diagnosed due to the subclinical nature of SARS‐CoV‐2 infection

among individuals from this age group which favors the under-

representation of this group in SARS‐CoV‐2 infection statistics.84,88

1.2.2 | Population ethnicity as a susceptibility factor
of TMPRSS2

Epidemiological data of COVID‐19 suggests some countries and re-

gions being badly affected by COVID‐19 while others are doing much

better.5 Large genetic studies around the world point to the differ-

ences in allele frequencies and protein expression of various genes in

geographically distinct groups of people.89 Based on the TMPRSS2

cumulative genetic expression score (GES), African populations have

the lowest observed TMPRSS2 expression levels while East Asians

and Admixed Americans show the highest TMPRSS2 expression

profile.90 However, this represents an overall expression profile of

TMPRSS2 in different populations while the TMPRSS2 expression

profile also varies considerably in lungs as we discuss TMPRSS2 ex-

pression in different populations. An increase in the expression of

TMPRSS2 in the lungs is expected to increase S‐protein priming,

which should thereby make individuals (with higher expression of

TABLE 1 Case fatality ratio (CFR) among different population age
groups in the named countries

Country Population age group CFR (%) References

China 40–49 0.4 [78]

80+ 14.8

Korea 80+ 18.31 [81]

Singapore 60–69 1.84 [82]

70–79 5.57

90+ 76.92

Japan 60–69 5.52

70‐79 15.49

80–89 28.77

90+ 33.22

Italy 40–49 0.7 [79]

80+ 27.7

60+ 96.9

United States ≥65 80 [77]
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TMPRSS2) more susceptible to SARS‐CoV‐2 infection and more prone

to suffer from worse COVID‐19 outcomes.91 A comparison of the

differences in TMPRSS2 expression among different ethnic popula-

tions (including male and female) is shown in Table 2.

In a recent study by Irham et al.,91 lung expression of TMPRSS2

gene was assessed in population groups from different continents.

European and American populations were shown to have higher

expression levels of TMPRSS2 than East Asian populations. Notably,

the researchers found four TMPRSS2 variants to be associated with

higher expression of the gene, and these variants responsible for

upregulation of TMPRSS2 were found in higher frequency in Eur-

opean and American populations while the lowest frequency of

these variants was found in East Asian populations. Earlier in two

distinct patient cohorts, two of these identified variants (rs2070788

and rs383510) made patients more susceptible to infection by in-

fluenza virus infection A(H7N9).92 Another study by Russo et al.,93

identified intergenic lung tissue variant of eQTL (a locus that ex-

plains a fraction of the genetic variance of a gene expression phe-

notype), that is, rs35074065 that is responsible for upregulation of

TMPRSS2 and downregulation of the MX‐1 (Interferon‐induced
GTP‐binding protein) gene. So, individuals having this eQTL variant

are expected to have increased vulnerability to SARS‐CoV‐2 infec-

tion and decreased cellular immune response against the virus. In

the study, the researchers reported the lowest frequency of this

eQTL variant among East Asians while the highest frequency was

found in Ashkenazi Jews among the total analyzed population

groups (Table 3). Asselta et al.,94 also found rare alleles of two

haplotypes associated with higher expression of TMPRSS2 in lungs

to be present in higher frequency in the Italian cohort than the East

Asian population against whom they were compared. It is also no-

teworthy to mention here that one of the allele variants of a hap-

lotype responsible for higher TMPRSS2 expression is associated

with increased risk to Influenza A virus H7N9 and H1N1 subtype

infection and severe outcomes, respectively.92 Following are some

of the susceptibility factors of COVID‐19 disease that encompass

TMPRSS2.

1.2.3 | TMPRSS2 and gender as a susceptibility
factor of SARS‐CoV‐2

According to the sex, gender, and COVID‐19 project, a database for

COVI‐19 disaggregation between sexes in the world population,

show that more men, irrespective of age, die from COVID‐19 than

women,95 a common factor observed for earlier viral infections such

as SARS‐CoV and MERS‐CoV.96,97 The discordancy in death rate is

the opposite in India which appears to be an exception to the general

trend around the world with more women dying from COVID‐19
than men.98 If a general trend of the mortality rate is taken into

account, then the question arises as to why more men die from

COVID‐19 than women? One probable reason for higher infection

rates among men could be increased exposure to SARS‐CoV‐2 as

more males work outside than females.99 Another possible ex-

planation for the discrepancy in mortality rate could be the different

levels of ACE2 and TMPRSS2 expression between males and females.

TABLE 2 Difference in body TMPRSS2 expression level difference between different ethnicities90

Ethnic population TMPRSS2 expression difference (male) TMPRSS2 expression difference (female)

Africans versus Europeans p < .0001 p < .0001

Africans versus Americans p < .0001 p < .0001

Africans versus East Asians p < .0001 p < .0001

Africans versus South Asians p < .0001 p < .0001

Europeans versus Americans p = .084 p = .97

Europeans versus East Asians p = .03 p = .95

Europeans versus South Asians p = 1 p < .93

Americans versus East Asians p = 1 p = 1

Americans versus South Asians p = .053 p = .66

East Asians versus South Asians p = .015 p = .55

TABLE 3 The gnomAD database (based on WGS data) annotated

allele frequency of eQTL variant rs35074065 in different population
groups93

Population Allele frequency

Africans/African Americans 0.12

Latino/Admixed Americans 0.26

Ashkenazi Jews 0.47

East Asians 0.0

Unassigned populations 0.34

Finnish 0.34

Non‐Finnish Europeans 0.45

Southern Europeans 0.45

North‐Western Europeans 0.46

Estonians 0.42
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Although a preprint study conducted on exome and SNP array

sample data representing Italy's population found ACE2 to have no

association with higher mortality rates among men, differences in

expression of TMPRSS2 in bronchial epithelial cells found between

males and females could explain severe COVID‐19 outcomes in

men.94 In the study, males were found to express higher levels of

TMPRSS2 in bronchial epithelium cells as compared with age‐adjusted
females, while TMPRSS2 expression in the lung samples of both sexes

exhibited no difference. These findings are interesting as the bron-

chial epithelium has been proposed to be a preferential target site for

SARS‐CoV‐2 infection in humans. Secretory cells in the bronchial

epithelium, in particular, are shown to primarily express ACE2 and

TMPRSS2.100 Severe outcomes of SARS‐CoV‐2 infection are related

to the alveolar damage caused due to the viral invasion of ciliated

host epithelial cells in the bronchi and the bronchioles as well as Type

I and II pneumocytes.101 A preprint study by Song et al.,102 found

significantly higher expression of ACE2 and TMPRSS2 in Type II

pneumocytes in males as compared with females.

Smoking as a contributing factor for higher TMPRSS2 expression

in men

It is known that smoking increases TMPRSS2 expression and compared

with women, men are more active smokers.103,104 It has been shown

that smokers are 1.4 times more likely to be affected by severe

COVID‐19 outcomes and 2.4 times more prone to be admitted to ICU

due to COVID‐19 than non‐smokers.105 Analysis of lung expression

data in publicly available expression database, that is, Gene Expression

Omnibus (GEO) has revealed that smoking increases pulmonary

TMPRSS2 expression significantly, however, interestingly, the expression

returns to the nonsmoker level when smoking is stopped. This shows

that the effect of smoking does not cause a buildup of TMPRSS2 ex-

pression but causes a rapid increase, which is more like a switch than a

gradual process.106 Transcriptomic analysis of lung tissue also revealed

that the TMPRSS2 expression significantly increases (p = .0002) in

smokers as compared to non‐smokers.104 Smoking as a risk factor for

severe COVID‐19 outcomes is however debatable as smokers in China,

Korea, and the United States have been shown to be underrepresented

among severely affected individuals from COVID‐19.107

Blood androgen‐dependent TMPRSS2 expression as a susceptibility

factor

In another study published,90 differences in TMPRSS2 expression

between male and female members, belonging to different ethnic

groups were not significant. Although some studies90,94 that point at

differences in TMPRSS2 expression might seem to be at odds with

each other, the methodology employed was different. In the first

study, researchers looked for TMPRSS2 expression localized in lung

and bronchial epithelial cells while in the latter, the researchers re-

ported an unlocalized TMPRSS2 expression level in the whole body.

Asselta et al.94 also found the Italian population to express a

TMPRSS2 haplotype that is regulated by androgens and is involved in

the upregulation of TMPRSS2, so the presence of this haplotype can

explain the higher expression associated with poor prognosis among

Italian men.94 The role of TMPRSS2 in prostate cancer is well es-

tablished,108 and the cell lines derived from human lungs are regu-

lated by androgens and glucocorticoids and androgen exposure

increases TMPRSS2 expression.109

Contrary to the observed differences in TMPRSS2 expression in

males and females by Asselta et al.,94 for the Italian population co-

hort, Baratchian et al.,106 did not find a statistically different ex-

pression of TMPRSS2 between males and females in publicly available

lung expression profiles including bronchial epithelia. The observed

differences could be attributed to differences in usage of publicly

available expression databases and methodologies. Asselta et al.94

took expression data for ACE2 and TMPRSS2 genes of lungs and

bronchial epithelia from the GTEx database (https://gtexportal.org/

home/) and GEO repository (https://www.ncbi.nlm.nih.gov/geo/)

while genetic data related to the SNPs of both genes were retrieved

from the GnomAD repository (https://gnomad.broadinstitute.org/)

and compared allele variations and gene expression levels between

Italians (men and women) and east Asians. On the other hand,

Baratchian et al.106 obtained publicly available TMPRSS2 expression

profiles of lungs and bronchial epithelium from the GEO database

only. Table 4 shows the differences in both study methodologies and

the outcomes obtained.

1.3 | Treatment options for COVID‐19 based on
targeting TMPRSS2 expression

Considering the primal importance of TMPRSS2 protease in SARS‐
CoV‐2 infection and COVID‐19 outcome, designing therapeutic tar-

gets of TMPRSS2 protease has been considered. The following sec-

tion describes some of the therapeutic agents that could be used for

COVID‐19 treatment based on decreasing or inhibiting TMPRSS2

expression.

TABLE 4 Differences in the methodology and results obtained

Methodology GEO datasets used Result References

GTEX and GEO

repository

GSE66499 and GSE19804 Men have significantly higher expression in

Bronchial Epithelium (p = .029) but not in

lungs

[94]

Only GEO GSE103174, GSE123352, GSE16008, GSE18385,

GSE18385, GSE37147, GSE4115, and GSE43696

No difference in TMPRSS2 expression in lungs

and Bronchial Epithelium

[106]
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1.3.1 | Inhibition of TMPRSS2 androgen exposure as
a potential COVID‐19 treatment strategy

Much of the knowledge regarding the role of the TMPRSS2 gene

comes from the field of cancer biology. The gene is a diagnostic

marker for prostate cancers as it is upregulated while being fre-

quently involved in translocation with the ERG gene.110 TMPRSS2

contains an androgen receptor (AR), which is involved in transcrip-

tional regulation through binding with androgen hormone.111 Being

androgen‐regulated, androgen deprivation therapy (ADT) is regularly

used in cancer patients112 which can impart its effect by decreasing

TMPRSS2 expression.113 Besides prostate cancer, increasing ex-

posure with androgen has been reported to increase TMPRSS2 ex-

pression in the lungs.114 Building on these premises, it seems logical

to hypothesize that inhibiting androgen exposure in lungs should

suppress TMPRSS2 activity. For such purposes, AR expression an-

tagonists, AR coregulatory factors, and transcription factors such as

ETS1 and SP1, and so on, could be used.115 Apart from similarities in

the TMPRSS2 gene role, the two diseases also share commonalities in

risk factors that increase the likelihood of developing severe disease

outcomes. Other risk factors of co‐morbidity include alcoholism,

diabetes, and hypertension; behavioral traits such as smoking and

age >50 years.116

Recently, it has been suggested that ADT used for prostate

cancer patients could also be used in SARS‐CoV‐2 patients.115

Compounds that are currently used as ADT include blockers of an-

drogen receptors such as bicalutamide and enzalutamide, anti‐
gonadotropins and inhibitors of androgen synthesis.117 ADTs such as

estradiol, enzalutamide, genistein, and phytoestrogens have been

shown to decrease expression of TMPRSS2 by 1.6‐ to 14‐fold, de-
pending on the cell lines and experimental conditions, and so on, used

in these studies. On the other hand, androgen exposure has been

found to increase TMPRSS2 expression by 1.4‐ to 20‐fold.108

Montopoli et al.115 found prostate cancer patients receiving ADT to

be a lower risk of contracting SARS‐CoV‐2 infection. In this in silico

study, the researchers analyzed metadata of 9280 SARS‐CoV‐2 in-

fected patients in Veneto, Italy, and found that prostate cancer was

associated with increased chances of hospitalization, admission into

ICU, and the overall death rate from COVID‐19. However, the in-

creased percentage can also be attributed to the greater testing rate

for COVID‐19 in prostate cancer patients as these patients are more

frequently hospitalized than the healthy population which raises the

issue of sample bias. The researchers then analyzed a sample of ADT

(+plus) and ADT (−minus) prostate cancer patients and found that a

significantly smaller number of ADT receiving patients contracted

SARS‐CoV‐2 infection (only 4 out of 5273 ADT receiving patients).

The study provides an important insight into the potential new

treatment option for COVID‐19 patients that if successful will help a

significant population around the world. Androgens being involved in

the regulation of TMPRSS2, are also implicated in severe immune

reactions by increasing production of interleukins and transforming

growth factor‐β while decreasing antibody production in response to

viral infections.118 The positive association between higher androgen

levels and neutrophils produced can also be a cause of cytokine

storm that can worsen COVD‐19 related outcomes.118,119 Contrary

to the hypothesis and observed association found by Montpoli

et al.,115 using the androgen hormone antagonist enzalutamide did

not result in a significant decrease of TMPRSS2 expression in the

lungs of mice models.106 Moreover, a study done in Veneto, Italy

found no evidence for the role of ADT in protecting patients from the

poor prognosis of COVID‐19, as 25% of prostate cancer patients died

from COVID‐19 than the 13% average infected Italian males.120 One

of the reasons for the huge differences in results could likely be due

to different levels of social distancing practices observed by the two

research groups in Veneto, Italy. Moreover, Montopoli et al.,115 did

not define the stage of pancreatic cancer in patients that were in-

vestigated, while Caffo et al.,120 studied a total of 1949 pancreatic

cancer patients all of whom were in the advanced stage of their

disease. It is likely that differences in stages of pancreatic cancer

could have significantly produced divergent observations made by

the two scientists.120

1.3.2 | Therapeutic strategies based on TMPRSS2
protease inhibition

Besides ADT, there have been other treatment options suggested for

inhibiting or decreasing the TMPRSS2 expression as a therapeutic

target. There are various publications that have indicated a plethora

of TMPSS2 inhibitors and among these inhibitors, one of the most

promising inhibitors that could be used for COVID‐19 treatment is

Camostat Mesylate (CM). The inhibitor has been shown to protect

mice from death after lethal injection with SARS‐CoV. In Japan, CM is

already being used as a treatment drug, for diseases other than

COVID‐19.93 When mice are given the same concentration of CM as

required for humans, the mortality rate has been shown to be re-

duced by 70%–65%.121 In Caco‐2 and Vero cell lines, treatment with

CM has shown partial inhibition of SARS‐CoV‐2 entry into the re-

spective cell lines. However, when CM is used in combination with

the CatB/L inhibitor called E‐64d for the same cell lines, complete

viral inhibition is attained, suggesting a combinational approach that

acts synergistically in blocking SARS‐CoV‐2 entry completely.50,122

Another compound that is of interest for TMPRSS2 expression in-

hibition is Bromohexine.123 The same compound has already been

recommended for the treatment of SARS‐CoV and MERS‐CoV in-

fections.60 In the bronchial and pulmonary epithelial cells, the con-

centration of bromhexine can become four to six times higher than

the in plasma, which is sufficient to suppress TMPRSS2 activity.123

The compound is also being investigated for treatment of cough and

chest congestion associated with pneumonia caused by COVID‐19 in

China.124 Recently, Nafamostat mesylate (INN) has been shown to

inhibit SARS‐CoV‐2 entry into the host Calu‐3 human cell lines with

15 times higher efficiency than the CM.125 A molecular docking study

by Sonawane et al.,126 has shown that the three abovementioned

TMPRSS2 protein inhibitors strongly interact with the His296,

Ser441, and Asp435 TMPRSS2 protein residues present in the

ABBASI ET AL. | 4213



catalytic region that results in the inhibitory action of these blockers.

The authors also found that among these inhibitors, CM shows the

strongest binding with TMPRSS2. Finally, Bestle et al.,127 used

aprotinin and two synthetic TMPRSS2 inhibitors called MI‐432 and

MI‐1900. Treatment with these inhibitors resulted in a maximum of

20‐ to 35‐, 5‐, and 25‐ to 70‐fold decrease of SARS‐CoV‐2 titers in

Calu‐3 cell lines compared to uninfected Calu‐3 cells, respectively.

Among the abovementioned TMPRSS2 inhibitors, only CM is cur-

rently being investigated as a treatment option for COVID‐19 in a

clinical trial (National Library of Medicine, 2020 [NLM]

NCT04321096). So, to increase the number of treatment options, the

TMPRSS2 inhibitors described in the section should be examined in

clinical trials (Figure 2).

2 | SUMMARY

The discrepancy in COVID‐19 related severe health deterioration

and death rate can be due to many factors including socioeconomic

and biological differences. Among the biological differences,

TMPRSS2, a gene whose role in prostate cancer is well established is

being also investigated for its involvement in the ongoing pandemic,

that is, COVID‐19. SARS‐CoV‐2 is dependent upon the expression of

this gene as it causes priming of the viral S‐protein, allowing it to

enter the host cells. The gene is naturally expressed in the nasal

epithelium (entry site of SARS‐CoV‐2) and in the known target organ

of the virus (different cell types in lungs). This, together with the

studies showing that higher SARS‐CoV‐2 load is obtained from host

cells expressing higher levels of TMPRSS2 prompted us to investigate

the matter further. In the review, we have analyzed current data on

how differences in lung expression of TMPRSS2 among different

human population groups affect COVID‐19 outcomes. Indeed, there

are studies that link the higher expression of TMPRSS2 with an in-

crease in hospitalization and death rates. However, much of the work

done in this area is reporting the association between differential

TMPRSS2 expression in different population groups with differences

in susceptibility to SARS‐CoV‐2 infection and COVID‐19 disease‐
related outcomes. These association studies include analysis of SNP

data profiling, TMPRSS2 gene expression data profiling, murine SARS‐
CoV‐2 lung infection, and a small number of human lung tissue

samples. Though promising, further research is still needed because

the studies establish only a correlation rather than evidence. So, it is

the need of the hour to elucidate more on the matter and establish a

conclusive link between the two. This will help in distinguishing more

susceptible population groups from less susceptible, which, therefore,

can guide us in designing better treatment strategies in the absence

of effective drug or vaccine treatment, the situation in the world as of

writing this review. In this context, therapeutic agents targeting

TMPRSS2 expression have also been described. Among these,

camostat mesylate (CM) is the only inhibitor that is currently being

examined for its efficacy in treating COVID‐19 in a clinical trial.

There is a need to increase the number of treatment options and so,

other TMPRSS2 protease inhibitors like bromhexine, INN, and

aprotinin, and so on, should also be investigated in clinical trials. Like

basic research about the role of TMPRSS2 in COVID‐19, further re-

search is needed to substantiate the utility of TMPRSS2 inhibitors for

treating COVID‐19 patients.
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