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Abstract: Bile acids are cholesterol-derived metabolites with a well-established role in the digestion
and absorption of dietary fat. More recently, the discovery of bile acids as natural ligands for the
nuclear farnesoid X receptor (FXR) and membrane Takeda G-protein-coupled receptor 5 (TGR5), and
the recognition of the effects of FXR and TGR5 signaling have led to a paradigm shift in knowledge
regarding bile acid physiology and metabolic health. Bile acids are now recognized as signaling
molecules that orchestrate blood glucose, lipid and energy metabolism. Changes in FXR and/or TGR5
signaling modulates the secretion of gastrointestinal hormones including glucagon-like peptide-1
(GLP-1) and peptide YY (PYY), hepatic gluconeogenesis, glycogen synthesis, energy expenditure,
and the composition of the gut microbiome. These effects may contribute to the metabolic benefits of
bile acid sequestrants, metformin, and bariatric surgery. This review focuses on the role of bile acids
in energy intake and body weight, particularly their effects on gastrointestinal hormone secretion, the
changes in obesity and T2D, and their potential relevance to the management of metabolic disorders.

Keywords: bile acids; TGR-5; FXR; gastrointestinal hormones; energy intake; body weight; obesity;
type 2 diabetes

1. Introduction

Bile acids are synthesized in the liver, where cholesterol is converted via 7α-hydroxylase
(CYP7A1) and, to a lesser extent, 27α-hydroxylase (CYP27A1) and 24-hydroxylase (CYP46A1),
to the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) in humans (CA
and muricholic acid in rodents). These are then conjugated to glycine or taurine, prior to their
secretion into bile [1]. Following meal ingestion, bile acids are released into the gut upon
gallbladder emptying, and about 95% of intestinal bile acids is absorbed in the ileum via
the apical sodium bile acid co-transporter (ASBT), returning to the liver for re-secretion—a
highly efficient process known as “enterohepatic circulation”. A small fraction of bile
acids reach the large intestine, where they are modified (through de-conjugation and
dihydroxylation) by gut bacteria to secondary bile acids such as deoxycholic acid (DCA),
lithocholic acid (LCA), and ursodeoxycholic acid (UDCA, a secondary bile acid in humans,
but a primary bile acid in rodents), and absorbed passively into the circulation or excreted
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in the feces [2] (Figure 1). Bile acids lost to the large intestine are replenished by de novo
hepatic synthesis, which is regulated by fibroblast growth factor-19 (FGF19) signaling in
the small intestine in humans (or FGF15 in rodents). Thus, bile acids are found in high
concentrations in the liver [3], bile [4], and small intestine [5].
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G-protein-coupled receptor 5 (TGR5). Accordingly, modulation of FXR and/or TGR5 signaling has 
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Figure 1. Primary bile acids (i.e., chenodeoxycholic acid (CDCA) and cholic acid (CA)) are synthesized from cholesterol
in the liver, and conjugated to glycine and taurine prior to their secretion into bile. In response to meals, bile acids are
discharged into the intestine. Approximately 95% of the intestinal bile acids are absorbed in the ileum via apical sodium bile
acid co-transporter (ASBT) and return to the liver for re-secretion (i.e., the enterohepatic circulation). Only ~5% of bile acids
escape into the large intestine and are modified by gut microbiota into secondary bile acids (e.g., deoxycholic acid (DCA),
lithocholic acid (LCA), and ursodeoxycholic acid (UDCA)). Bile acids are now recognized as pivotal signaling molecules
that participate in the regulation of metabolic homeostasis through regulating the secretion of gastrointestinal hormones.
This complex process has been linked to activation of the nuclear farnesoid X receptor (FXR) and/or the membrane Takeda
G-protein-coupled receptor 5 (TGR5). Accordingly, modulation of FXR and/or TGR5 signaling has been actively pursued
for the management of metabolic disorders.

For more than a century, bile acids have been regarded solely as “intestinal detergents”
that emulsify dietary fat for digestion and transport. The recognition that bile acids are also
pivotal signaling molecules orchestrating glucose, lipid and energy metabolism is recent.
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Bile acids also bind to numerous nuclear and cytoplasmic receptors such as the vitamin D
receptor [6], pregnane X receptor [7], and constitutive androstane receptor [8]. However,
it was the identification of the bile acid-specific nuclear farnesoid X receptor (FXR) in
1999 and membrane Takeda G-protein-coupled receptor 5 (TGR5) in 2002 that provided a
mechanistic framework for a role of BA signaling in the context of metabolism [9,10]. FXR
and TGR5 are present in numerous tissues including the central and peripheral nervous
systems; bile acid signaling in the latter has been shown to regulate energy intake [11], as
supported by the observation that suppression of energy intake induced by intravenous
injection of DCA is attenuated when TGR5 was silenced in the vagal nodose ganglia in
rats [12]. However, the clinical relevance of this concept is unclear, particularly given that
plasma bile acid concentrations are low and that in obese individuals, relative elevation in
plasma bile acid levels are not associated with reduced energy intake. In line with the high
turnover of bile acids in the enterohepatic circulation, both FXR and TGR5 are expressed
abundantly in the liver and the intestine. Signaling through both receptors has been linked
to the secretion of gastrointestinal hormones, known to be integral to the maintenance of
metabolic homeostasis (Figure 1). For example, the release of ghrelin from gastric G-cells
during fasting appears pivotal to sensations of hunger, and stimulation of energy intake.
After meals, the secretion of cholecystokinin (CCK) from enteroendocrine I-cells located
in the upper gut, and glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) from L-cells
located most abundantly in the distal gut, form an integrated signaling system that slows
gastrointestinal motility and transit, drives the secretion of insulin to regulate postprandial
glucose metabolism (via GLP-1) and suppresses appetite and energy intake [13]. The role
of bile acids in the control of blood glucose and lipid metabolism has been reviewed in
detail [14–17], but their potential to impact on the regulation of energy intake has received
less attention, despite the recognition, since 1968, that oral administration of CDCA and
DCA stimulated PYY secretion and suppressed appetite in obese individuals [18]. The
current review addresses the effects of bile acids on gastrointestinal hormone secretion,
energy intake, and body weight as well as the relevance of bile acid dysregulation in obesity
and type 2 diabetes (T2D).

2. Effects of Bile Acids on Gastrointestinal Hormone Secretion

The last two decades have witnessed a substantial effort to increase the understanding
of the effects of bile acids on gastrointestinal hormone secretion and the consequent impact
on metabolism. In healthy individuals, postprandial plasma bile acid concentrations
have been reported to correlate negatively with ghrelin, and positively with GLP-1 and
PYY [19]. Similar relationships have also been observed in obese patients following bariatric
surgery [20]. However, bile acids per se do not appear to affect ghrelin secretion in rats;
intestinal infusion of a mixture of physiological bile acids did not affect portal ghrelin
levels [21]. In contrast, small intestinal sensing of bile acids has been reported to inhibit
CCK secretion in both rodents and humans [22,23], supporting the existence of a negative
feedback loop between the two. In contrast, the effects on GLP-1 and PYY release from
L-cells have been studied extensively in preclinical and clinical models [24–26], stimulating
the potential development of bile acid-based interventions for metabolic disorders. While
bile acid-induced release of GLP-1 and PYY has been linked to signaling via FXR and
TGR5, the data are inconsistent, which may relate to differences in the binding affinity of
individual bile acids at FXR and TGR5 (Table 1) and/or complex interactions between the
two signaling pathways.

2.1. FXR

FXR is expressed abundantly in the liver and the intestine, and the binding affinity
of individual bile acids is variable (CDCA > DCA > LCA > CA > UDCA, Table 1). FXR
was initially identified as a regulator of bile acid metabolism [14], and subsequently as a
modulator of L-cell secretion. Indeed, FXR is expressed by the murine L-cell line, GLUTag.
However, the FXR agonist GW4064 and CDCA (which preferentially binds FXR) were
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shown to suppress glucose-induced proglucagon expression and GLP-1 secretion in this
cell line by decreasing glycolysis, whereas silencing FXR abolished these effects [27]. These
observations have been replicated in studies with different L-cell lines (i.e., NCI-H736 [28]
and STC-1 [29]). In a similar manner, GW4064 blunted the GLP-1 response to short-chain
fatty acids (SCFA) in both GLUTag and NCI-H716 cell lines [30]. Consistent with these
observations, FXR-deficient mice exhibited increased GLP-1 secretion in response to both
dietary fiber, which increases colonic SCFA [30], and oral glucose [31]. Oral intake of
GW4064 (10 mg/kg, 2 doses over 12 h) also decreased active GLP-1 levels in the plasma of
mini-pigs [28]. However, in an isolated perfusion model of rat intestine, both luminal and
vascular perfusion of GW4064 failed to affect the GLP-1 response to a physiological mixture
of bile acids in rats [21]. In mice, diversion of bile acids from the gallbladder to the ileum
was shown to modestly increase GLP-1 secretion, improve glucose tolerance, and induce
weight loss [32]. The reductions in postprandial blood glucose and body weight induced by
this procedure were abolished in intestinal FXR-knockout mice, suggesting that intestinal
FXR-signaling can potentially promote GLP-1 secretion. Unfortunately, the study failed
to determine whether the rise in GLP-1 was specifically induced by FXR-activation [32].
Of note, oral administration of the intestine-restricted FXR agonist, fexaramine, in mice
was reported to increase the abundance of LCA-producing gut bacteria to activate TGR5-
signaling indirectly, leading to enhanced GLP-1 secretion and improvement in insulin
sensitivity and lipid profile as well as the promotion of adipose tissue browning [33].
Accordingly, outcomes derived from ex vivo and in vivo experiments are, by and large,
inconsistent, although the intestine-restricted FXR signaling appears to have an overall
favorable effect on metabolic health.

2.2. TGR5

TGR5, also known as GPBAR1, is a G-protein coupled receptor that is expressed widely
in the gastrointestinal tract, pancreas, liver, gallbladder, and adipose tissue. Like FXR, its
binding affinity for individual bile acids varies substantially (LCA > DCA > CDCA > CA >
UDCA, Table 1) [34]. TGR5 activation has been reported to suppress hepatic macrophages,
induce gallbladder relaxation and refilling, and promote intestinal motility [14]. TGR5 is
also expressed on L-cells. Unlike FXR, stimulation of TGR5 by LCA and DCA was shown
to potently stimulate GLP-1 secretion from STC-1 cells in a dose-dependent manner, an
effect suppressed by downregulation of TGR5 expression [35]. The stimulatory effect of
TGR5 on GLP-1 secretion required the closure of ATP-sensitive potassium (KATP) channels
and elevated intracellular concentrations of cAMP and Ca2+ [36,37]. A major observation
in relation to TGR5 signaling was the demonstration of its basolateral location on L-cells.
Thus, to activate TGR5, it is necessary for bile acids or other TGR5 ligands to be transported
through the epithelial layer [38]. However, the readily absorbed TGR5 agonist SB-756050
failed to stimulate GLP-1 secretion significantly, or improve glycemic control at various
doses compared with the placebo in acute studies involving patients with T2D [39]. It is
noteworthy that L-cells are distributed most densely in the distal gut regions [13]. It would
therefore be of interest to investigate whether delivery of TGR5 agonists should be targeted
at the distal gut.

PYY is co-released with GLP-1 from L-cells, and it was initially noted that perfusion
of DCA (1–25 mM) into the isolated rabbit colon increased PYY secretion substantially in a
dose-dependent manner [18]. Intracolonic administration of DCA or TCA in humans has
also been shown to induce a rapid and substantial rise in plasma PYY [40–42]. Similar to
TGR5-mediated GLP-1 secretion, the outcomes of studies using isolated rat colon indicate
that bile acid-induced PYY secretion is dependent on bile acid translocation from the
luminal to basolateral side [43]. That PYY secretion is less evident in response to bile
acids with poor affinity to TGR5, and attenuated in TGR5-knockout models, attests to the
fundamental relevance of TGR5-signaling to bile acid-induced PYY secretion [44].
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Table 1. Binding affinities of bile acids to human TGR5 and FXR.

Bile Acid
TGR5 FXR

Subjects Indicator EC50 Subjects Indicator EC50

Primary Bile Acids

CA CHO
cells/HEK293

Intracellular
cAMP

7.72 µM [34]/
>10 µM [10] CV-1 cells Reporter gene

activation No effect [45]

CDCA
CHO

cells/HEK293
Intracellular

cAMP
4.43 µM [34]/

4 µM [10]
HepG2 cells
/CV-1 cells

Reporter gene
activation

10 µM [9]/
50 µM [45]

CHO cells Reporter gene
activation 6.71 µM [46] Cell-free Ligand-sensing

assay 4.5 µM [47]

Conjugated Primary Bile Acids

TCA/GCA CHO cells Reporter gene
activation

4.95 µM/
13.6 µM [46] Cell-free Ligand-sensing

assay No effect [47]

TCDCA/
GCDCA CHO cells Reporter gene

activation
1.92 µM/

3.88 µM [46] Cell-free Ligand-sensing
assay 10 µM [47]

HCA Cell-free
TR-FRET FXR

coactivator
assay

70.06 µM
(IC50) [28]

Secondary bile acids

DCA
CHO cells Intracellular

cAMP 1.01 µM [34] HepG2 cells Reporter gene
activation 100 µM [9]

HEK293 Intracellular
cAMP 575 nM [10] CV-1 cells Reporter gene

activation 50 µM [45]

LCA
CHO cells Intracellular

cAMP 0.53 µM [34] CV-1 cells Reporter gene
activation 50 µM [45]

HEK293 Intracellular
cAMP 35 nM [10] Cell-free Ligand-sensing

assay 25 µM [6]

UDCA CHO cells

Reporter gene
activa-

tion/Intracellular
cAMP

36.4 µM [46]/
No effect [34] CV-1 cells Reporter gene

activation No effect [45]

HDCA CHO cells Reporter gene
activation 31.6 µM [46] Cell-free

TR-FRET FXR
coactivator

assay

62.43 µM [28]
(IC50)

Conjugated Secondary Bile Acids

TDCA/
GDCA CHO cells Reporter gene

activation
0.79 µM

/1.18 µM [46] Cell-free Ligand-sensing
assay

500 µM [47]
(IC50)

TLCA/
GLCA CHO cells Reporter gene

activation
0.29 µM

/0.54 µM [46] Cell-free Ligand-sensing
assay

3.8 µM/4.7 µM
[47] (IC50)

TUDCA/
GUDCA CHO cells Reporter gene

activation
30.0 µM

/33.9 µM [46] Cell-free Ligand-sensing
assay No effect [47]

THDCA/GHDCA CHO cells Reporter gene
activation

24.2 µM/36.7
µM [46]

Note: EC50: the concentration for a half maximal effect; IC50: the concentration for a half maximal inhibitory effect; CHO: Chinese hamster
ovary cells; HepG2 cells: Human hepatoma cell line; CV-1 cells: Monkey kidney fibroblast cells (CV-1 line); HEK293: human embryonic
kidney cell line 293; TR-FRET FXR coactivator assay: commercial assay kit for screening ligand for FXR. Cholic acid (CA); Chenodeoxycholic
acid (CDCA); Taurocholic acid (TCA); Glycocholic acid (GCA); Taurochenodeoxycholic acid (TCDCA); Glycochenodeoxycholic acid
(GCDCA); Hyocholic acid (HCA); Deoxycholic acid (DCA); Lithocholic acid (LCA); Ursodeoxycholic acid (UDCA); Hyodeoxycholic acid
(HDCA); Taurodeoxycholic acid (TDCA); Glycodeoxycholic acid (GDCA); Taurolithocholic acid (TLCA); Glycolithocholic acid (GLCA);
Tauroursodeoxycholic acid (TUDCA); Glycoursodeoxycholic acid (GUDCA); Taurohyodeoxycholic acid (THDCA); Glycohyodeoxycholic
acid (GHDCA).
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In summary, there is compelling evidence for a role of bile acids in the modulation
of GLP-1 and PYY secretion in both animals and humans. Stimulation of TGR5 on L-cells
induces the secretion of both hormones, while effects of FXR signaling remain controversial.
The interactions between FXR and TGR5 signaling remain poorly characterized and an
improved understanding may be of relevance to the development of novel strategies for
the management of metabolic disorders.

3. Effects of Bile Acid Signaling on Energy Intake and Body Weight

In light of the effects of bile acids on appetite regulation, particularly via the secretion
of gastrointestinal hormones, it is intuitively likely that modulating bile acid signaling
affects energy balance. Genetic ablation of the bile acid synthesis enzyme CYP8B1, leading
to a deficiency of 12α-hydroxylated bile acids (e.g., CA), has been shown to be associ-
ated with reduced energy intake and subsequent weight gain in mice fed a fat enriched
diet [48,49]. However, these effects appeared to be secondary to impaired fat hydrolysis
and the increased exposure of unabsorbed fat to the distal gut, as in these mice, there was
an increase in energy intake when fed a fat-free diet [49]. Nevertheless, this study supports
the fundamental role of endogenous bile acids in fat digestion and absorption, which may
influence energy intake and body weight indirectly.

The outcomes of preclinical and clinical studies involving administration of various
bile acids have been equivocal in relation to effects on energy intake and body weight
(Table 2). For example, supplementation with CA or UDCA prevented weight gain in
mice fed a high-fat diet [50–52], possibly reflecting a TGR5-related increase in energy
expenditure [50]. Moreover, a number of other bile acid species with high affinity for
TGR5 including hyocholic acid (HCA), hyodeoxycholic acid (HDCA), DCA, and TCA
failed to affect energy intake or body weight in rodents with or without diabetes [28,53,54].
Information relating to the effects of bile acids on appetite and energy intake in humans are
limited. In healthy individuals, rectal administration of TCA substantially stimulated GLP-
1 and PYY secretion and suppressed hunger in a dose-dependent manner [42]. Similarly, in
obese individuals with T2D, rectally administered TCA significantly suppressed energy
intake dose-dependently [41]. However, these observations could be confounded by the
concurrent urge for defecation induced by rectal TCA perfusion (Figure 2) [42]. More
recently, a double-blind, randomized, placebo-controlled 4-week trial that delivered a
mixture of encapsulated bile acids (1000mg/day) designed for release in the ileum and
colon (to provide dual agonism of FXR and TGR5) showed little effect on body weight in
patients with T2D, despite increases in plasma GLP-1 and serum and intestinal bile acids [55].

Table 2. Reported effects of bile acids on energy intake and body weight in preclinical and clinical models.

Bile Acid Model Dose Method Effect Ref

Conjugated Bile Acid

Primary

TCA

HFD Sprague-Dawley
rat + streptozotocin 0.05% or 0.3% Fed with high-fat

diet for 12 weeks
Body weight −

Energy intake − [54]

Patients with T2DM 0.66, 2, 6.66,
or 20 mmol Rectal administration

Energy intake ↓
(~47% at
20 mmol)

[41]

HCA

db/db mice;
HFD C57BL/6J mice +

streptozotocin;
C57BL/6J mice

100 mg/kg/day Oral gavage for 28
days

Body weight −
Energy intake − [28]

TUDCA

db/db mice;
HFD C57BL/6J mice +

streptozotocin;
C57BL/6J mice

100 mg/kg/day Oral gavage for 28
days

Body weight −
Energy intake − [28]

Secondary HDCA

db/db mice;
HFD C57BL/6J mice +

streptozotocin;
C57BL/6J mice

100 mg/kg/day Oral gavage for 28
days

Body weight −
Energy intake − [28]
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Table 2. Cont.

Bile Acid Model Dose Method Effect Ref

Unconjugated Bile Acid

Primary

CA

C57BL/6J mice

0.5% High-fat diet fed for
47 days

Body weight ↓
(24%)

Energy
expenditure ↑

(~50%)
Energy intake −

[50]

0.5% High-fat diet fed for
9 weeks

Body weight ↓
(6g, ~18%)

Energy
expenditure ↑

(29%)
Energy intake ↑

(20%)

[52]

UDCA 0.5% High-fat diet fed for
8 weeks

Body weight ↓
(15%) [51]

Secondary DCA C57BL/6J mice 0.1% High-fat diet fed for
3 weeks

Body weight −
Energy intake − [53]

Note: Both ursodeoxycholic acid (UDCA) and tauroursodeoxycholic acid (TUDCA) are primary bile acids in rodents, but secondary bile
acids in humans. Given the effects of TUDCA and UDCA on energy intake and body weight were shown in rodents, they are grouped into
the primary bile acids in the table.
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Figure 2. Plasma glucagon-like peptide-1 (GLP-1) (A,B), and peptide YY (PYY) (C,D) (means ± sem.)
after rectal taurocholic acid (TCA) enema in 10 healthy humans. (B) p = 0.019 for incremental area
under the curves (iAUC); r = 0.48, p = 0.004 for dose-dependent effect; (D) p = 0.0005 for iAUC;
r = 0.56, p = 0.001 for dose-dependent effect. Reproduced with permission from [42] © (2013).

As discussed, physiological bile acids often activate both FXR and TGR5, but with
preferential affinity depending on their molecular structure. Selective FXR- and TGR5-
knockout mice, or specific FXR and TGR agonists, have been pivotal to delineation of the
respective signaling pathways to the metabolic effects of bile acids. However, outcomes
remain inconclusive. Administration of the intestinal FXR agonist, fexaramine, for five
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weeks to mice fed a high-fat-diet was reported to prevent weight gain. However, this may
have reflected an increase in metabolic rate, rather than a reduction in energy intake [56].
In contrast, GW4064 had no effect on either energy intake or body weight in diabetic or
obese mice [50,57]. Notably, mice with FXR deficiency (either whole body or intestine-
specific knockout) fed a high-fat diet also exhibited reductions in energy intake and body
weight compared with wild-type mice [31,58]. Similarly, TGR5 agonism (e.g., by INT-777)
was associated with reduced weight gain, apparently by augmenting energy expenditure,
without affecting energy intake [36], whereas knockout of TGR5 had no significant effect on
body weight or energy intake in mice fed a high-fat diet [36,59]. Clinical outcomes relating
to TGR5 or FXR agonism have been disappointing. As discussed, the TGR5 agonist, SB-
756050, failed to stimulate GLP-1 secretion or improve glycemic control in individuals with
T2D [39]. The effects of TGR5 agonists on energy intake and body weight in humans have
not been reported. Treatment with the semi-synthetic FXR agonist, obeticholic acid, over
72 weeks only achieved a modest reduction in body weight (~2 kg) in patients with non-
alcoholic fatty liver disease (NAFLD), with or without, T2D [60]. In another 24-week double-
blind, randomized, placebo-controlled trial, the non-bile acid FXR agonist, cilofexor, had no
effect on body weight in patients with non-alcoholic steatohepatitis [61]. Accordingly, the
concept of supplementing bile acids or targeting BA signaling pathways to reduce energy
intake and body weight is currently not supported by current clinical evidence.

4. Bile Acid Dysregulation in Obesity and T2D

The emerging link between bile acid signaling and the regulation of metabolic home-
ostasis has stimulated substantial interest in potential phenotypical changes in bile acid
profiles in metabolic disorders, particularly obesity and T2D. Although bile acids are
present at high concentrations in the liver, bile, and small intestine, bile acid profiles have
hitherto been compared in peripheral blood and fecal samples predominantly due to their
easy accessibility. Accordingly, processes in relation to small intestinal bile acid transport
and absorption are poorly characterized, although gallbladder emptying can be readily
assessed using ultrasound.

There is a substantial variation in circulating bile acid levels both between and
within individuals [62]. In the context of obesity, most studies have reported that fasting
serum/plasma bile acid levels are increased as a result of augmented bile acid synthesis (re-
flected by an increase in 7α-hydroxy-4-cholesten-3-one (C4)) [63–65]. There is evidence that
the expression of both hepatic Na+-taurocholate co-transporting polypeptide (NTCP) [66]
(responsible for the uptake of bile acids from the portal vein to the liver) and intestinal ASBT
is lower in obese individuals [67], and intestinal FGF-19 secretion is also decreased [67,68].
It is, therefore, conceivable that the augmented hepatic bile acid secretion observed during
fasting represents a compensatory response to deficiencies in the enterohepatic circulation.
In support of this concept, the postprandial increase in circulating bile acids is significantly
blunted in obesity [66,69,70] and restored after Roux-en-Y gastric bypass [70]. In addition,
the production and fecal excretion of secondary bile acids (e.g., DCA) are increased in obese
individuals [71,72], which may be secondary, or contribute to, alterations in gut microbiota
(“dysbiosis”) [73], leading to impaired energy metabolism in the host [74]. Obesity-related
increases in fasting bile acid levels primarily reflect increases in 12α-hydroxylated bile
acids (e.g., CA) [64,66], which are more effective in emulsifying dietary fat than non-12α-
hydroxylated bile acids [49]. The shift in the bile acid composition in obesity may, therefore,
favor improved fat digestion. Although fasting plasma unconjugated primary bile acids
(CA and CDCA) and numerous conjugated primary and secondary bile acids (TCA, GCA,
GCDCA, TDCA, and GLCA) are related positively with insulin resistance in obesity [75,76],
it remains to be determined whether changes in plasma bile acids represent a manifestation,
or the drivers, of obesity.

T2D individuals, with or without obesity, exhibit higher fasting bile acid concentra-
tions in the peripheral circulation compared with non-diabetic controls, mainly due to
increased unconjugated and glycine-conjugated DCA and UDCA [64,77–80]. This rise
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in plasma secondary bile acids may reflect increased bile acid delivery and a relative
abundance of bile acid de-conjugating bacteria in the large intestine [81,82]. Interestingly,
the expression of ASBT has been reported to be increased in diabetic rats [83], which
would favor enhanced ileal bile acid resorption. However, this does not necessarily lead to
increased FGF-19 secretion [77,79,80], or suppression of bile acid synthesis in T2D. Hepatic
bile acid synthesis, particularly CA, is, in fact, known to be increased in patients with
T2D [80]. In a small group of individuals with T2D (n = 15), the plasma BA responses to
oral glucose or fat-containing mixed nutrients were reported to be modestly elevated [77].
Gallbladder emptying in this group of patients was similar to healthy controls [84]. How-
ever, in this study, T2D patients had relatively poor glycemic control (mean HbA1c = 7.5%)
and a long duration of diabetes (6–20 years), with the majority receiving medication (e.g.,
metformin [85]) known to affect bile acid metabolism.

The magnitude of the increase in fasting bile acids in plasma or serum has been shown
to correlate positively with fasting and 2 h-postprandial glucose levels and HbA1c in
T2D, and with the degree of insulin resistance in individuals, regardless of the presence
of diabetes [79,86]. In a recently reported longitudinal study, 23 bile acid species were
analyzed to evaluate their baseline association with incident T2D during a median 3-year
follow-up in a large cohort of individuals with normal glucose tolerance [87]. Serum fasting
unconjugated primary and secondary bile acids (CA, CDCA, and DCA) were reported to
be negatively associated with the risk of T2D, while conjugated primary and secondary bile
acids (GCA, TCA, GCDCA, TCDCA, and TUDCA) were positively associated. Moreover,
the ratios of conjugated to unconjugated bile acids (TCA/CA, GCA/CA, TCDCA/CDCA,
and GCDCA/CA) were positively associated with the development of T2D. These observa-
tions support the concept that impaired catalysis of conjugated bile acids by the hepatic bile
acid-CoA:amino acid N-acyltransferase (BAAT) [88] and/or intestinal resorption of uncon-
jugated bile acids contribute to the development of T2D. The relevance of postprandial bile
acid levels, particularly in the small intestine and liver, to the risk of T2D, however, remains
unknown. Further studies are, therefore, required to clarify how bile acid metabolism
changes with the progression of glucose dysregulation.

5. Relevance of Bile Acids to Therapies for Metabolic Disorders

As discussed, it remains to be clarified whether alterations in bile acids underpin the
pathogenesis, or represent a consequence of metabolic derangement. However, there is
increasing persuasive evidence to support a role for bile acids in mediating the metabolic
benefits of therapies used to treat metabolic disorders including bile acid sequestrants,
ASBT inhibitors, metformin, and bariatric surgery.

5.1. Bile Acid Sequestrants

Bile acid sequestrants are resins that bind to intestinal bile acids to disrupt their en-
terohepatic circulation and increase hepatic bile acid synthesis from cholesterol to reduce
intestinal secretion of FGF19 (or FGF15 in rodents) [89,90], elevate plasma C4 levels [91],
and augment expression of hepatic CYP7A1 [89,91,92]. The increase in de novo bile acid
synthesis is sufficient to maintain the size of the total bile acid, but often changes its compo-
sition [80,93]. For example, in T2D patients, treatment with colesevelam (3.75 g/day) over
eight weeks increased CA, but decreased CDCA and DCA [80], shifting the bile acid pool
toward a more hydrophilic phenotype. Due to their effects on the enterohepatic circulation,
bile acid sequestrants were initially developed to treat hypercholesterolemia. Surprisingly,
they were also shown to be associated with a substantial improvement in glycemic control
in patients with T2D, leading to potential re-purposing for the management of T2D [94],
although the mechanism of their glucose-lowering action remains elusive. Several preclini-
cal and clinical studies have reported a significant increase in GLP-1 secretion, associated
with the use of bile acid sequestrants [89,93,95], although some studies have reported
minimal [96,97], or the opposite effect [97,98]. Similarly, evidence for the effects of bile
acid sequestrants on energy intake and energy expenditure is also inconsistent. In high-fat
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fed C57BL/6J mice, the bile acid sequestrant, colestimide, was reported to increase energy
expenditure in brown adipose tissue and prevent diet-induced obesity, without affecting
energy intake or lipid absorption [90]. In a similar study of hyperlipidemic transgenic
mice, colestilan was reported to reduce body weight, accompanied by an increase in energy
intake, a reduction in total energy expenditure, and enhanced carbohydrate catabolism [99].
In clinical trials of healthy individuals and patients with obesity and/or T2D, bile acid
sequestrants have been found to be weight-neutral [93,100–102]. While further studies are
required to clarify the glucose-lowering mechanisms of bile acid sequestrants, the latter do
not appear to be an effective treatment for obesity.

5.2. Apical Sodium Bile Acid Co-Transporter (ASBT) Inhibitors

Similar to bile acid sequestrants, ASBT inhibitors impair intestinal bile acid resorption,
leading to increased delivery of bile acids to the large intestine and decreased bile acid
concentrations in the circulation [103–106]. These agents were first developed to treat
hypercholesterolemia, but were subsequently applied to the management of functional
constipation and non-alcoholic steatohepatitis [107]. While inhibition of ASBT remarkedly
increases GLP-1 secretion in both rodents [108] and humans [109], ASBT inhibitors have
not affected the energy intake or body weight in animals [104,106]. Their effect on energy
intake in humans has not been reported.

5.3. Metformin

Metformin remains the first-line therapy for glucose-lowering in T2D [85], but also sup-
presses appetite and reduces body weight modestly [110–113]. The potential for metformin
to increase plasma GLP-1 and PYY levels has been widely recognized in both preclinical
and clinical studies [114–117]. There is evidence that the latter may be attributable, at
least in part, to the inhibition of intestinal bile acid resorption by metformin. Indeed,
metformin substantially decreases serum FGF-19, and increases fecal bile acid excretion
and serum C4 levels in T2D [118]. In high-fat-fed mice, metformin was also shown to
prevent weight gain, apparently by increasing energy expenditure through upregulation of
the thermogenic gene (Ucp1) in white adipose tissue, without affecting energy intake [118].
That the effect on body weight was abolished in mice with intestinal-specific FXR knockout
supports an important role for intestinal FXR signaling in metformin-induced weight loss
in mice [118]. Moreover, metformin modifies the gut microbiota [119]; metformin therapy
(1700 mg/day) over four months results in major shifts in over 50 bacterial strains, which
may account for glucose-lowering in T2D [113]. In mice, weight loss induced by metformin
may be attributable to a reduction in intestinal Bacteroides fragilis and resultant increases in
GUDCA; the latter antagonizes FXR signaling to improve glucose metabolism and reduce
body weight [118]. In this context, delayed-released metformin (of minimal intestinal
absorption) may be desirable to maximize the interaction between metformin and the gut
microbiota for the management of T2D.

5.4. Bariatric Surgery

Despite emerging pharmaceutical treatments, bariatric surgery remains the most effec-
tive intervention for obesity and T2D. Relative to adjustable gastric banding and sleeve
gastrectomy, procedures that bypass segments of the small intestine (e.g., Roux-en-Y gas-
tric bypass, duodenal-jejunal bypass, and biliopancreatic diversion) are in general more
effective [120,121]. While the underlying mechanisms remain incompletely understood,
emerging evidence suggests that the expedited flow of bile acids to the distal gut may
be important. Indeed, bile acid diversion from the duodenum to distal ileum increases
GLP-1 [122], decreases blood glucose [32,122,123], and reduces body weight substan-
tially [32,123] in rodents with diet-induced obesity. While the expression of bile acid
receptors (i.e., TGR5 and FXR) in the distal gut is not affected by bariatric surgery [123],
increased delivery of bile acids into the large intestine may alter the composition of the
gut microbiome after bariatric surgery (or vice versa) [32,123,124], thereby influencing host
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energy metabolism [125]. That FXR-knockout abolishes [32,58], while TGR5 knock-out
preserves [32], the weight loss effect of Roux-en-Y gastric bypass or ileal biliary diversion
in high-fat-fed mice, suggests that FXR, but not TGR5, signaling is indispensable for weight
loss induced by the diversion of bile acids to the distal small intestine. However, the
significance of FXR signaling in humans is questionable, since the administration of the
FXR agonist, obeticholic acid, over 72 weeks, showed little effect on body weight in patients
with NAFLD [60].

6. Concluding Comments

The recognition of bile acids as important signaling molecules that orchestrate metabolic
homeostasis through specialized receptors (FXR and TGR5) has stimulated active research
to determine their relevance to the pathogenesis of, and therapeutic potential for the man-
agement of, metabolic disorders. Recent studies, focusing on the enterohepatic circulation
and bile acid sensing, are indicative of major shifts in plasma and fecal bile acid profiles in
obesity and T2D, and of the potent effects of bile acids on GLP-1 and PYY secretion from
enteroendocrine L-cells. Accordingly, assessment of the bile acid profile may be of rele-
vance to predict the risk of obesity and T2D, while targeting bile acid signaling pathways
may represent an attractive strategy for the prevention and management of these metabolic
disorders. The efficacy of bile acids to stimulate gut hormone secretion is related to their
affinity for TGR5 and FXR; activation of TGR5 (expressed on the basolateral side of the
L-cells) mediates bile acid-induced GLP-1 and PYY secretion, whereas FXR signaling has
been shown to suppress these actions, or modify TGR5 signaling indirectly, while studies of
physiological bile acids or agonists of TGR5 and FXR have yielded inconsistent outcomes
on blood glucose, energy intake, and body weight changes in both animal and human stud-
ies. However, several interventions with proven benefits on metabolic health are clearly
associated with disrupted, or potentially accelerated, enterohepatic circulation. Studies are
now warranted to determine whether there are causal links between the bile acid profile
and metabolic outcomes and, if so, the underlying mechanisms. Finally, it would also be of
interest to explore whether bile acids have additive or synergistic effects with other (dietary
or pharmaceutical) interventions to promote weight loss and glycemic control.
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