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Abstract

Insect cuticle is composed primarily of chitin and structural proteins. To study the function of structural cuticular proteins,
we focused on the proteins present in elytra (modified forewings that become highly sclerotized and pigmented covers for
the hindwings) of the red flour beetle, Tribolium castaneum. We identified two highly abundant proteins, TcCPR27 (10 kDa)
and TcCPR18 (20 kDa), which are also present in pronotum and ventral abdominal cuticles. Both are members of the Rebers
and Riddiford family of cuticular proteins and contain RR2 motifs. Transcripts for both genes dramatically increase in
abundance at the pharate adult stage and then decline quickly thereafter. Injection of specific double-stranded RNAs for
each gene into penultimate or last instar larvae had no effect on larval–larval, larval–pupal, or pupal–adult molting. The
elytra of the resulting adults, however, were shorter, wrinkled, warped, fenestrated, and less rigid than those from control
insects. TcCPR27-deficient insects could not fold their hindwings properly and died prematurely approximately one week
after eclosion, probably because of dehydration. TcCPR18-deficient insects exhibited a similar but less dramatic phenotype.
Immunolocalization studies confirmed the presence of TcCPR27 in the elytral cuticle. These results demonstrate that
TcCPR27 and TcCPR18 are major structural proteins in the rigid elytral, dorsal thoracic, and ventral abdominal cuticles of the
red flour beetle, and that both proteins are required for morphogenesis of the beetle’s elytra.
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Introduction

How arthropods manufacture exoskeletons with a wide array of

mechanical properties, ranging from hard and rigid to soft and

flexible, is an important question in developmental biology. The

insect exoskeleton, or cuticle, covers the entire body wall and

attached appendages as well as the foregut, hindgut and tracheae.

It is a complex extracellular biocomposite, secreted by the

epidermis and consisting of several functional layers including

the waterproofing envelope, the protein-rich epicuticle and the

chitin-rich procuticle [1]. Cuticular proteins (CPs) and the

polysaccharide chitin are the primary structural components of

the exo- and endocuticular layers that comprise the procuticle.

During cuticle maturation and tanning (sclerotization and

pigmentation), some of the CPs are post-translationally modified

and cross-linked by quinones or quinone methides produced by

the laccase-mediated oxidation of N-acylcatechols [2,3]. This

process stabilizes and hardens the exoskeleton, protecting insects

from microbial, physical and other environmental stresses.

However, little is known about the functional importance of

individual insect cuticular proteins in the morphogenesis and

mechanical properties of the exoskeleton.

More than 100 genes encoding CP-like proteins have been

identified in the fruit fly, Drosophila melanogaster [4], with a similar

number present in the red flour beetle, Tribolium castaneum [5].

Anopheles gambiae (malaria mosquito) and Bombyx mori (oriental

silkworm) have an even larger number of genes encoding CP-like

proteins, each species harboring more than 200 putative CP genes

[6–10]. Expression of specific CPs may be required to produce

cuticles with a range of morphological and mechanical properties

in different regions of the insect body and at different

developmental stages.

Insect CPs are classified into several distinct families defined by

the presence of specific sequence motifs [7,10]. The largest of these

is the CPR family, which includes proteins that have a conserved

amino acid sequence known as the Rebers & Riddiford (R&R)

motif [11]. The R&R motif contains a putative chitin-binding

domain that may help to coordinate the interactions between

chitin fibers and the proteinaceous matrix [12,13].

A major event in the evolution and diversification of beetles was

the transformation of the membranous forewings into thickened,

hardened, non-flight covers (elytra) for protection of the delicate

hindwings and dorsal abdomen [14–16]. The elytron is composed

of ventral and dorsal layers of epidermal cells that secrete thin

lower and thicker upper cuticular laminae [17,18]. In the

developing elytron, the space between these two layers is filled

with hemolymph and supporting structures known as trabeculae

that function as mechanical struts, connecting and fortifying the
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dorsal and ventral cuticular layers. As the elytron matures, the

epidermal layers are reduced in size, possibly dying or fusing

together, and the hemolymph is resorbed, leaving a cavernous

interior. The dorsal layer of the elytron becomes highly tanned

and rigid as a result of both pigmentation and sclerotization. The

ventral layer also exhibits some pigmentation, but it remains thin

and membranous in comparison to the dorsal layer. The surface of

the ventral elytral cuticle is relatively smooth and makes close

contact with the underlying and folded hindwings. The surface of

the dorsal elytral cuticle, on the other hand, contains numerous

sensory setae and rib-like structures (striae) that extend longitudi-

nally, apparently adding rigidity to the structure [19]. Initially, the

elytra are short, colorless and soft, but they expand in both length

and width shortly after eclosion, and subsequently harden and

darken. A similar cuticle tanning process occurs in most of the

adult body wall.

In this study we have identified two highly abundant proteins

that are present in rigid cuticle of the elytron, pronotum and

ventral abdomen but not in the flexible cuticle of the dorsal

abdomen and hindwing of T. castaneum adults, characterized their

genes and expression profiles, and analyzed their roles in adult

cuticle formation and stabilization. We have also determined that

these two CPR proteins are essential structural components in the

sclerotized dorsal cuticle of the elytron and are required for

normal morphological, functional and mechanical properties.

Results

Elytra from T. castaneum contain two predominant
cuticular proteins

Extracts of untanned elytra dissected from newly emerged

adults contained two highly abundant proteins with apparent sizes

of 10 and 20 kDa based on their electrophoretic mobilities

(Figure 1). To characterize these major proteins further, each was

digested with trypsin, and the resulting peptides were analyzed by

MALDI-TOF/TOF mass spectrometry. Comparison of these

results with conceptual trypsinization of the computed proteome of

Figure 1. Identification of two major elytral cuticle proteins from T. castaneum. Extracts of SDS-soluble proteins from elytra dissected from
newly emerged adults were analyzed by SDS-PAGE. The two major proteins (subsequently named TcCPR27 and TcCPR18), with apparent sizes of 10
and 20 kDa, respectively, were digested with trypsin, and the resulting peptides were analyzed by MALDI-TOF mass spectrometry (see Figure S1 and
Table S1). Amino acid sequences deduced from cloned cDNA sequences for each protein are shown on the left. Both proteins contain an RR-2 motif
(highlighted in gray). Predicted secretion signal peptides are underlined. In both TcCPR27 and TcCPR18, the amino-terminal residue of the mature
forms after secretion (Gln 20) is apparently modified to pyroglutamic acid (Table S1).
doi:10.1371/journal.pgen.1002682.g001

Author Summary

Primitive insects have two pairs of membranous flight
wings, but during the evolution of the beetle lineage the
forewings lost their flight function and became modified
as hard, rigid covers called elytra for protection of soft
body parts of the abdomen and also the delicate flexible
hindwings, which retained their flight function. This
transformation is manifested by a greatly thickened and
rigid (sclerotized) exoskeletal cuticle secreted by the
forewing epidermis. We demonstrate that this evolutionary
modification is accompanied by the incorporation of two
highly abundant structural proteins into the elytral cuticle,
namely TcCPR18 and TcCPR27. Depletion of these proteins
by RNA interference results in malformation and weaken-
ing of the elytra, culminating in insect death. These
proteins are also abundant in hard cuticle from other
regions such as the pronotum and ventral abdomen, but
are absent in soft cuticles, and therefore may function as
key determinants of rigid cuticle. Expression of such
proteins at high levels in the modified forewing appears
to have been a fundamental evolutionary step in the
transformation of the membranous wing into a thickened
and rigid elytron in the Coleoptera.

Rigid Cuticle Proteins in Tribolium

PLoS Genetics | www.plosgenetics.org 2 April 2012 | Volume 8 | Issue 4 | e1002682



T. castaneum revealed two candidate genes, denoted as TcCPR27

(XP_971678) and TcCPR18 (XP_967633), which are members of

the Rebers and Riddiford family of cuticular proteins (Figure 1,

Table S1 and cuticle DB: http://biophysics.biol.uoa.gr/

cuticleDB). Peptide coverages for TcCPR27 and TcCPR18 were

68.2 and 88.7%, respectively (Figure S1).

We cloned cDNAs corresponding to these cuticular protein

genes (accession numbers HQ634478 and HQ634479). The

cDNA sequence of TcCPR27 was identical to that of the NCBI

RefSeq gene prediction, whereas the RefSeq prediction for

TcCPR18 had one in-frame deletion of three consecutive

nucleotides and a single nucleotide mismatch compared to the

cDNA, resulting in a deletion of one amino acid (one of the twelve

consecutive glycines at amino acid positions 65–76 in the RefSeq

prediction) and a phenylalanine-to-leucine substitution at amino

acid position 85 in the RefSeq prediction. TcCPR27 and TcCPR18

encode proteins containing putative secretion signal peptide

sequences, with theoretical molecular masses for the mature

proteins of 11.4 and 16.4 kDa, respectively.

Each mature protein contains a single RR-2 cuticular protein

motif. Nearly all RR-2 proteins have a consensus region as follows:

G-X(8)-G-X(6)-Y-X(6)-GF [7]. Both of these Tribolium proteins,

however, have a slightly different RR2 motif. TcCPR27 contains

G-X(8)-G-X(6)-Y-X(5)-GA, whereas TcCPR18 has G-X(8)-H-

X(7)-Y-X(6)-GF. The former has a GA rather than the almost

universal GF or GY at the end of the consensus, and the conserved

Y and the third G are interrupted by five amino acids instead of

the typical six. In the case of TcCPR18, the second conserved G is

replaced by an H with no G residue located nearby.

TcCPR18 is rich in glycine (21.6%), whereas TcCPR27 has a

high content of both glycine (16.5%) and histidine (15.5%).

TcCPR18 is an apparent ortholog of the ecdysteroid-regulated,

adult-specific cuticle protein acp22 of Tenebrio molitor (yellow

mealworm), with 67% sequence identity (Figure S2) [20]. Both

TcCPR27 and TcCPR18 map to linkage group 3 of the T. castaneum

genome, but they are not tightly linked (BeetleBase: http://

beetlebase.org) [21]. Elytra of three other Tribolium species, T.

brevicornis, T. confusum and T. freemani, also contain predominant

cuticular proteins with high amino acid sequence similarities to

TcCPR27 and TcCPR18 (Figure S3 and Table S2).

TcCPR27 and TcCPR18 are abundantly expressed in rigid
cuticle but not in flexible cuticle

To investigate whether TcCPR27 and TcCPR18 are present in

other regions of the adult cuticle, we extracted proteins from

cuticular samples dissected from the pronotum and the ventral

abdomen just after adult eclosion. As in the case of the elytra,

TcCPR27 and TcCPR18 proteins were also the predominant

protein constituents of the pronotum, although their yields were

low relative to those obtained from the elytra (Figure 2). We

hypothesized that because the extent of tanning of the pronotum

just after eclosion is substantially greater than that of the elytron,

which tans at a later time (Figure 2), pronotum cuticular proteins

were already cross-linked and much less extractable at the time of

adult eclosion. To delay pronotum cuticle tanning, dsRNA for

laccase-2 (dsTcLac2) was injected into 0–1 d-old pupae [2], and the

pronotum cuticular proteins were subsequently extracted from

samples obtained soon after adult eclosion. The yields of

TcCPR27 and TcCPR18 were much higher in those extracts,

indicating that the two proteins had not undergone substantial

cross-linking in the absence of laccase and therefore were more

readily extractable (Figure 2).

Like the elytron, the adult ventral abdominal cuticle undergoes

tanning and becomes hardened 3–5 d post eclosion, whereas the

dorsal abdominal cuticle in the adult remains relatively untanned,

flexible and transparent like the hindwing. TcCPR27 and

TcCPR18 were abundant in extracts recovered from ventral

abdominal cuticle of newly emerged adults, but very little or no

TcCPR27 or TcCPR18 was present in extracts of the dorsal

abdominal cuticle (Figure S4A). Similarly, the levels of TcCPR27

and TcCPR18 in the flexible hindwing were very low or

undetectable (Figure S4A). These results show that TcCPR27

and TcCPR18 are major proteins in cuticles that become highly

sclerotized and rigid, but they are absent or only very minor

components of cuticles that are more flexible and membranous.

TcCPR27 and TcCPR18 genes are expressed at high levels
in body regions with rigid adult cuticle

Few or no transcripts for TcCPR27 or TcCPR18 were detected

during the egg, larval or early pupal stages of development.

However, the transcript levels of these genes dramatically

Figure 2. TcCPR27 and TcCPR18 are abundant in cuticle of the pronotum. To suppress cuticle tanning, dsRNA for TcLac2 (2 ng per insect)
was injected into day 0 pupae. Proteins from the pronotum and elytra were extracted from five adults at 0–30 min after eclosion, and the extracts
were analyzed by SDS-PAGE (left panel). In the dsVer-treated control animals, the extent of tanning of the pronotum was substantially greater than
that of the elytron (right panel). S: PBS homogenate supernatant, P: PBS homogenate pellet.
doi:10.1371/journal.pgen.1002682.g002

Rigid Cuticle Proteins in Tribolium
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increased at the pharate adult stage 0–1 d before eclosion, declining

soon thereafter (Figure 3A, 3B). Transcript levels of TcCPR27 and

TcCPR18 in the elytron were approximately 1,700- and 55-fold

higher, respectively, than those in the membranous hindwing

(Figure S4B). Both genes were also expressed in the pronotum and

ventral abdomen, whose cuticles become highly sclerotized and

hardened in mature adults. Transcript levels of TcCPR27 and

TcCPR18 in the ventral abdomen were approximately 3,000 and

770 times higher, respectively, than the levels in the transparent,

flexible and membranous dorsal abdomen (Figure S4B).

TcCPR27 is localized in rigid cuticle of the dorsal elytra
and ventral abdomen

The high histidine content of TcCPR27 and TcCPR18 (15.5%

and 10.1%, respectively) allowed us to purify these proteins from

elytra dissected from newly molted adults by utilizing nickel-affinity

chromatography (Figure 4A). A polyclonal antibody directed

against purified TcCPR27 was then generated. The CPR27

antibody specifically detected CPR27 but not CPR18 (Figure 4A).

In pharate adults, TcCRP27 was co-localized with chitin in the

dorsal elytral cuticle as well as in the ventral abdominal cuticle, both

of which become more rigid and darker as the adult matures

(Figure 4B, panels 1, 3). Little or no TcCRP27 immunoreactivity

was detected in the pupal, hindwing, or ventral elytral cuticles.

RNAi–mediated knockdown of TcCPR27 and TcCPR18
expression leads to malformed and weakened elytra

RNA interference (RNAi) was used to investigate the functions

of TcCPR27 and TcCPR18. As a negative control we injected

dsRNA for T. castaneum tryptophan oxygenase (the vermilion gene,

abbreviated Ver), a gene required for normal eye pigmentation

[22]. Following dsRNA injections into last instar larvae, mRNA

and protein levels of TcCPR27 and TcCPR18 were analyzed by

real-time PCR and SDS-PAGE. Injection of these dsRNAs led to

substantial and specific down-regulation of each gene at the

mRNA (Figure 5A) and protein (Figure 5B) levels. TcCPR27

Figure 3. Expression profiles of TcCPR27 and TcCPR18 genes during development. (A) To analyze the expression profiles of TcCPR27 and
TcCPR18 during development, real-time PCR experiments were done using total RNA extracted from five whole insects at different developmental
stages (embryo to adult). Both genes were highly expressed at the pupal stage. (B) To analyze more rigorously the expression patterns of these
genes, the stages analyzed were expanded between the early pharate pupal and young adult stages. The transcript levels of both genes dramatically
increased at the pharate adult stage and declined rapidly thereafter. E, embryos; YL, young larvae; ML, mature larvae; PP, pharate pupae; P, pupae; A,
adults; PP0, day 0–1 pharate pupae; PP1, day 1–2 pharate pupae; P0, day 0 pupae; P1, day 1 pupae, P2, day 2 pupae; P3, day 3 pupae; P4, day 4 pupae
(pharate adults); P5, day 5 pupae (pharate adults); A0, day 0 adults; A1, day 7 adults. Expression levels for TcCPR27 and TcCPR18 are presented relative
to the levels of expression in embryos (E) or 0–1 d old pharate pupae (PP0). The transcript levels of the T. castaneum ribosomal protein S6 (rpS6) were
measured to normalize for differences between samples in the concentrations of cDNA templates.
doi:10.1371/journal.pgen.1002682.g003

Rigid Cuticle Proteins in Tribolium
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immunostaining also was strongly reduced after injection of

dsTcCPR27 (Figure 4B, panel 2). Chitin staining in TcCPR27-

deficient insects, however, was detected at approximately the same

level as in dsVer-treated control animals (Figure 4B, panel 4). These

results were further supported by staining of elytral chitin with a

fluorescent chitin-labeling reagent, FITC-CBD. There was no

difference in chitin staining among elytra collected from

dsTcCPR27-, dsTcCPR18- and dsVer-treated insects (Figure S5).

Injection of dsTcCPR27 or dsTcCPR18 into larvae had no

apparent effect on larval-pupal or pupal-adult molting or on the

morphology of the pupal cuticle, as expected from the observed

late pupa-specific expression of these genes. However, the elytra of

the resulting adults were malformed (Figure 6 and Figure S6). The

surface of the elytra of dsTcCPR18-treated adults was irregular and

rough compared to those of control insects. Adults derived from

dsTcCPR27-injected larvae exhibited even more severe morpho-

logical defects. Their elytra were very short, wrinkled, warped and

fenestrated (Figure 6 and Figure S6) and their hindwings were

unable to fold normally. Such insects died approximately one week

after eclosion, apparently from dehydration that resulted from

failure of the misshapen elytra to properly cover the membranous

dorsal abdomen and to thereby seal it against trans-cuticular water

loss. The shape of a normal elytron is ‘‘inverted boat-like’’ to fit

snugly on top of the hindwings and abdomen in order to protect

the latter structures (Figure S6). In contrast, elytra from

dsTcCPR27-treated insects were flatter and/or warped and did

not cover the entire abdomen. Manual excision of the distal half of

the elytron from a mature adult also led to high mortality, whereas

removing an entire hindwing did not cause significant mortality, as

long as the elytra could adopt their normal juxtaposition (Figure

S7), consistent with our observation that properly formed elytra

are essential to prevent desiccation of the adult, in addition to

other potentially protective functions. These results support the

hypothesis that TcCPR27 and TcCPR18 are major structural

proteins in rigid elytral cuticle, and are required for normal elytral

morphogenesis, hindwing folding and body hydration.

Figure 4. Immunolocalization of TcCPR27 in elytral cuticle. (A) Coomassie staining and immunoblot analyses of purified TcCPR27 and
TcCRP18. (B) Immunolocalization of TcCPR27 in pharate adults. Cryosections (5–10 mm) of 5 d old pupae that had been injected previously with
dsRNA for TcCPR27 or TcVer (T. castaneum Vermilion) in the last larval instar were incubated with the anti-TcCPR27 antibody. Anti-TcCPR27 antibody
was detected by Alexa Fluor 488-conjugated anti-rabbit IgG antibody (green arrows in panels 1 and 2). The same sections were also stained with a
rhodamine-conjugated chitin-binding probe (red arrows in panels 3 and 4) [41]. Nuclei were stained with DAPI (blue). E = elytron, H = hindwing,
TC = thoracic cuticle, PC = pupal cuticle, D = elytral dorsal cuticle, V = elytral ventral cuticle. Scale bar = 10 mm.
doi:10.1371/journal.pgen.1002682.g004
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Effect of dsRNA for TcCPR27 and TcCPR18 on the
mechanical properties of elytra

We also analyzed the effects of depletion of TcCPR27 and

TcCPR18 on the mechanical properties of elytra. Dynamic

mechanical experiments were carried out to determine the storage

modulus E9 and the loss modulus E0 of elytra as a function of

oscillation frequency and strain. E9 is a measure of the elastically

recoverable deformation energy, whereas E0 is a measure of

viscous energy dissipation (dampening) and hence is also known as

the viscous modulus. The ratio E0/E9 is known as the ‘‘loss

tangent’’ or simply tan d, where d is the phase angle between

sinusoidally applied stress and strain. For materials such as the

elytra where E9..E0, E9 is approximately equal to the Young’s

modulus obtained from the slope of simple stress-strain measure-

ments at the same strain rate [23,24]. Hence, E9 is a measure of

the stiffness of the elytra. Elytra from animals injected with

dsTcCPR27 were significantly less rigid (lower E9) than the dsVer-

treated controls (Figure 7). Elytra from dsTcCPR18-injected beetles

had intermediate values of strength, consistent with the less severe

visible phenotype observed with TcCPR18 knockdown (Figure 6).

In addition, the dsTcCPR27 elytra had reduced values for tan d, an

indication that they experienced a higher degree of cross-linking

than the control. Lower E0 or tan d in polymeric networks is

typically associated with a reduction in the network of uncross-

linked material, dangling chains (chains linked to the network at

only one end), loops and other network imperfections [25]. It is a

well-established principle in the synthesis of gels or networks by

cross-linking polymers, that increasing the ratio of cross-linker

molecules to polymer molecules will typically increase the overall

cross-link density of a network and reduce the fraction that is not

cross-linked [26]. Thus, for elytral cuticle, the deficiency of a

major structural cuticular protein such as TcCPR27, while

maintaining a constant concentration of quinone cross-linking

molecules, would be expected to lead to a greater average number

of cross-links per protein molecule. Thus, for elytral cuticle,

reducing the expression level of a major structural cuticular

Figure 5. Knockdown of TcCPR27 and TcCPR18 transcripts by RNAi. Late instar T. castaneum larvae were injected with 0.2 mg of dsRNA for
TcCPR27 or TcCPR18. Following dsRNA injections, expression of TcCPR27 and TcCPR18 genes was analyzed by real-time PCR (A) and SDS-PAGE (B) to
evaluate transcript and protein levels. cDNAs were prepared from total RNA isolated from five whole insects at pupal day 5 (10 d post-injection). For
real-time PCR, expression levels of TcCPR27 and TcCPR18 are presented relative to the levels in Ver control insects (injected with dsRNA for T.
castaneum Vermilion gene). The transcript levels of the T. castaneum ribosomal protein S6 (rpS6) were measured to normalize for differences between
samples in the concentrations of cDNA templates. Proteins were extracted from elytra from five newly emerged adults for each treatment. A faint
band (red arrow) with a mobility similar to that of TcCPR18 observed in extracts of whole insects injected with dsRNA for TcCPR18 was identified by
mapping of tryptic peptides by MALDI-TOF to be a different CPR RR2 protein, TcCPR33, with a theoretical mass of 19.1 kDa. These data indicate that
both TcCPR27, TcCPR18 were specifically down-regulated at both the mRNA and protein levels after dsRNA injections.
doi:10.1371/journal.pgen.1002682.g005
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protein such as TcCPR27 or TcCPR18, while maintaining a

constant concentration of quinone cross-linking molecules, would

be expected to lead to a greater average number of cross-links per

protein molecule. The more severe phenotype for knockdown of

TcCPR27, relative to TcCPR18 might be due to differences in the

degree of knockdown of their expression in the RNAi experiments,

or perhaps could be due to differences in their structural properties

or cross-linking chemistry. A greater reduction in protein levels for

TcCPR27 than TcCPR18 in the knockdown animals might have

led to relatively more cross-linking, thus reducing tan d, and a

greater reduction in TcCPR27 protein expression would lead to a

lower storage modulus. Similar observations were previously

reported for elytra from insects subjected to Lac2 knockdown

(reduced tan d combined with reduced E9) [19].

Discussion

The basic genetic patterning mechanism for dorsal appendages

such as wings has been described for both D. melanogaster and T.

castaneum [27–29]. Similar gene networks are used to pattern

wings, elytra and halteres, despite the profound morphological and

functional divergence of these appendages during insect evolution.

Individual structural proteins are likely to substantially affect the

physical properties of elytra. However, to date, there have been no

detailed reports about the contributions of individual structural

proteins to elytral morphogenesis.

Like other beetle species, T. castaneum adults possess elytra,

modified forewings with a highly sclerotized and pigmented dorsal

cuticle. Immediately after eclosion, untanned elytra have a soft

white cuticle. Elytra expand shortly thereafter and then become

rigid and darker during cuticle maturation. The role of structural

proteins in this developmental process is the focus of this study. We

identified two proteins from the RR2 family of cuticular proteins,

TcCPR27 and TcCPR18, which are highly abundant in protein

extracts of elytra dissected from newly emerged adults. TcCPR27

and TcCPR18 transcripts were strongly up-regulated at the

developmental stage when adult cuticular proteins are expected to

be synthesized (pupal day 4), and were nearly absent at earlier

immature stages. Highly abundant cuticular proteins related to

TcCPR27 and TcCPR18 were also present in protein extracts of

elytra dissected from three other Tribolium species including T.

brevicornis, T. confusum and T. freemani (Figure S3 and Table S2).

TcCPR27 and TcCPR18 were also identified in extracts of

pronotum cuticle, in which tanning had been initiated before adult

eclosion. The protein yields, however, were much lower than those

obtained from elytral extracts unless cuticle tanning was suppressed

by injection of dsRNA for the tanning enzyme TcLac2 (Figure 2).

These results support the hypothesis that TcCPR27 and TcCPR18

are cross-linked by highly reactive quinones and quinone methides

that are produced by the cuticle tanning phenoloxidase laccase-2,

and that these proteins become inextractable after tanning has

occurred. Previously, Missios et al. [30] extracted two major

cuticular proteins of 10 and 20 kDa, consistent with the apparent

masses of TcCPR27 and TcCPR18, respectively, from extracts of

cuticle from whole bodies of newly eclosed T. castaneum adults.

Neither of these proteins was extractable from 7 day-old adults,

consistent with an interpretation that these proteins become cross-

linked during maturation of the cuticle.

To study the functions of TcCPR27 and TcCPR18, we

performed RNAi and successfully down-regulated levels of

TcCPR27 and TcCPR18 mRNAs and proteins (Figure 5). These

deficiencies caused several elytral defects. Although TcCPR27 and

TcCPR18 are also present in other body regions such as the

cuticles of the pronotum and ventral abdomen, which are heavily

tanned in the mature adult, we did not observe visible phenotypic

changes in those cuticles after injection of dsTcCPR27 and

dsTcCPR18. The size and shape of these body regions do not

change much after adult eclosion, in contrast to the elytra that are

greatly expanded shortly after eclosion. The elytra of both

TcCPR27- and TcCPR18-deficient insects failed to fully expand,

and their dorsal surfaces were not smooth (Figure S6). The elytra

of TcCPR27-deficient insects, particularly, were very short,

wrinkled and fragile. Elytra from dsTcCPR27- and dsTcCPR18-

treated insects appear to contain more cross-linked proteins than

the elytra from dsVer-treated control insects (Figure 6). Lacking

these major cuticular proteins apparently increases the effective

Figure 6. T. castaneum elytral defects produced by injection of dsRNAs for TcCPR27 and TcCPR18. To investigate the functions of TcCPR27
and TcCPR18, specific dsRNAs for TcCPR27 (dsCPR27) or TcCPR18 (dsCPR18) (0.2 mg per insect) were injected into late instar larvae. Dorsal views of the
resulting adults (1-d old) (left panel) and elytra (right panel) are shown. dsRNA for Ver (dsVer) was injected to serve as a negative control.
doi:10.1371/journal.pgen.1002682.g006
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concentration of cross-linking agents (NADA and NBAD qui-

nones), resulting in aberrant cross-linking among the remaining

proteins and shortened warped elytra. The effect was seen most

clearly in dsTcCPR27-treated insects, in which the modulus and

tan d were significantly reduced relative to control insects. The

dsTcCPR18- treated insects had a smaller decrease in modulus and

tan d, perhaps because of a smaller degree of protein reduction.

The difference could also arise from structural differences between

TcCPR27 and TcCPR18, which could have different propensities

for forming intermolecular vs. intramolecular cross-links. Howev-

er, the present data cannot draw that level of distinction. All of

these results suggest that TcCPR27 and TcCPR18 are critical for

normal elytral morphogenesis and are required to prevent

dehydration and death of the adult.

In summary, we have identified in beetles two major structural

proteins, TcCPR27 and TcCPR18, which account for approxi-

mately half of the extractable cuticular proteins in the elytra and

also are major components of other hard cuticular structures. It is

interesting to note that the proteins utilized for hard cuticles of

other body regions of the beetle were apparently used to build the

elytron’s hard cuticle. In some saturniid moth species, proteins

from the same CPR family are also used to form rigid structures

such as tubercles, head capsules and hard pupal cuticle [31]. We

now have biomechanical evidence on just how important these

kinds of proteins are.

TcCPR27 and TcCPR18 are required not only for rigid cuticle

development, but also for morphogenesis, elytral mechanical

properties, and survival of the red flour beetle. In contrast, these

proteins are essentially undetectable in soft cuticles. Expression of

such cuticular proteins in the modified forewings appears to be a

fundamental evolutionary step in transforming the flexible and

thin membranous wing into a thickened and rigid elytron in the

Coleoptera. In the case of TcCPR18, an orthologous gene is found

in the only other beetle species examined, the lesser grain borer,

Rhyzopertha dominca, in the family Bostrichidae (Schlipalius, D. and

Beeman, R. W., unpublished observations) but not in any of the

other sequenced arthropod genomes, including representatives of

the Diptera, Hymenoptera and Lepidoptera. These structural

proteins are probably cross-linked during sclerotization, via

formation of histidyl-catechol adducts [32,33]. Rigidification of

the beetle forewing has likely been achieved in part through both

structural protein incorporation and multiple co-options of the

sclerotization pathway acting downstream of conserved wing gene

network components, with the final product being primarily a rigid

interpenetrating network of chitin embedded in a cross-linked

protein matrix [3,29,34,35]. To gain a more comprehensive

understanding of the roles of cuticular proteins in defining the

morphology and properties of the beetle elytron and rigid body

wall cuticle, future studies are required to determine, at the

ultrastructural level, the precise localization of TcCPR27,

Figure 7. Mechanical properties of Tribolium dsTcCPR27 and dsTcCPR18 elytra. Elytra from beetles on day 2 after adult eclosion were
examined by dynamic mechanical analysis over a frequency range of 0.1 to 600 rad/s. Typical scans are shown in the top panels, and mean values at 1
rad/s are presented in the lower panels. Error bars represent standard deviation (n = 3–4). The asterisk indicates significant difference from the dsVer
control (p,0.05) as determined by analysis of variance and Tukey’s Multiple Comparison Test. Reduced expression of the abundant CPR proteins
resulted in weaker (smaller E9) yet more cross-linked (smaller tan d) elytra.
doi:10.1371/journal.pgen.1002682.g007
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TcCPR18 and other structural proteins, and to assess the nature

and extent of their covalent cross-linking during sclerotization.

Materials and Methods

Insects
The GA-1 strain of T. castaneum was used in this study. Beetles

were reared at 30uC under standard conditions [36].

Protein extraction and identification
Elytra of newly emerged adults (n = 10) were homogenized in

100 ml of cold PBS containing protease inhibitor cocktail (Roche).

The homogenate was centrifuged for 2 min at 4uC. The

supernatant was collected as PBS soluble fraction. The pellet

was homogenized in 100 ml of SDS-PAGE sample buffer, heated

at 95uC for 10 min, centrifuged for 2 min. The supernatant was

collected as PBS pellet fraction. Protein extracts were analyzed by

15% SDS-PAGE or 4–12% Bis-Tris gradient gel (Invitrogen).

Proteins were digested with trypsin, and the resulting fragments

were analyzed by MALDI-TOF mass spectrometry.

Identification of proteins by mass spectrometry
After staining gels with Coomassie G-250, the selected gel band

was excised as 1–2 mm diameter pieces and transferred to a

1.5 mL Eppendorf tube. A protein-free region of the gel was also

excised as background control. The control and test gel sections

were destained using three 30 min washes of 60 mL 1:1

acetonitrile: water at 30uC. Gel pieces were then dried for

10 min under vacuum. The gel sections were subjected to

reduction and alkylation using 50 mM Tris (2-carboxyethyl)

phosphine (TCEP) at 55uC for 10 min followed by 100 mM

iodoacetamide in the dark at 30uC for 60 min. The carbox-

ymethylated gels were thoroughly washed and re-dried in vacuo,

then incubated with sequencing grade trypsin (Trypsin Gold,

Promega, Madison, WI), 20 ng/mL in 40 mM ammonium

bicarbonate, in 20 mL. Upon rehydration of the gels, an additional

15 mL of 40 mM ammonium bicarbonate and 10% acetonitrile

was added, and gel sections were incubated at 30uC for 17 h in

sealed Eppendorf tubes. The aqueous digestion solutions were

transferred to clean 1.5 mL Eppendorf tubes, and tryptic

fragments remaining within the gel sections were recovered by a

single extraction with 50 ml of 50% acetonitrile and 2%

trifluoracetic acid (TFA) at 30uC for 1 h. The acetonitrile fractions

were combined with previous aqueous fractions and the liquid was

removed by speed vacuum concentration. The dried samples were

resuspended in 10 mL of 30 mg/mL 2,5-dihydroxylbenzonic acid

(DHB) (Sigma, St. Louis, MO) dissolved in 33% acetonitrile/0.1%

TFA and 2 mL of peptide/matrix solution was applied on a Bruker

Massive Aluminum plate for MALDI-TOF and TOF/TOF

analysis. Mass spectra and tandem mass spectra were obtained

on a Bruker Ultraflex II TOF/TOF mass spectrometer. Positively

charged ions were analyzed in the reflector mode. MS and MS/

MS spectra were analyzed with Flex analysis 3.0 and Bio Tools 3.0

software (Bruker Daltonics). Measurements were externally

calibrated with 8 different peptides ranging from 757.39 to

3147.47 (Peptide Calibration Standard I, Bruker Daltonics) and

internally recalibrated with peptides from the autoproteolysis of

trypsin. Peptide ion searches were performed with Beetlebase

(http://www.bioinformatics.ksu.edu/BeetleBase/) (as well as

Metazoa domain_201000104 in NCBInr database) using MAS-

COT software (Matrix Science). The following parameters were

used for the database search: MS and MS/MS accuracies were set

to ,0.5 Da, trypsin/P as an enzyme, missed cleavages 1,

carbamidomethylation of cysteine as fixed modification, and

oxidation of methionine as a variable modification. Sequence

motif analysis of the predicted protein sequence was searched in

motifs database including PROSITE profiles and Pfam HMMs.

TcCPR27 and TcCPR18 cDNAs
The full-length coding sequences for TcCPR27 and TcCPR18

(351 bp and 504 bp, respectively) were amplified from total RNA

extracted from pupae (mixture of 0 d- to 5 d-old pupae) by RT-

PCR. The cDNAs for TcCPR27 and TcCPR18 were amplified

using the following gene specific primers, which included predicted

start and stop codons: 59 ATG CAC GGT GGA GCA GTT C 39

and 59 TCA GTT GCC TCC AAT CCC G 39 for TcCPR27, and

59 ATG AGA TTA TTT ATT ACA TTG GCC 39 and 59 CTA

GAT TAA TAA TGT GGT TTG TAA G 39 for TcCRP18. PCR

products were cloned into pGEMT (Promega) and sequenced.

Real-time PCR
Total RNA isolation, cDNA synthesis and real-time PCR were

done as described previously [37] using the following primer sets:

59AGG TTA CGG CCA TCA TCA CTT GGA 39 and 59ATT

GGT GGT GGA AGT CAT GGG TGT 39 for TcCPR27, 59 GAA

TAC CGC ATC CGT GAC CAC AAA 39 and 59CAG GTT CCA

ACA AAC TGT AGG TTC CC 39 for TcCPR18. Total RNA was

isolated from whole insects (n = 5) to analyze developmental

expression patterns and knock-down levels after RNAi of TcCPR27

and TcCPR18. Total RNA also was isolated from elytra, hindwings,

ventral abdomens and dorsal abdomens of pharate adults (5 d-old

pupae) (n = 10). The transcript levels of the T. castaneum ribosomal

protein S6 (rpS6) were measured to normalize for differences

between samples in the concentrations of cDNA templates.

Double-stranded RNA synthesis and injection
dsRNA for TcCPR27 and TcCPR18 was synthesized as

described previously [38] using the primers 59-(T7)-GAC CAC

CAC ACC CAT G-39 and 59-(T7)-TCA GTT GCC TCC AAT

C-39 for TcCPR27, and 59-(T7)-GGA AGA GTA CGG TCA TC -

39 and 59-(T7)-GGT TCC CTT TAC TTT G-39 for TcCPR18,

where T7 indicates the T7 RNA polymerase recognition sequence.

The sizes of dsRNAs for TcCPR27 and TcCPR18 were 204 bp and

325 bp, respectively. dsRNAs were injected into last instar larvae

[39]. dsRNA for the T. castaneum vermilion gene (dsVer) was used as a

negative control [40].

Purification of TcCPR27 and TcCPR18 from extracts of
elytra

Proteins were extracted from 200 pairs of elytra of 5 d-old

pupae as described in Materials and Methods. The homogenate

was centrifuged for 2 min at 4uC. The supernatant was applied to

a Ni-NTA column equilibrated with 50 mM Tris-HCl, pH 7.5

containing 0.2 M NaCl and 20 mM imidazole and washed with

the same buffer. Bound proteins were eluted with a 20 to 200 mM

imidazole gradient. The fractions were analyzed for protein

content by SDS-PAGE. Purified TcCPR27 was used as antigen to

generate rabbit antiserum by Cocalico Biologicals, Inc., PA, USA.

Mechanical analysis of elytra
Mechanical analysis of elytra was carried out using a TA

Instruments RSAIII dynamic mechanical analyzer, by methods

described previously [34].

Accession numbers
cDNA sequences are deposited at NCBI with accession

numbers HQ634478 (TcCPR27) and HQ634479 (TcCPR18).
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Supporting Information

Figure S1 Trypsinization and peptide mass fingerprinting (PMF)

by TOF-MS. Two major elytral cuticular proteins were digested

with trypsin and the resulting peptides were analyzed by MALDI-

TOF mass spectrometry. Results were compared with conceptual

trypsinization products of the computed proteome of T. castaneum.

Matched peptides are shown in red. Coverage for TcCPR27 and

TcCPR18 was 88.7 and 68.2%, respectively. Underlined residues

are predicted signal peptides, which are not included in the

theoretical molecular mass calculations.

(TIF)

Figure S2 Amino acid sequence alignment of TcCPR18 and

Tenebrio molitor adult-specific protein, Tmacp22. Alignment of

deduced amino acid sequences was made using ClustalW software.

The symbols below the aligned amino acid sequences indicate

identical (*), highly conserved (:) and conserved (.) amino acids.

TcCPR18 is a putative ortholog of the T. molitor ecdysteroid-

regulated adult-specific cuticle protein, TmACP22, with 67%

sequence identity and 74% similarity.

(TIF)

Figure S3 Highly abundant proteins similar to TcCRP27 and

TcCPR18 are predominant cuticular proteins in elytra of other

Tribolium species. Extracts of elytra from newly emerged adults of

T. castaneum, T. brevicornis, T. confusum and T. freemani as well as

Tenebrio monitor were analyzed by 4–12% Bis-Tris gel (Invitrogen).

Like T. castaneum, two to three abundant proteins with the

apparent masses of approximately 10 and 20 kDa were obtained

from each species. These major proteins were digested with

trypsin, and the resulting peptides were analyzed by MALDI-TOF

mass spectrometry (see Table S2). The green and orange arrows

indicate bands that exhibited high scores for similarity to

TcCRT27 and TcCRT18, respectively. T. monitor adult cuticle

proteins, TmACP20 and TmACP22 [20], were also identified. S:

PBS homogenate supernatant, P: PBS homogenate pellet, M:

protein size markers.

(TIF)

Figure S4 Expression patterns of TcCPR27 and TcCPR18 in the

adult ventral vs. dorsal abdominal cuticles and elytra vs.

hindwings. (A) The ventral and dorsal abdominal cuticles were

dissected from five 0–30 min old adults. TcCRP27 and TcCRP18

were identified by peptide mapping in the ventral abdominal

cuticle but not in the dorsal abdominal cuticle. S: PBS

homogenate supernatant, P: PBS homogenate pellet. (B) To

analyze the transcript levels of TcCPR27 and TcCPR18 in the

ventral and dorsal abdomen as well as in the elytra and hindwings,

real-time PCR was done using total RNA extracted from tissues of

ten pharate adults (5 d-old pupae). Expression levels for TcCPR27

and TcCPR18 are presented relative to the levels of expression in

elytra (E) or ventral abdomen (V). The transcript levels of the T.

castaneum ribosomal protein S6 (rpS6) were measured to normalize

for differences between samples in the concentrations of cDNA

templates. H: hindwings, D: dorsal abdominal cuticle.

(TIF)

Figure S5 Elytral chitin staining with FITC-CBD. Elytra were

removed from pharate adults (5 d-old pupae) that had been

injected dsRNA for TcCPR27, TcCPR18 or TcVer (200 ng per

insect) at the late larval instar stage. The elytra were incubated

with 10 N NaOH at 95uC for 5 h to remove protein, followed by

staining with the fluorescein-conjugated chitin-binding domain

probe (FITC-CBD, New England BioLabs) [38]. The appearance

of the elytra did not differ until after adult eclosion, although

dsTcCPR27- and dsTcCPR18-elytra were remarkably soft and

fragile compared with dsVer-elytra. The fluorescence was observed

using a Leica MZ FLIII fluorescence stereomicroscope equipped

with the following filter set: excitation = 480/40 nm, bar-

rier = 510 nm.

(TIF)

Figure S6 Scanning electron micrographs of TcCPR27- and

TcCPR18-deficient elytra. Elytra were dissected from 1 d-old

adults that had been injected with dsRNA for TcCPR27, TcCPR18

or TcVer (200 ng per insect) as last instar larvae. The dorsal view of

elytra is shown. dsRNA for Ver was injected to serve as a negative

control.

(TIF)

Figure S7 Survival rate after removing elytra or hindwings from

mature T. castaneum adults. Elytra or hindwings were removed

from mature adults (n = 20), and viability was monitored (insects

were reared at 30uC and 50% humidity). A: whole hindwings

removed. B: half of distal part of elytra removed. C: whole elytra

removed. Loss of an entire hindwing did not affect adult survival,

whereas removing elytra resulted in high mortality, probably

because of dehydration. Thus, the elytra but not hindwings are

essential for T. castaneum adult viability. Yellow and red lines

indicate moribund and dead adults, respectively.

(TIF)

Table S1 Major proteins identified in extracts of unsclerotized

elytra. Based on the cDNA sequence, the amino-terminal amino

acid residue for both proteins is predicted to be a glutamine

(Figure 1). The observed mass of native 10 kDa band was

11,467 Da as determined by MALDI-linear-TOF MS, suggesting

that amino-terminus of mature protein of TcCPR27 might be a

modified glutamine. Further analysis of MS and MS/MS profiles

revealed that the most likely candidate for the amino-terminal

residue is pyroglutamic acid. The tryptic peptide of 2143.1 Da

from TcCPR27 corresponds to pyro-E20GGEGYGHHHLEEYI-

DYR37. A similar amino-terminal modification was confirmed in

the 20 kDa band identified as TcCPR18 (1451.5 Da peptide,

pyro-E20GGGGGEEEYGHHR33). These results suggest that for

both proteins, Gln 20 is both deamidated and then dehydrated to

form the observed modification.

(DOC)

Table S2 Identification of major proteins extracted from elytra

of three Tribolium species.

(DOC)
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