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Background: As automated echocardiographic analysis is increasingly utilized,

continued evaluation within hospital settings is important to further

understand its potential value. The importance of cardiac involvement in

patients hospitalized with COVID-19 provides an opportunity to evaluate

the feasibility and clinical relevance of automated analysis applied to

limited echocardiograms.

Methods: In this multisite US cohort, the feasibility of automated AI analysis

was evaluated on 558 limited echocardiograms in patients hospitalized with

COVID-19. Reliability of automated assessment of left ventricular (LV) volumes,

ejection fraction (EF), and LV longitudinal strain (LS) was assessed against

clinically obtained measures and echocardiographic findings. Automated

measures were evaluated against patient outcomes using ROC analysis,

survival modeling, and logistic regression for the outcomes of 30-daymortality

and in-hospital sequelae.

Results: Feasibility of automated analysis for both LVEF and LS was 87.5%

(488/558 patients). AI analysis was performed with biplane method in 300

(61.5%) and single plane apical 4- or 2-chamber analysis in 136 (27.9%) and 52

(10.7%) studies, respectively. Clinical LVEF was assessed using visual estimation

in 192 (39.3%), biplane in 163 (33.4%), and single plane or linear methods

in 104 (21.2%) of the 488 studies; 29 (5.9%) studies did not have clinically

reported LVEF. LV LS was clinically reported in 80 (16.4%). Consistency between

automated and clinical values demonstrated Pearson’s R, root mean square

error (RMSE) and intraclass correlation coe�cient (ICC) of 0.61, 11.3% and

0.72, respectively, for LVEF; 0.73, 3.9% and 0.74, respectively for LS; 0.76,
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24.4ml and 0.87, respectively, for end-diastolic volume; and 0.82, 12.8ml, and

0.91, respectively, for end-systolic volume. Abnormal automated measures

of LVEF and LS were associated with LV wall motion abnormalities, left

atrial enlargement, and right ventricular dysfunction. Automated analysis was

associated with outcomes, including survival.

Conclusion: Automated analysis was highly feasible on limited

echocardiograms using abbreviated protocols, consistent with equivalent

clinically obtained metrics, and associated with echocardiographic

abnormalities and patient outcomes.

KEYWORDS

echocardiography, artificial intelligence, deformation imaging, strain rate imaging,

machine learning, COVID-19

Introduction

The use of artificial intelligence (AI) as a method

for automating medical image analysis has the potential

to transform patient care (1). In echocardiography, AI

applications have demonstrated significant value at numerous

stages of the analysis pipeline, including automatic view

classification (2–4), quantitative assessment of image quality

(5, 6), automated contouring (7–9), assessment of regional wall

motion (10), and disease classification (11–13). Notwithstanding

the advantages of automated, high-throughput analysis, the

benefits of AI driven analysis include savings of time (9,

14), improved prognostication (11, 15), reduced variability

(16), and greater precision (6, 13). While the value of

automated analysis is increasingly reported, validation of

commercially available software with automated capabilities

alongside clinical assessment remains limited (9, 17, 18). As

a result, understanding of the capabilities and limitations of

automated echocardiographic analysis remains incomplete.

Continued assessment of automated analysis using real-

world data is essential to evaluate potential feasibility and

relevance to clinical practice. In cases of severe infection,

coronavirus disease 2019 (COVID-19) patients frequently

present with prognostically significant cardiac involvement (19–

21). Echocardiographic indices of both left- (LV) and right-

ventricular (RV) function have been reported to effectively

identify COVID-19 patients requiring urgent treatment or

intervention (22), predict prognosis (18, 23) and allow

longitudinal assessment (24). However, the use of limited

echocardiographic acquisition protocols during the early stages

of the pandemic (18, 21, 25, 26) often omitted some of the pre-

requisites for advanced strain analysis [e.g., electrocardiogram

monitoring and sufficient image quality from the three apical

views (27)], limiting the information available to clinicians

for patient risk stratification. Automated AI algorithms are

capable of disease prediction (12, 13, 28) and functional

quantification (6, 29), using limited or single-view images,

without the requirement for additional work or expertise.

However, the efficacy of automated analysis in patient

assessment and risk stratification, including the potential impact

of implementing automated analysis alongside routine practice,

remains incompletely understood.

In this multi-site, retrospective study, we sought to evaluate

(1) the feasibility of automated quantification of LV systolic

function using limited echocardiograms from COVID-19

patients; (2) the agreement between automated quantification

and clinical findings; (3) the association of automated

assessment of the LV with in-hospital patient outcomes.

Methods

Patient population

This study was approved by the Institutional Review

Boards and conducted among consecutive inpatient adults

diagnosed with COVID-19 (positive antigen or polymerase

chain reaction test) who underwent clinically indicated

transthoracic echocardiography at six institutions: Beth Israel

Deaconess Medical Center, Harvard Medical School (Boston);

Temple University Hospital (Philadelphia); Einstein Medical

Center (Philadelphia); Ochsner Medical Center (New Orleans);

The University of Pittsburgh Medical Center; and Mayo Clinic

Health System sites across Minnesota, Wisconsin, Florida, and

Arizona, between February and December 2020. Only the first

transthoracic echocardiogram performed during the hospital

admission for COVID-19 was considered. Echocardiographic

studies were included in the analysis if either an apical 4-

chamber or apical 2-chamber image clip was available for

analysis. Those with insufficient image quality to assess LV

ejection fraction (EF) clinically and to evaluate the AI derived

contours of the LV were excluded.
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Data collection

Patient baseline characteristics, medical history, and

in-hospital outcomes were obtained at each site from

review of electronic health records. These included patient

demographics, presenting signs/symptoms, comorbidities at

the time of initial hospital presentation, in-hospital sequelae,

and echocardiographic findings. Outcomes included 30-day

all-cause mortality, incident acute coronary syndrome (ACS),

congestive heart failure (CHF), acute kidney injury, and major

adverse cardiovascular and cerebrovascular events (MACCE),

defined as the composite of ACS, CHF, stroke, coagulation

disorder (disseminated intravascular coagulation or other

acquired bleeding disorder), myocarditis, or pericarditis.

Coronary artery disease (CAD) was defined as prior myocardial

infarction (MI), coronary revascularization, or angiography

showing stenosis >50% diameter. Echocardiographic variables

were obtained from echocardiography reports and included

(where available) qualitative assessment of cardiac function

(regional wall motion abnormalities, LV size, LV wall thickness,

left atrial size, RV size, LVEF, end-diastolic and end-systolic

volumes, and LV longitudinal strain (LS).

Echocardiographic analysis

As echocardiographic data was collected predominantly

during the first wave of the pandemic, abbreviated and focused

protocols were frequently utilized to minimize scan times

and staff exposure risk (30), sometimes without placement of

electrocardiographic leads (31, 32). Only studies that included

at least one cardiac cycle from any of the apical views were

considered. Echocardiographic examinations were performed

using GE (Vivid E95 = 49.1%, Vivid S70 = 27.9%, Vivid E9 =

2.5%, Vivid IQ= 1.6%) and Philips (CX50= 11.3%, EPIQ 7C=

3.9%, EPIQ CVx = 3.0%, iE33 = 0.7%) systems. Quantification

of echocardiographic measures was obtained from two sources:

Clinically derived echocardiographic
assessment

Quantitative assessment of LV function was obtained

from clinical echocardiographic reports. The method of LVEF

quantification (e.g., Simpson’s biplane method of disks, single

plane, linear, or visual estimation) was recorded. Protocols

for echocardiographic acquisition and quantification were

conducted according to local procedures and clinical standards

in place at the time of data collection.

AI derived assessment

Quantitative assessment of LV function was obtained from

automated AI driven echocardiography analysis algorithms

(EchoGo Core v1.3.2, Ultromics Ltd, Oxford). LV LS was

calculated as the average of the end-systolic longitudinal

strain from apical 4- and 2-chamber views. Where one view

was unavailable, single view longitudinal strain values were

calculated. LV volumes and LVEF were determined using the

Simpson’s biplane method of disks. Where biplane LVEF was

not feasible with both apical 4- and 2-chamber views, a single

plane LVEF was calculated when feasible. The AI algorithms

process apical 4- and 2-chamber images to automatically select

cardiac cycles, contour the endocardial border, and calculate

volumes, ejection fraction and longitudinal strain (18). Data

for algorithm training were collected from an international

dataset of clinically indicated echocardiograms, containing a

range of patient pathologies (including coronary artery disease,

heart failure, COVID-19, myocardial infarction, and prior

cardiovascular disease) and were strictly independent of the

participants of the current study.

Feasibility of assessment

The endocardial border of apical 4- and 2-chamber

images were automatically contoured by EchoGo Core and

were presented to operators for approval. All operators

held professional qualifications in echocardiography (e.g.,

British Society of Echocardiography or American Society of

Echocardiography). All studies were processed through EchoGo

Core, irrespective of image quality. A study was considered

feasible for AI analysis if operators approved either apical 4-

or 2-chamber views. Studies where AI analysis was not feasible

(e.g., no contours approved for analysis) were included in the

feasibility evaluation but not in the final analysis.

Statistical analysis

Continuous variables were expressed as means ± standard

deviations (±SD) or medians and interquartile ranges (IQR).

Continuous data were compared between groups based on

automated LS and EF using the Student’s t-test or the

Wilcoxon rank sum test, as appropriate. Categorical data was

presented as counts and percentages and compared using the

χ ² test. Pairwise comparisons of continuous and categorical

data were conducted using paired t-tests and McNemar’s test,

respectively. Agreement analysis was conducted using Bland

Altman statistics, linear Deming regression root mean square

errors (RMSE), Pearson’s correlation coefficients, and intraclass

correlation coefficients (ICC). For agreement of LVEF between

AI and clinical values, the analysis was conducted using

comparable methods (e.g., biplane vs. biplane). Discordance

between automated and clinically assessed LVEF was defined by

an inter-method difference of>10%, which has been reported as

the minimum detectable difference between observers (33, 34).
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TABLE 1 Baseline patient characteristics.

Patient baseline characteristics Value

Age (Years) 62.24± 15.52

Male, n (%) 279 (57.4%)

BSA (m2) 2.11± 0.27

BMI (Kg/m2) 30.6± 6.68

Obesity, n (%) 136 (27.9%)

Systolic Blood Pressure (mm Hg) 124± 21

Diastolic Blood Pressure (mm Hg) 71± 14

Non-Hispanic White, n (%) 238 (50.0%)

Black or African American, n (%) 136 (28.6%)

Native American or Alaska Native, n (%) 29 (6.1%)

Hispanic, n (%) 96 (19.9%)

Diabetes Mellitus, n (%) 197 (40.4%)

Hypertension, n (%) 283 (58.0%)

Coronary Artery Disease, n (%) 77 (15.8%)

Cancer, n (%) 48 (9.8%)

Mechanical Ventilation During TTE, n (%) 126 (25.8%)

Vasopressor or Inotrope Use During TTE, n (%) 112 (23.0%)

BMI, body mass index; BSA, body surface area; TTE, transthoracic echocardiography.

For LVEF and LS, univariate logistic regression was performed

to evaluate the association of AI and clinical echocardiographic

measures with in-hospital outcomes and 30-day mortality.

Patient origin was included in logistic regression equations

to adjust for site related differences. Results from logistic

regression models are reported as odds ratios (OR) and 95%

confidence intervals. To account for the time to mortality,

Cox proportional hazards regression was implemented. Kaplan-

Meier estimates were used to provide a description of 30-day

patient survival, with censoring after death, discharge or 30 days.

Differences between survival curves were tested using the log-

rank test. For LVEF, patients were classified into hyperdynamic

(>70%, normal (55 to 70%), borderline (45 to 55%) and

abnormal (<45%) (27, 35, 36). For LS, patients were classified as

supranormal (<–20%), normal (−18 to−20%), borderline (−16

to −18%) and abnormal (>–16%) (27, 35, 36). Hyperdynamic

and supranormal categories were included due to reports of

being moderately prevalent in COVID-19 (24) with potential

clinical significance (37, 38). All analysis was conducted using

Python v3.9.7 in Spyder v5.1.5 using a two-tailed p-value < 0.05

to define significance.

Results

Feasibility of AI analysis

Of 558 patient echocardiograms with at least one apical

cardiac cycle, automated analysis of both LVEF and LS was

feasible in 488 (87.5%). AI feasibility was 93.7% for the Mayo

Clinic, 80.8% for Beth Israel Deaconess Medical Center, 100%

for the University of Pittsburgh, 91.5% for Ochsner Medical

Center, 72% for Temple University Medical Center and 89.7%

for Einstein Medical Center (Supplementary Table 1). Reasons

for rejection in the 70 studies included inability to fully assess

endocardial border delineation in 66 (94.3%), incorrect frame

selection in 2 (2.9%) and software errors in 2 (2.9%). There

were 14 studies with clinically reported LVEF (1 assessed using

biplane methods and 13 using linear methods) where automated

analysis was not feasible.

Of the 488 accepted studies, AI analysis was performed

with biplane method in 300 (61.5%) and single plane apical 4-

or 2-chamber analysis in 136 (27.9%) and 52 (10.7%) studies,

respectively. Clinical assessment of LVEF was recorded in 459

(94.1%) of the 488 studies at the time of the echocardiogram.

Clinical LVEF was assessed using visual estimation in 192

(39.3%), biplane methods in 163 (33.4%), and single plane or

linear methods in 104 (21.2%). LV LS was clinically reported in

80 (16.4%) patients.

Patient characteristics

Baseline patient characteristics, demographics, and clinically

derived echocardiographic parameters are reported in Table 1.

The mean age was 62.2± 15.5 years and 279 (57.2%) were male.

Indications for echocardiography included assessment of LV

function in 223 (45.7%), hypoxemia in 88 (18.0%), arrhythmia

in 46 (9.4%), suspected acute coronary syndrome in 26 (5.3%),

assessment of RV function in 23 (4.7%), hypotension in 19

(3.9%), chest pain in 13 (2.7%), and others in 50 (10.2%).

Comparison of AI and clinically derived
assessment

Comparison of the AI derived assessment to the values

obtained from clinical echocardiography reports is reported

in Table 2 and displayed in Figure 1. Agreement between

automated and clinical LVEF using all available data had a mean

difference of 0.91%, correlation coefficient 0.61, RMSE 11.3%,

and an ICC 0.73. Inter-method agreement was highest when

comparing like-for-like methods, with a correlation of 0.80 and

an ICC of 0.85 for LVEF obtained using the biplane method.

Agreement between automated and clinical LS using all available

data (biplane or single plane for automated assessment) had a

mean difference of −0.42%, correlation coefficient 0.73, RMSE

3.9% and an ICC 0.78. When restricting the comparison to

cases where automated assessment was feasible on both apical

4- and 2-chamber views, agreement of LS demonstrated a mean

difference −0.62%, correlation 0.73, RMSE 3.9%, and an ICC

of 0.78.

Frontiers inCardiovascularMedicine 04 frontiersin.org

https://doi.org/10.3389/fcvm.2022.937068
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Pellikka et al. 10.3389/fcvm.2022.937068

TABLE 2 Agreement between automated metrics of LV function and values derived at the time of limited transthoracic echocardiogram.

n Mean diff LoA Pearson’s r ICC RMSE

LS all 80 −0.417 7.945 0.725 0.782 3.876

Biplane LS 56 −0.62 7.738 0.739 0.791 3.877

LS Apical 4-chamber 75 −0.259 7.621 0.799 0.85 3.852

LVEF all 459 0.913 24.011 0.606 0.728 11.292

LVEF (biplane only) 112 2.606 14.792 0.796 0.848 7.024

LV EDV 168 −0.939 47.605 0.761 0.865 24.438

LV ESV 168 −2.85 26.068 0.82 0.897 12.78

N comparisons indicates the number of datapoints available for extraction from clinical reports for comparison against the AI. LVEF all and LS all indicate data used from all comers, including

all available methods of single view, biplane and triplane calculations. ICC, Intra-class correlation coefficient; LoA, Bland Altman limits of agreement; LS, longitudinal strain; LVEF, left

ventricular ejection fraction; LV EDV, left ventricular end-diastolic volume; LV ESV, left ventricular end-systolic volume; RMSE, root mean square error.

Relationship of AI derived abnormalities
with clinical echocardiographic
abnormalities

The relationship of AI derived assessment and reported

echocardiographic abnormalities was examined (Table 3). AI

derived assessment identified 120 (24.6%) patients as having an

LVEF <50% and 245 (50.2%) patients with LS >–16%. Patients

with abnormal LVEF or LS determined by the AI method

exhibited a significantly greater proportion of echocardiographic

abnormalities in both the LV and RV, and more often had

left atrial enlargement. The relationship of clinically assessed

abnormality of LVEF and LS using the same cut points (<50%

and>–16%, respectively) was similarly related to other reported

echocardiographic abnormalities (Supplementary Table 2).

ROC analysis of the ability of AI LVEF and LS to identify

clinical systolic dysfunction (defined as a clinical LVEF <

50%) achieved an area under the curve of 0.894 and 0.863,

a sensitivity of 85.7% and 81.3%, and a specificity of 78.6%

and 83.1%, respectively (Figure 2). Pairwise comparison between

automated and clinical methods did not demonstrate any

significant differences for LVEF (57 ± 12 vs. 56 ± 14%, p =

0.11) or LS (–17.0± 4.3 vs.−16.6± 4.7%, p= 0.36). Automated

and clinical assessment of LS and LVEF demonstrated inter-

method agreement in 70.0 and 79.6% of cases, respectively, when

identifying LVEF <50% or LS >–16%, respectively. For LVEF,

there were 61 (13.3%) cases where the automated assessment was

<50% but the clinical values were >50% and 33 (7.2%) cases

where the automated assessment was >50% and the clinical

assessment was <50%. AI reported LVEF was different by a

margin of more than 10% in 164 patients (36%) with 73%

of these occurring in patients where the clinical assessment

was performed using linear or manual methods. For LS, there

were 11 (13.8%) of 80 cases where the automated assessment

was >–16% and the clinical assessment was <–16% and 13

(16.3%) cases where the automated assessment was <–16%

but the clinical assessment was >–16%. When comparing

patients identified by clinically derived LVEF and LS, automated

assessment characterized a significantly smaller proportion as

abnormal [AI vs. clinical: LVEF: 56 (12.2%) patients vs. 89

(19.3%) patients, p < 0.001, LS: 18 (22.5%) patients vs. 31

(38.8%) patients, p < 0.001, Table 3].

AI derived LVEF and LS and outcomes

During the first 30 days of hospitalization, death occurred

in 103 (21.3%), acute coronary syndrome in 39 (8%), congestive

heart failure in 49 (10%), and MACCE in 117 (24.0%). Using

logistic regression adjusted by site (Table 4), automated LVEF

and LS were associated with in-hospital death (LVEF p = 0.025,

LS p = 0.03), ACS (LVEF p < 0.001, LS p < 0.001), CHF (LVEF

p < 0.001, LS p < 0.001), acute kidney injury (LVEF p = 0.012,

LS p= 0.03), andMACCE during hospital admission (LVEF p<

0.001, LS p < 0.001). Automated LVEF and LS were associated

withmortality using Cox regression to account for increased risk

over longer durations of hospitalization (LVEF p = 0.017, LS p

= 0.033, Supplementary Table 3). Clinically derived LVEF and

LS were associated with risk of CHF (LVEF p < 0.001, LS p =

0.001) and MACCE, (LVEF p < 0.001, LS p= 0.001) but not in-

hospital death (LVEF p = 0.286, LS p = 0.158) or acute kidney

injury (LVEF p < 0.43, LS p= 0.694). Clinical LVEF (p < 0.001)

but not LS (p =0.118) was associated with ACS. Cox regression

of clinical LVEF and LS was associated with mortality for LVEF

(p= 0.019) but not for LS (p= 0.181, Supplementary Table 3).

When categorized into hyperdynamic, normal, borderline,

and abnormal classes based on LVEF, survival rates were

77.6, 83.3, 85.1, and 71.1%, respectively, for clinical LVEF

and 81.7, 84.8, 80.0, and 71.6%, respectively, for automated

LVEF (Figure 3). When categorized into supranormal, normal,

borderline, and abnormal classes based on LS, survival rates were

90.0, 100, 88.2, and 79.2%, respectively, for clinical LVEF and

82.5, 88.7, 77.1, and 80.1%, respectively, for automated LS. There

were no significant differences in the overall survival between

clinical and automated assessment at any level (supranormal/

hyperdynamic, normal, borderline, and abnormal p > 0.05).
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FIGURE 1

Agreement analysis between automated metrics of LV function relative to clinically derived values using Bland Altman analysis and Deming

Regression. LVEF and LS values represent all available data, including biplane and single plane (either apical 4- or 2-chamber).
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TABLE 3 Echocardiographic analysis of cardiac structure and function according to automated indices of LS (>–16%) and LVEF (<50%).

Variable N All LS≤−16% LS >–16% p-value LVEF≥ 50% LVEF < 50% p-value

Clinical LVEF (%) 459 56.35± 13.97 61.27± 8.92 51.52± 16.2 <0.001 60.12± 9.96 45.3± 17.75 <0.001

Clinical LVEF < 50% 459 89 (19.3%) 14 (6.0%) 75 (32.0%) <0.001 33 (10.0%) 56 (48.0%) <0.001

Clinical LS (%) 80 −16.60± 4.66 −18.09± 3.09 −13.98± 5.75 <0.001 −17.71± 3.14 −11.38± 6.85 <0.001

Clinical LS >–16% 80 31 (38.8%) 13 (25.0%) 18 (62.0%) <0.001 21 (32.0%) 10 (71.0%) 0.01

RWMSI 441 1.19± 0.43 1.06± 0.21 1.32± 0.54 <0.001 1.08± 0.23 1.54± 0.66 <0.001

RWMA 433 93 (21.5%) 24 (11.0%) 69 (33.0%) <0.001 44 (13.0%) 49 (47.0%) <0.001

Septal thickness (mm) 384 9.06± 4.62 8.97± 3.87 9.16± 5.31 0.69 9.1± 4.65 8.94± 4.54 0.78

Posterior wall thickness (mm) 382 8.94± 7.85 8.53± 3.62 9.37± 10.67 0.29 8.64± 3.96 9.92± 14.77 0.18

LV size 458

Normal 409 (89.3%) 219 (96.0%) 190 (83.0%) <0.001 327 (95.0%) 82 (73.0%) <0.001

Enlarged 49 (10.7%) 10 (4.0%) 39 (17.0%) <0.001 19 (5.0%) 30 (27.0%) <0.001

LV hypertrophy 465 100 (21.5%) 32 (14.0%) 68 (29.0%) <0.001 60 (17.0%) 40 (34.0%) <0.001

Left atrial size 350

Normal 268 (76.6%) 141 (81.0%) 127 (72.0%) 0.07 211 (81.0%) 57 (65.0%) <0.001

Enlarged 82 (23.4%) 33 (19.0%) 49 (28.0%) 0.07 51 (19.0%) 31 (35.0%) <0.001

Right ventricular function 448

Normal 369 (82.4%) 204 (91.0%) 165 (74.0%) <0.001 297 (88.0%) 72 (65.0%) <0.001

Reduced 79 (17.6%) 21 (9.0%) 58 (26.0%) <0.001 41 (12.0%) 38 (35.0%) <0.001

LS, longitudinal strain; LVEF, left ventricular ejection fraction; RWMSI, regional wall motion score index; RWMA, regional wall motion abnormality; LV, left ventricular.

Kaplan Meier analysis demonstrated increased risk of death

for those with abnormal LVEF, relative to normal LVEF, for

both clinical (log-rank p = 0.004) and automated (log-rank p

= 0.01) assessment. Relative to borderline LVEF, patients with

abnormal LVEF demonstrated increased likelihood of death for

clinical assessment (log-rank p = 0.01) but not for automated

assessment (log-rank p= 0.19).

Discussion

This study has evaluated the feasibility and clinical relevance

of automated echocardiographic analysis software on a multi-

site COVID-19 cohort, with an ethnically diverse population

(50% non-Hispanic white), using limited echocardiographic

studies. The main findings are: (1) Automated analysis of

limited echocardiograms was feasible in 87.5% of patients in

which at least one apical cardiac cycle was obtained, even

under abbreviated protocols, with biplane analysis of LVEF

and LS possible in 61.5% of patients; (2) Automated LVEF, LS,

and volumes had good to excellent agreement with clinically

derived values; (3) Automated LVEF and LS were able to

stratify individuals with cardiac dysfunction, including clinically

reported echocardiographic abnormalities; (4) Automated LVEF

and LS were associated with adverse in-hospital and 30-day

outcomes and were comparable to clinically derived assessment.

These findings suggest that automated assessment of LV

function is highly feasible under abbreviated protocols and

FIGURE 2

ROC curve analysis for detection of clinically reported LV

systolic dysfunction by automated LVEF and LS. PPV, Positive

predictive value; NPV, Negative predictive value.

provides prognostically relevant information while increasing

the data available for risk stratification.

During the COVID-19 pandemic, it was quickly reported

that cardiac complications were common in cases of serious

infection and were associated with poor patient outcomes (19,

38–41). While the implementation of abbreviated protocols
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TABLE 4 Site adjusted univariate logistic regression of automated and clinical LVEF and LS and clinical outcomes.

Variable+ Site Odds Ratio 95% CI LL 95% CI UL p-value

Death

Clinical LVEF 0.989 0.974 1.005 0.179

Automated LVEF 0.98 0.963 0.998 0.026

Clinical LS 1.094 0.965 1.241 0.161

Automated LS 1.051 1.003 1.1 0.035

ACS

Clinical LVEF 0.954 0.935 0.973 <0.001

Automated LVEF 0.943 0.92 0.967 <0.001

Clinical LS 1.249 0.951 1.639 0.109

Automated LS 1.19 1.103 1.283 <0.001

Congestive heart failure

Clinical LVEF 0.949 0.931 0.966 <0.001

Automated LVEF 0.94 0.919 0.962 <0.001

Clinical LS 1.625 1.153 2.289 0.005

Automated LS 1.16 1.085 1.24 <0.001

MACCE

Clinical LVEF 0.956 0.941 0.97 <0.001

Automated LVEF 0.949 0.932 0.966 <0.001

Clinical LS 1.289 1.112 1.493 0.001

Automated LS 1.18 1.122 1.24 <0.001

Acute kidney injury

Clinical LVEF 0.992 0.978 1.006 0.24

Automated LVEF 0.98 0.965 0.995 0.011

Clinical LS 1.02 0.921 1.13 0.704

Automated LS 1.044 1.003 1.087 0.034

Clinical LVEF was assessed in 459, automated LVEF in 488, clinical LS in 80, and automated LS in 488. ACS: acute coronary syndrome, CI LL: 95% confidence interval lower limit, CI UL:

95% confidence interval upper limit, MACCE, major adverse cardiovascular and cerebrovascular events. LVEF, left ventricular ejection fraction; LS, longitudinal strain.

(31, 32, 42) enabled the identification of serious cardiac

abnormalities relevant to patient care, the focus on brevity

and minimized contact may have led to omission of important

information relevant for risk stratification or quantitative

assessment of cardiac function. In the present study, clinical

assessment of LV function using biplane LVEF methods was

performed in 33.4% and strain analysis was performed in 16.4%

patients. By contrast, for AI assessment, biplane methods were

used for both LVEF and LS in 61.5% of patients with single

planar measures in all others. These findings do not necessarily

reflect differences in the feasibility of biplane methods, but

rather reflect the increased availability of information under

the same circumstance, using the automated approach. Thus,

automated analysis can facilitate streamlined image acquisitions

(9, 17, 43) while increasing the reporting of strain analysis

to compliment clinical decision making, without requiring

additional bedside expertise or time for analysis. Additionally,

the strength of the agreement between automated and clinical

assessment increased when consistent quantitative methods

were used. The consistency of quantification afforded by

automated analysis could help to reduce the inherent variability

associated with more manual approaches. With feasibility of

85% and good to excellent agreement between automated values

and those obtained clinically, results from the present study

provide additional evidence of the potential complementary

nature of automated analysis, even in the setting of limited

imaging protocols.

In addition to high feasibility, the ability to provide clinically

relevant information to assist in patient risk stratification is

a core requirement for medical devices. In the present study,

patients with an automated LS of >–16% or LVEF of <50%

were more likely to present with clinically identified cardiac

abnormalities such as LV hypertrophy, regional wall motion

abnormalities, and left atrial enlargement. Furthermore, both

LS and LVEF were significantly associated with poor patient

outcomes, with LS identifying patients with a 29% increased risk

of MACCE (ACS, coagulation disorder, myocarditis, congestive

heart failure, pericarditis, or stroke) per 1% increase (less

negative) in LS. The risk of adverse in-hospital outcomes when

stratified by LVEF or LS was largely consistent between clinical

and automated assessments, providing further evidence of the

validity of automated analysis. These findings are in line with
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FIGURE 3

Kaplan-Meier survival analysis of 30-day mortality using LVEF and LS for both automated and clinically derived values according to strata of

systolic dysfunction. Events are right-censored at 30 days.
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recent work reporting that abnormal systolic LV function, as

defined by AI derived LVEF and/or LS, are associated with

adverse cardiac events and death (9, 17, 18). Importantly,

automated and clinically derived assessment were comparable

in their association with patient outcomes, suggesting that

the prognostic value of this information is preserved despite

automation (9). Together, these results indicate that automated

analysis of LVEF and LS provides clinically relevant estimations

andmay provide additional information relevant to patient care.

Technological advances in both computing and

instrumentation have steadily increased the availability of

quantitative echocardiographic assessment in routine practice.

Such assessment, including LS, have consistently demonstrated

value for patient risk stratification and prognostication in a

range of conditions (44–47). However, inter- and intra-operator

variability present a challenge to clinical interpretation of

quantitative data (34, 48). With the potential for substantial

reductions of variability in analysis, AI provides a potential

solution, but evidence of its feasibility remains limited.

The feasibility of automated contours in comprehensive

transthoracic echocardiographic datasets is reported to range

from 60.6% (9) to 95% (17) which may, in part, be dependent

upon image quality (6). Feasibility in the present study, which

required at least one apical cardiac cycle, demonstrates the

potential of automated algorithms even under challenging

conditions with abbreviated protocols. However, further work,

including prospective studies, is required to understand the

feasibility and utility of automated analysis in different patient

conditions undergoing limited echocardiograms, where image

quality and availability are variable.

An important finding of this study was the discordance

between automated and clinical characterization of abnormal

systolic function by LVEF and LS. Automated and clinical

assessment were discordant in 20 and 30% of cases for

LVEF and LS, respectively. When comparing those deemed

to have abnormal LVEF and LS using clinical assessment

as the reference, classifications using automated assessment

identified a significantly smaller population as abnormal (AI vs.

clinical: LVEF: 12.2 vs. 19.3%, LS: 22.5 vs. 38.8%). However,

this investigation did not demonstrate significant differences in

relationship to overall mortality when stratified using clinical

or automated assessment; thus, the clinical implications of

such discrepancies are unclear. Such differences may reflect

a bias from clinical interpretation of echocardiograms, where

additional information can support differential diagnosis while

the use of only apical views for automated assessment may

underestimate patient risk. Indeed, the use of limited methods

in the clinical estimation of LVEF (linear and visual estimation)

contributed to 73% of the observed differences of more than

10% between AI and the clinical interpretation. Although no

differences were observed in patient outcomes between AI and

clinical methods, limited sample size and a relatively low event

rate precluded further investigation of the clinical implications

of discordance between the AI and the clinical interpretation.

Further work is required to understand the relationship

between automated assessment and clinical interpretation for

risk stratification.

This study has several limitations. The retrospective nature

of the investigation limits the generalizability of the findings

to routine practice and further work is required to understand

the real-time implications of the AI technology in varied

populations. In addition, the clinical assessment of LVEF or LS

was limited and as such, a comparison of AI feasibility to clinical

feasibility was not possible. The limited sample of clinical LS

values is a significant limitation when evaluating the association

with patient outcomes. Automated assessment of RV function

was not conducted and may have provided further prognostic

information (18, 37). Secondly, the data consist of limited

echocardiographic examinations conducted during the early

COVID-19 pandemic; abbreviated examinations may have been

of poorer quality due to risks of exposure. Echocardiographic

protocols and clinical management of patients were conducted

according to the local procedures in place at the time of

data collection and regional and/or institutional bias may exist

within the dataset. However, the resulting dataset is reflective

of inter-site differences in practice and is a robust test of

the AI algorithms. Finally, the cut-offs used for establishing

the boundaries of normal, borderline and abnormal LVEF

and GLS have varied between reports within the literature

(27, 35, 36) and as such, the cut-offs utilized within the

current study may not accurately distinguish normality from

abnormality. Nevertheless, the implemented LVEF and GLS

cut-offs provide further understanding of the findings from

logistic regression models, whereby variables were modeled in

a continuous manner.

Conclusions

In a multi-center study conducted during a pandemic,

automated analysis of ultrasound images was highly

feasible, correlated with clinical observation, and associated

with outcome.

Data availability statement

The anonymized and aggregate raw data supporting the

conclusions of this article will be made available by the authors,

without undue reservation.

Ethics statement

The studies involving human participants were reviewed

and approved by Mayo Clinic Institutional Review Board.

Written informed consent for participation was not required for

this study in accordance with the national legislation and the

institutional requirements.

Frontiers inCardiovascularMedicine 10 frontiersin.org

https://doi.org/10.3389/fcvm.2022.937068
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Pellikka et al. 10.3389/fcvm.2022.937068

Author contributions

PP, WH, and GW designed the study. PP and WH drafted

the manuscript. CS and WH organized the database and

performed statistical analysis. JS and GP-H obtained local

approval and data collection for Beth Israel Deaconess Medical

Center. MK and BK obtained local approval and data collection

for Temple Heart and Vascular Center. SQ and AT obtained

local approval and data collection for Ochsner Health System.

FG and EP obtained local approval and data collection for

Einstein Medical Center. RT and SW obtained local approval

and data collection for University of Pittsburgh. DM and

TN obtained local approval and data collection for Mayo

Clinic Scottsdale Arizona. PP oversaw local approval and data

collection for Mayo Clinic Rochester Minnesota. All authors

contributed to manuscript revision and read and approved the

submitted version.

Acknowledgments

The authors appreciate the dedicated assistance of

Katherine Tilkes, Halley Davison, William Hansen, MSc, Hania

Piotrowska, BSc, Rizwan Sarwar, MD, Ashley Akerman, Ph.D.,

and cardiac sonographers at all sites. PP is supported as the Betty

Knight Scripps Professor of Cardiovascular Disease Clinical

Research at Mayo Clinic.

Conflict of interest

GW andWH are employed by Ultromics Ltd.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict of

interest.

This study received funding from Ultromics Ltd. The

funder had the following involvement with the study: The AI

measurements in this study were performed by Ultromics Ltd.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

fcvm.2022.937068/full#supplementary-material

References

1. Oren O, Gersh BJ, Bhatt DL. Artificial intelligence in medical imaging:
switching from radiographic pathological data to clinically meaningful endpoints.
Lancet Digit Health. (2020) 2:e486–8. doi: 10.1016/S2589-7500(20)30160-6

2. Madani A, Arnaout R, Mofrad M, Arnaout R. Fast and accurate view
classification of echocardiograms using deep learning. NPJ Digi Med. (2018)
1:6. doi: 10.1038/s41746-017-0013-1

3. Shahin AI, Almotairi S. An accurate and fast cardio-views classification
system based on fused deep features and LSTM. IEEE Access. (2020) 8:135184–
94. doi: 10.1109/ACCESS.2020.3010326

4. Van Woudenberg N, Liao Z, Abdi AH, Girgis H, Luong C, Vaseli H,
et al. Quantitative echocardiography: Real-time quality estimation and view
classification implemented on a mobile android device. In: Simulation, Image
Processing, and Ultrasound Systems for Assisted Diagnosis and Navigation. 2018.
Lecture Notes in Computer Science. Cham: Springer (2018) 11042, p. 74–
81. doi: 10.1007/978-3-030-01045-4_9

5. Abdi AH, Luong C, Tsang T, Allan G, Nouranian S, Jue J, et al.
Automatic quality assessment of echocardiograms using convolutional
neural networks: feasibility on the apical four-chamber view. IEEE
Trans Med Imaging. (2017) 36:1221–30. doi: 10.1109/TMI.2017.
2690836

6. Huang KC, Huang CS, Su MY, Hung CL, Ethan Tu YC, Lin LC, et
al. Artificial intelligence aids cardiac image quality assessment for improving
precision in strain measurements. JACC: Cardiovasc Imaging. (2021) 14:335–
45. doi: 10.1016/j.jcmg.2020.08.034

7. Leclerc S, Smistad E, Ostvik A, Cervenansky F, Espinosa F, Espeland T, et al.
LU-net: a multistage attention network to improve the robustness of segmentation
of left ventricular structures in 2-D echocardiography. IEEE Trans Ultrason
Ferroelectr Freq Control. (2020) 67:2519–30. doi: 10.1109/TUFFC.2020.3003403

8. Azarmehr N, Ye X, Sacchi S, Howard JP, Francis DP, Zolgharni M.
Segmentation of left ventricle in 2D echocardiography using deep learning.
In: Zheng Y, Williams B, Chen K, editors. Medical Image Understanding
and Analysis. MIUA 2019. Communications in Computer and Information
Science. Cham: Springer (2020) 1065, 497–504. doi: 10.1007/978-3-030-
39343-4_43

9. Kawakami H, Wright L, Nolan M, Potter EL, Yang H, Marwick TH.
Feasibility, reproducibility, and clinical implications of the novel fully automated
assessment for global longitudinal strain. J Am Soc Echocardiograph. (2021) 34:136–
45.e2. doi: 10.1016/j.echo.2020.09.011

10. Kusunose K, Abe T, Haga A, Fukuda D, Yamada H, Harada M, et al.
Deep Learning approach for assessment of regional wall motion abnormality
from echocardiographic images. JACC Cardiovasc Imaging. (2020) 13:374–
81. doi: 10.1016/j.jcmg.2019.02.024

11. Zhang J, Gajjala S, Agrawal P, Tison GH, Hallock LA,
Beussink-Nelson L, et al. Fully automated echocardiogram
interpretation in clinical practice: feasibility and diagnostic accuracy.
Circulation. (2018) 138:1623–35. doi: 10.1161/CIRCULATIONAHA.118.
034338

12. Ghorbani A, Ouyang D, Abid A, He B, Chen JH, Harrington RA, et al.
Deep learning interpretation of echocardiograms. NPJ Digit Med. (2020) 3:10–
10. doi: 10.1038/s41746-019-0216-8

13. Ouyang D, He B, Ghorbani A, Yuan N, Ebinger J, Langlotz CP, et al.
Video-based AI for beat-to-beat assessment of cardiac function. Nature. (2020)
580:252–6. doi: 10.1038/s41586-020-2145-8

14. Alsharqi M, Woodward J, Mumith A, Markham C, Upton R, Leeson
P. Artificial intelligence and echocardiography. Echo Res Pract. (2018) 5:R115–
25. doi: 10.1530/ERP-18-0056

Frontiers inCardiovascularMedicine 11 frontiersin.org

https://doi.org/10.3389/fcvm.2022.937068
https://www.frontiersin.org/articles/10.3389/fcvm.2022.937068/full#supplementary-material
https://doi.org/10.1016/S2589-7500(20)30160-6
https://doi.org/10.1038/s41746-017-0013-1
https://doi.org/10.1109/ACCESS.2020.3010326
https://doi.org/10.1007/978-3-030-01045-4_9
https://doi.org/10.1109/TMI.2017.2690836
https://doi.org/10.1016/j.jcmg.2020.08.034
https://doi.org/10.1109/TUFFC.2020.3003403
https://doi.org/10.1007/978-3-030-39343-4_43
https://doi.org/10.1016/j.echo.2020.09.011
https://doi.org/10.1016/j.jcmg.2019.02.024
https://doi.org/10.1161/CIRCULATIONAHA.118.034338
https://doi.org/10.1038/s41746-019-0216-8
https://doi.org/10.1038/s41586-020-2145-8
https://doi.org/10.1530/ERP-18-0056
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Pellikka et al. 10.3389/fcvm.2022.937068

15. Cerna AEU, Jing L, Good CW, vanMaanen DP, Raghunath S, Suever
JD, et al. Deep-learning-assisted analysis of echocardiographic videos
improves predictions of all-cause mortality. Nat Biomed Eng. (2021)
5:546–54. doi: 10.1038/s41551-020-00667-9

16. Salte IM, Østvik A, Smistad E, Melichova D, Nguyen TM,
Karlsen S, et al. Artificial intelligence for automatic measurement of left
ventricular strain in echocardiography. JACC Cardiovasc Imaging. (2021)
14:1918–28. doi: 10.1016/j.jcmg.2021.04.018

17. Kitano T, Nabeshima Y, Negishi K, Takeuchi M. Prognostic value of
automated longitudinal strain measurements in asymptomatic aortic stenosis.
Heart. (2020) 2020: 318256. doi: 10.1136/heartjnl-2020-318256

18. Karagodin I, Carvalho Singulane C, Woodward GM, Xie M, Tucay ES,
Tude Rodrigues AC, et al. Echocardiographic correlates of in-hospital death
in patients with acute COVID-19 infection: the world alliance societies of
echocardiography (WASE-COVID) study. J Am Soc Echocardiogr. (2021) 34:819–
30. doi: 10.1016/j.echo.2021.05.010

19. Lala A, Johnson KW, Januzzi JL, Russak AJ, Paranjpe I, Richter F, et al.
Prevalence and impact of myocardial injury in patients hospitalized with COVID-
19 infection. J Am Coll Cardiol. (2020) 76:533–46. doi: 10.1016/j.jacc.2020.06.007

20. Ghio S, Baldi E, Vicentini A, Lenti MV, Di Sabatino A, Di Matteo A, et al.
Cardiac involvement at presentation in patients hospitalized with COVID-19 and
their outcome in a tertiary referral hospital in Northern Italy. Intern Emerg Med.
(2020) 15:1457–65. doi: 10.1007/s11739-020-02604-9

21. Giustino G, Croft LB, Stefanini GG, Bragato R, Silbiger JJ, Vicenzi M, et
al. Characterization of myocardial injury in patients with COVID-19. J Am Coll
Cardiol. (2020) 76:2043–55. doi: 10.1016/j.jacc.2020.08.069

22. Yuan N, Wu S, Rader F, Siegel RJ. Determining which hospitalized
coronavirus disease 2019 patients require urgent echocardiography. J Am Soc
Echocardiogr. (2021) 34:831–8. doi: 10.1016/j.echo.2021.03.010

23. Krishna H, Ryu AJ, Scott CG, Mandale DR, Naqvi TZ, Pellikka PA. Cardiac
abnormalities in COVID-19 and relationship to outcome. Mayo Clin Proc. (2021)
96:932–42. doi: 10.1016/j.mayocp.2021.01.006

24. Karagodin I, Singulane CC, Descamps T, Woodward GM, Xie M, Tucay ES,
et al. Ventricular changes in patients with acute COVID-19 infection: follow-up of
the world alliance societies of echocardiography (WASE-COVID) study. J Am Soc
Echocardiogr. (2022) 35:295–304. doi: 10.1016/j.echo.2021.10.015

25. Baycan OF, Barman HA, Atici A, Tatlisu A, Bolen F, Ergen P, et
al. Evaluation of biventricular function in patients with COVID-19 using
speckle tracking echocardiography. Int J Cardiovasc Imaging. (2020) 37:135–
44. doi: 10.1007/s10554-020-01968-5

26. Ehud R, Guy B, Yishay S, Yael L, Alon K, Philippe T, et al. The predictive
role of left and right ventricular speckle-tracking echocardiography in COVID-19.
JACC Cardiovasc Imaging. (2020) 13:2471–4. doi: 10.1016/j.jcmg.2020.07.026

27. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et
al. Recommendations for cardiac chamber quantification by echocardiography
in adults: an update from the American society of echocardiography and the
European association of cardiovascular imaging. J Am Soc Echocardiogr. (2015)
28:1–39.e14. doi: 10.1016/j.echo.2014.10.003

28. Duffy G, Cheng PP, Yuan N, He B, Kwan AC, Shun-Shin
MJ, et al. High-throughput precision phenotyping of left ventricular
hypertrophy with cardiovascular deep learning. JAMA Cardiol. (2022)
7:386–95. doi: 10.1001/jamacardio.2021.6059

29. Asch FM, Poilvert N, Abraham T, Jankowski M, Cleve J, Adams
M, et al. Automated echocardiographic quantification of left ventricular
ejection fraction without volume measurements using a machine learning
algorithm mimicking a human expert. Circ Cardiovasc imaging. (2019)
12:e009303. doi: 10.1161/CIRCIMAGING.119.009303

30. Kirkpatrick JN, Grimm R, Johri AM, Kimura BJ, Kort S, Labovitz AJ, et
al. Recommendations for echocardiography laboratories participating in cardiac
point of care cardiac ultrasound (POCUS) and critical care echocardiography
training: report from the american society of echocardiography. J Am Soc
Echocardiogr. (2020) 33:409–22.e4. doi: 10.1016/j.echo.2020.01.008

31. Skulstad H, Cosyns B, Popescu BA, Galderisi M, Salvo GD, Donal E,
et al. COVID-19 pandemic and cardiac imaging: EACVI recommendations
on precautions, indications, prioritization, and protection for patients
and healthcare personnel. Eur Heart J Cardiovasc Imaging. (2020)
21:592–8. doi: 10.1093/ehjci/jeaa072

32. Anand V, Thaden JJ, Pellikka PA, Kane GC. Safe operation of an
echocardiography practice during the COVID-19 pandemic: single-center

experience. Mayo Clin Proc. (2021) 96:531–6. doi: 10.1016/j.mayocp.2020.
12.015

33. Thavendiranathan P, Grant AD, Negishi T, Plana JC, Popović ZB,
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