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Abstract: With the rapid development of on-chip optics, integrated optical devices with better
performance are desirable. Waveguide couplers are the typical integrated optical devices, allowing
for the fast transmission and conversion of optical signals in a broad working band. However,
traditional waveguide couplers are limited by the narrow operation band to couple the spatial
light into the chip and the fixed unidirectional transmission of light flow. Furthermore, most of the
couplers only realize unidirectional transmission under the illumination of the linear polarized light.
In this work, a broadband polarization directional coupler based on a metallic catenary antenna
integrated on a silicon-on-insulator (SOI) waveguide has been designed and demonstrated under
the illumination of the circularly polarized light. By applying the genetic algorithm to optimize
the multiple widths of the metallic catenary antenna, the numerical simulation results show that
the extinction ratio of the coupler can be maintained larger than 18 dB in a wide operation band of
300 nm (from 1400 to 1700 nm). Moreover, the coupler can couple the spatial beam into the plane
and transmit in the opposite direction by modulating the rotation direction of the incident light. The
broadband polarization directional coupler might have great potential in integrated optoelectronic
devices and on-chip optical devices.

Keywords: sub-wavelength structure; SOI waveguide; broadband; spin-dependent

1. Introduction

With the development of subwavelength optical engineering [1–6], the integrated op-
tics have shown great application prospects in the fields of super-resolution imaging [7,8],
nanolithography [5,9–11], surface plasmon excitation [12–16], extraordinary Young’s inter-
ference experiment [17,18], and meta-surface-wave [19–21]. Improving the transmission
efficiency of couplers is becoming more and more important [22–30].

Recently, a new type of waveguide coupler [31–33] for electromagnetic waves has been
designed by combining surface plasmon polaritons (SPPs) and optical silicon waveguides,
which have strong plasma confinement characteristics and retain low transmission loss
property of the waveguide [34,35]. However, the majority of reported directional waveg-
uide couplers can only work under the irradiation of linearly polarized light. Furthermore,
the transmission direction of the couplers cannot be adjusted. Fortunately, the above
limitations can be effectively solved by the geometric phase metasurface. For example, a
controlled directional router can be realized by placing seven anisotropic antennas on the
silicon-on-insulator (SOI) waveguide [36] due to the geometric phase metasurface [37,38].
With further in-depth research on subwavelength structures, catenary optics has been
proposed and developed in recent years. Catenary optics points out that the catenary
structure of sub-wavelength size possesses geometric phase modulation ability due to the
spin-orbit interaction [4,38–40]. In 2018, a waveguide coupler based on a single metallic
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catenary structure had been proposed which can adjust the optical transmission direction
by reversing the spin of the incident light [41].

Although the above studies have enriched the working polarization and controlled
the light flow, the couplers still have a conspicuous shortcoming of the narrow bandwidth,
which leads to the inconvenience of practical use. In this work, we managed to broaden
the bandwidth by resorting to genetic algorithms (GA) to optimize the multiple widths of a
single metallic catenary antenna. The built-in GA framework in MATLAB drives the FDTD
software to obtain an optimal catenary structure. The new coupler designed with optimal
parameters has a working bandwidth of 300 nm (ranging from 1400 to 1700 nm) for the
extinction ratio remaining higher than 18 dB. Besides, the coupler retains the response
to the rotation of the incident light, and the transmission direction can be changed by
reversing the spin of the incident light. The broadband characteristics of this device would
have great potential in plasma integrated circuits.

2. Design Principles and Simulation Results

The catenary is a curved shape of a chain with uniform quality and soft fixed at both
ends under the action of gravity. Since the catenary structure has the same load at each
point, it is widely used in the design of building structures [42,43]. The formula for the
catenary of equal strength was deduced by Gilbert [44]:

y =
Λ
π

ln(|sec(πx/Λ)|), (1)

y1 = y + w, (2)

where Λ is the length of the catenary in the horizontal direction. The range of x is between
−Λ/2 and +Λ/2, because the value of y is infinite for x = ± Λ/2 according to Equation (1).
Moreover, a truncation factor f is introduced to represent the actual horizontal span of the
catenary as p = f Λ. Equation (2) is obtained after Equation (2) is translated w in the +y
direction. As shown in Figure 1a, we can draw the catenary structure in the rectangular
coordinate system according to Equations (1) and (2). It is worth noting that the structure
is composed of two catenary curves of the identical shape connected. Here, the amount w
of translation in Equation (2) represents the vertical distance between the two curves of the
catenary structure.

Materials 2021, 14, x FOR PEER REVIEW 2 of 9 
 

 

due to the spin-orbit interaction [4,38–40]. In 2018, a waveguide coupler based on a single 
metallic catenary structure had been proposed which can adjust the optical transmission 
direction by reversing the spin of the incident light [41]. 

Although the above studies have enriched the working polarization and controlled 
the light flow, the couplers still have a conspicuous shortcoming of the narrow bandwidth, 
which leads to the inconvenience of practical use. In this work, we managed to broaden 
the bandwidth by resorting to genetic algorithms (GA) to optimize the multiple widths of 
a single metallic catenary antenna. The built-in GA framework in MATLAB drives the 
FDTD software to obtain an optimal catenary structure. The new coupler designed with 
optimal parameters has a working bandwidth of 300 nm (ranging from 1400 to 1700 nm) 
for the extinction ratio remaining higher than 18 dB. Besides, the coupler retains the re-
sponse to the rotation of the incident light, and the transmission direction can be changed 
by reversing the spin of the incident light. The broadband characteristics of this device 
would have great potential in plasma integrated circuits. 

2. Design Principles and Simulation Results 
The catenary is a curved shape of a chain with uniform quality and soft fixed at both 

ends under the action of gravity. Since the catenary structure has the same load at each 
point, it is widely used in the design of building structures [42,43]. The formula for the 
catenary of equal strength was deduced by Gilbert [44]: 

( )( )ln sec π /
π

y xΛ= Λ ， (1)

1y y w= + ， (2)

where Λ is the length of the catenary in the horizontal direction. The range of x is between 
−Λ/2 and +Λ/2, because the value of y is infinite for x = ± Λ/2 according to Equation (1). 
Moreover, a truncation factor f is introduced to represent the actual horizontal span of the 
catenary as p = fΛ. Equation (2) is obtained after Equation (2) is translated w in the +y 
direction. As shown in Figure 1a, we can draw the catenary structure in the rectangular 
coordinate system according to Equations (1) and (2). It is worth noting that the structure 
is composed of two catenary curves of the identical shape connected. Here, the amount w 
of translation in Equation (2) represents the vertical distance between the two curves of 
the catenary structure. 

 
Figure 1. (a) Catenary of equal strength in a rectangular coordinate system. (b) The schematic of the directional coupler is 
composed of a single metallic catenary antenna placed on a silicon-on-insulator (SOI) waveguide. The white dotted lines 
indicate two power monitor ML and MR, and the monitors are 10 μm away from the antenna. 

To study catenary in more detail, we took the derivative of the formula for the cate-
nary of equal strength: 

π' tan xy =
Λ

 (3)

Figure 1. (a) Catenary of equal strength in a rectangular coordinate system. (b) The schematic of the directional coupler is
composed of a single metallic catenary antenna placed on a silicon-on-insulator (SOI) waveguide. The white dotted lines
indicate two power monitor ML and MR, and the monitors are 10 µm away from the antenna.

To study catenary in more detail, we took the derivative of the formula for the catenary
of equal strength:

y′ = tan
πx
Λ

(3)
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Figure 1a shows that ζ(x) is the angle between the tangent of the catenary and the
positive direction of the x-axis. Based on the meaning of the tangent angle of the curve and
Equation (3), the expression of ζ(x) can be derived:

ζ(x) = arctan(y′) =
πx
Λ

, (4)

Substituting the value of x into Equation (4), the value range of ζ(x) can be calculated,
which varies from−π/2 (x =−Λ/2) to π/2 (x = +Λ/2). Considering the theory of geometric
phase, the catenary can create a continuous geometric phase Φ(x) = 2σζ(x), where σ = +1 or
σ = −1 represents left-handed circularly polarized light (LCP) and right-handed circularly
polarized light (RCP), respectively. Combined with Equation (4), the catenary structure has
a linear geometric phase, which can be described as

Φ(x) =
2σπx

Λ
, (5)

Here, the linear phase gradient dΦ(x)/dx = 2σπ/Λ of the catenary can be calculated
by Equation (5). According to the generalized Snell’s law [45–47], the sign of phase gradient
determines the coupling direction, which is thus further determined by the value of σ.
Consequently, the coupling direction of light flow can be changed by reversing the spin of
incidence (LCP or RCP).

To verify the characteristics of the catenary structure, we simulated a directional
coupler composed of a single metallic catenary antenna placed on an SOI waveguide by
using the FDTD Solution software (see Figure 1b). Here, the thickness and width of the
silicon waveguide were 0.22 µm and 0.5 µm, respectively. The refractive index of silicon
was taken from the data of Palik [48]. The thickness h, horizontal length Λ, and width w of
the gold catenary antenna were set as 0.09 µm, 0.9 µm, 0.1 µm, respectively. Considering the
limited width of the silicon waveguide, the truncation factor f of the catenary was set to 0.7.
The relative permittivity setting of gold refers to the data of Johnson and Christy [49]. The
refractive index of the substrate material SiO2 was from the data of Palik [48]. Furthermore,
the boundary conditions were set as perfectly matched layer in all directions to avoid
the influence of the boundary reflection. As shown in Figure 2, the simulation results
were consistent with the theoretical prediction. The coupling direction of the beam was
modulated by the rotation of the incident light. Specifically, Figure 2a shows that the light
stream flows to the right under the LCP light. However, when the RCP light is irradiated,
the light stream flows to the left as shown in Figure 2b.

It is necessary to introduce the concept of extinction ratio (ER), which is defined as
ERRCP = 10 × log(TL/TR) or ERLCP = 10 × log(TR/TL), to evaluate the performance of the
coupler. Here, the value of the extinction ratio reflects the strength of directivity. Based on
the results of the simulation in Figure 2c,d, it can be found that the bandwidth (ER > 18 dB)
of the coupler is only about 30 nm, which is too narrow compared to the previously reported
couplers [41]. However, the extinction ratio of the coupler also needs to be improved. To
extend the working bandwidth and further improve the extinction ratio, the geometric
parameters of the catenary structure have been fully optimized. Figure 3 shows that the
extinction ratio and working bandwidth of the directional coupler are greatly affected by
the geometric parameters of the catenary structure placed on the SOI waveguide. These
findings laid the foundation for the design of a broadband coupler. After considering
the extinction ratio and bandwidth (ER > 18 dB) in Figure 3a, the horizontal length Λ of
the catenary structure was fixed to 0.9 µm to design a broadband polarization directional
coupler with strong directionality. Moreover, the width w of the catenary structure has a
more significant effect on the bandwidth of the coupler as shown in Figure 3b. Thus, the
multiple widths of the catenary structure should be optimized at the same time to extend
the bandwidth of the device.
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Figure 3. The relationship between the extinction ratio of the directional coupler and the corresponding wavelength, when
changing the geometric parameters of the catenary structure. (a) Shifting the horizontal length Λ of the catenary. (b) Shifting
the width w of catenary structure.

Since it is inefficient to improve the performance of the coupler through full parameters
scanning optimization based on FDTD Solutions software, we alternatively utilize opti-
mization algorithms to shorten the cycle of structural optimization in the design. Among a
lot of optimization algorithms, genetic algorithm (GA), which is widely used in the design
of optical components [50–52], is selected to optimize the multiple widths of the catenary
structure. The simulation software FDTD Solutions has provided an application program-
ming interface to MATLAB so that we can run FDTD Solutions with MATLAB. Thus,
MATLAB and FDTD Solutions software are used to realize joint simulation to optimize the
multiple widths of the catenary structure, as shown in the flow chart in Figure 4.
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Figure 4. The flow chart of the genetic algorithm (GA) optimization simulation process based on
MATLAB and FDTD Solutions.

According to the optimized process, the GA program framework built in MATLAB
drives FDTD Solutions, and realizes the data exchange between the MATLAB and FDTD
Solutions. Here, the population size was set to 30, and the genetic generation number
was set to 100. Taking into account the width limitation of the silicon waveguide in the
coupler, we set the upper and lower limits of the catenary structure width to be 0.05 µm and
0.2 µm, respectively. Then, the coordinate information of catenary structures with different
widths was transferred to FDTD Solutions. Based on these coordinate data, some FDTD
files with catenary structures of different widths were established by using the scripting
language. After running these FDTD files, we calculated the extinction ratio with respect to
the wavelength through obtained transmittance from two power monitors (ML and MR).
Next, the minimum extinction ratio of all FDTD files was fed back to MATLAB. Finally,
in order to select the optimal catenary structure in each generation, we defined a fitness
function (Max(min(ER))), which represents the maximum value of the minimum extinction
ratio of all populations in the generation. Figure 5a shows that the value of Max(min(ER))
gradually increases as the genetic algebra increases. However, when the genetic algebra
increases to 49, the value of Max(min(ER)) remains unchanged. In other words, the optimal
catenary structure is obtained when the genetic algebra is 49. To specifically describe the
increase in the bandwidth of the coupling device during the optimization process, we
selected five optimal catenary structures of the genetic algebra (corresponding to point
A to Point E) during the optimization process from Figure 5a for simulation. Based on
the simulation results, it is obvious that the bandwidth (ER > 18 dB) of the coupler in
Figure 5b–f widens as the genetic algebra increases.

By optimizing the width of the catenary using GA, the bandwidth of the coupler
has been broadened. As indicated in Figure 6, the bandwidth of the designed coupler
increases to 300 nm where the extinction ratio remains greater than 18 dB. Compared to
the previous research [41], the bandwidth increases by approximately three times, and the
power transmittance of the transmission side has also been improved. Also, it is found
that the GA optimization does not affect the symmetry of the catenary structure according
to the two insets in Figure 6. We can still control the directions of light flow by shifting
the spins of the incident light. Furthermore, we analyzed the influence of thickness and
materials of the catenary antenna on the extinction ratio and bandwidth of the coupler.
As shown in Figure 7a, the extinction ratio and working bandwidth of the coupler are
sensitive to the thickness of the catenary antenna. Specifically, the coupler has a bandwidth
larger than 18 dB when the thickness of catenary antennas is 0.07 µm, 0.09 µm, and 0.14 µm.
The bandwidth (ER > 18 dB) of the coupler can reach 300 nm only if the thickness of the
catenary antenna is 0.09 µm. Figure 7b shows that the materials of the catenary antenna
have a sufficient effect on the extinction ratio and working bandwidth of the coupler. It is
worth noting that metallic materials can promote the coupler’s performance compared to



Materials 2021, 14, 326 6 of 9

dielectric materials. The reason for this phenomenon is that SPPs are more easily excited
by light illuminating on the metallic surface.
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3. Conclusions

This research uses genetic algorithms (GA) to optimize the multiple widths of a single
metallic catenary antenna integrated on the SOI waveguide to design and demonstrate
the broadband polarized directional coupler under the incidence of circularly polarized
light. Numerical simulation results show that the extinction ratio of the coupler can be
maintained above 18 dB in a broad band (300 nm, ranging from 1400 nm to 1700 nm).
Moreover, because the symmetry of the catenary structure is preserved in the optimization
process using GA, the coupler can not only couple the spatial beam into the plane, but also
reverse the light flow by modulating the spin of the incidence. The broadband polarization
directional coupler would have great application potentials in integrated optoelectronic
devices and on-chip optical communications.
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