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Myocardial infarctions are one of the most common forms of cardiac injury and

death worldwide. Infarctions cause immediate necrosis in a localized region of the

myocardium, which is followed by a repair process with inflammatory, proliferative,

and maturation phases. This repair process culminates in the formation of scar

tissue, which often leads to heart failure in the months or years after the initial

injury. In each reparative phase, the infarct microenvironment is characterized by

distinct biochemical, physical, and mechanical features, such as inflammatory cytokine

production, localized hypoxia, and tissue stiffening, which likely each contribute to

physiological and pathological tissue remodeling by mechanisms that are incompletely

understood. Traditionally, simplified two-dimensional cell culture systems or animal

models have been implemented to elucidate basic pathophysiological mechanisms or

predict drug responses following myocardial infarction. However, these conventional

approaches offer limited spatiotemporal control over relevant features of the post-infarct

cellular microenvironment. To address these gaps, Organ on a Chip models of post-

infarct myocardium have recently emerged as new paradigms for dissecting the highly

complex, heterogeneous, and dynamic post-infarct microenvironment. In this review, we

describe recent Organ on a Chip models of post-infarct myocardium, including their

limitations and future opportunities in disease modeling and drug screening.

Keywords: tissue engineering, myocardial infarction, organ on a chip, hypoxia, stiffness, strain, cardiac myocytes,

cardiac fibroblasts

INTRODUCTION

Cardiovascular disease is the leading cause of death worldwide, responsible for over 17.9 million
deaths annually (1). One of the most common causes of cardiovascular disease is coronary artery
disease, in which plaque buildup in the coronary arteries deprives downstreammyocardium of vital,
oxygenated blood. Complete occlusion of the coronary arteries can ultimately lead to myocardial
infarction, commonly referred to as a heart attack. Myocardial infarction is among the top fivemost
expensive conditions treated by US hospitals annually and is a common cause of heart failure (2–4).

When a patient presents with a myocardial infarction, percutaneous coronary intervention
is often performed, which is a catheterization procedure to restore flow to the interrupted
artery and minimize the initial insult (5, 6). Rapid identification of myocardial infarction is
essential for timely reperfusion of the occluded coronary artery, which can, in some cases, lead
to reperfusion injury that further increases the size of the initial insult (7). After revascularization
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procedures, treatment is predominantly focused on
pharmaceutical interventions to reduce adverse cardiovascular
events, including stroke, recurrent infarctions, and death (8).
Common treatments include renin-angiotensin-aldosterone
system (RAAS) inhibitors, such as angiotensin-converting
enzyme inhibitors, which decrease the load on the heart by
lowering blood pressure (9) and may also reduce fibrotic
remodeling (10). Another therapeutic target is beta adrenergic
receptors, which are activated by epinephrine or norepinephrine
to stimulate heart rate, strength of contraction, and cardiac
output. Similar to RAAS inhibitors, beta blockers, such as
bisoprolol, carvedilol, and metoprolol, can reduce blood
pressure following myocardial infarction (8, 10). Thus, existing
pharmacological interventions are primarily focused on reducing
the load on the damaged heart instead of attempting to repair the
initial injury or mitigate the ensuing fibrotic remodeling process.

One challenge facing the development of new therapies for
post-infarct myocardium is that conventional preclinical models
are limited primarily to non-human animal models or static,
uniform monolayers of cultured cells that poorly replicate the
clinical setting, especially the complex, dynamic remodeling that
occurs post-infarction (3). Thus, developing the next generation
of treatments for myocardial infarction can be accelerated by
new preclinical model systems that more closely replicate native
pathophysiology across multiple spatial scales, including the
post-infarct cellular microenvironment.

Organs on Chips are engineered in vitro systems that
mimic the fundamental structural and functional units of native
tissues and have been shown to mimic responses to drugs at
clinical doses in various tissue models with higher fidelity than
conventional in vitro methods (11). Organs on Chips can also
provide enhanced spatiotemporal control over multiple distinct
features of the cellular microenvironment, which is especially
relevant to modeling post-infarct myocardium. Thus, Organ on
Chip approaches have vast potential to provide new mechanistic
insights into post-infarct remodeling and to inform future
pharmacological interventions.

In this review, we will first describe the cellular and molecular
remodeling that occurs after myocardial infarction in humans,
which will provide a framework for the microenvironmental
features that are important to model on a chip. Next, we will
describe existing strategies for engineering aspects of the cellular
microenvironment of post-infarct myocardium on a chip, which
have until now focused on hypoxia, fibrosis, and strain in both
2-dimensional (2-D) and 3-dimensional (3-D) tissue constructs.
Lastly, we will describe considerations for future work to promote
clinical mimicry and translation of Organ on a Chip models of
myocardial infarction.

VENTRICULAR REMODELING
POST-MYOCARDIAL INFARCTION

The initial coronary occlusion of amyocardial infarction deprives
downstream myocardium of vital oxygen and nutrients, causing
cardiac myocyte necrosis within hours (10, 12, 13). Due to
tissue necrosis, the infarct zone is vulnerable to deformation and

thinning, which can lead to infarct expansion (14, 15). Cardiac
myocytes in the surviving infarct border zone myocardium also
begin to rapidly remodel. For example, the normal distribution of
intercalated disc protein complexes (gap junctions, desmosomes,
and adherens junctions) is lost as early as 6 h post-infarction.
Because intercalated disks are necessary for the heart to function
as an electromechanical syncytium, changes in their expression
and localization are thought to contribute to arrhythmogenesis
after infarction (16).

As a result of infarct expansion, diastolic and systolic wall
stresses increase (17, 18). To normalize the increased load,
the myocardium undergoes cardiac hypertrophy in the weeks
and months after an infarction by increasing muscle mass
and wall thickness (19). These changes are reflected in the
morphology of individual cardiac myocytes, which can increase
in both length and diameter. Due to the spatial arrangement
of cardiac myocytes in the ventricles, increased diameter and
lengthening of individual cells ultimately results in changes in
chamber geometry (6, 20, 21), which contributes to ventricular
enlargement. Increasing chamber volume through ventricular
enlargement may be compensatory in order to maintain stroke
volume after the initial loss of contractility (14, 22) but is
ultimately associated with increased likelihood of mortality
(14, 23).

Tissue necrosis and infarct expansion can also increase the
likelihood of myocardial rupture (14, 15). Because mammalian
cardiac myocytes have limited regenerative capacity, maintaining
tissue integrity is dependent on the formation of a scar.
Scar formation occurs through three overlapping phases: the
inflammatory phase, proliferative phase, and maturation phase
(Figure 1). The inflammatory phase occurs in the first few days
following a myocardial infarction and is initiated when necrotic
cardiac myocytes release their intracellular contents, which
activate pro-inflammatory signaling pathways in innate immune
cells (24). Next, inflammatory chemokine and cytokine gradients
[comprised of tumor necrosis factor-α (TNF-α), interleukin (IL)-
1β, and IL-6] promote leukocyte migration into the infarct zone
to clear dead cell debris and damaged extracellular matrix. After
1 week, tissue inhibitors of metalloproteinases are upregulated to
conclude this degradative phase (24). Ultimately, as neutrophils
undergo apoptosis, macrophages are directed toward a resolving
phenotype and begin secreting anti-inflammatory signals [such
as transforming growth factor-β (TGF-β) and IL-10] that repress
the inflammatory response and drive cardiac fibroblast activation
in the subsequent proliferative phase (10).

The proliferative phase occurs over the next few weeks and
is characterized by cardiac fibroblast proliferation, migration
into the site of injury, and differentiation into an activated
myofibroblast phenotype. Cardiac fibroblasts are the most
abundant non-myocyte cell population in the mammalian
myocardium (24) and, after expansion in the proliferative phase
in combination with cardiac myocyte necrosis, they become
the most abundant cell type in the infarcted region (10).
Myofibroblasts play an important role in depositing collagen,
fibronectin, and othermatrix proteins tomaintain tissue integrity
and prevent myocardial rupture. They also express α-smooth
muscle actin (α-SMA) and non-muscle myosin, which provide
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FIGURE 1 | The post-infarct microenvironment is characterized by dynamic physical, mechanical, and biochemical cues that orchestrate the three phases of healing.

Regional and temporal changes of oxygen concentration, stiffness, inflammatory cytokines, cell, and matrix composition characterize the myocardium as injured tissue

is replaced with a scar. Created with BioRender.com.

them with the ability to generate force to migrate and facilitate
wound contracture (10).

The final phase is scarmaturation, which occurs on a timescale
of weeks tomonths. In this phase, myofibroblasts initiate collagen
turnover and begin secreting type I collagen, which has the
tensile strength of steel (12), in place of type III collagen.
The depletion of growth factors necessary for myofibroblast
survival ultimately leads to myofibroblast apoptosis (10, 25).
Further enzymatic cross-linking of collagen occurs through lysyl
oxidase, which progressively increases the tensile strength of
the myocardium for months after myocardial infarction (10).
While myofibroblasts play a vital role in maintaining structural
integrity after the initial loss of tissue, they may also be driven
by many cellular and molecular events toward a pathological
fibrotic response. Myofibroblast persistence in the myocardium
can occur for months, or even years, after injury and is a common
feature of heart failure (12). Fibrotic tissue, which was historically
considered an inert tissue, is now known to secrete factors (such
as angiotensin II and TGF-β) that can traverse the interstitial
space and promote fibrosis in non-infarcted regions (12, 26).

In summary, post-infarct myocardium is characterized by
multiple biochemical and biomechanical properties changing in
both space and time, which are correlated to complex remodeling
of several cell types and the extracellular matrix in parallel
(Figure 1). Some or all of these remodeling processes ultimately
impact cardiac function and patient outcomes. However, the
relationships between these biochemical, biomechanical, cellular,
and molecular factors are incompletely understood, hindering

the discovery of new therapies to mitigate the effects of
the initial injury. Thus, there is a great need for controlled
experimental models of post-infarct myocardium that account
for remodeling of the cellular microenvironment to uncover
mechanisms of pathophysiology.

IN VITRO MODELS OF MYOCARDIAL
ISCHEMIA AND HYPOXIA

Due to the high metabolic activity of cardiac myocytes, the
myocardium is a highly vascularized tissue, with capillaries
separated by approximately 20µm (27). This translates to about
one blood vessel between every two cardiac myocytes (28).
As a result, hypoxia is one of the most injurious effects of a
myocardial infarction. Conventionally, hypoxia has been induced
by culturing cells in environments with uniformly low oxygen.
However, phosphorescent oxygen probes have demonstrated that
a spatial gradient ranging from 0 to 10% oxygen bridges injured
tissue with neighboring viable tissue in post-infarct myocardium
(29, 30). In addition, oxygen concentrations change over time
as the infarct zone is re-oxygenated during reperfusion. Thus,
in vitro systems that can modulate oxygen concentrations in
space or time have more recently been developed to mimic the
hypoxic landscape of post-infarct myocardium. In this section,
we will describe conventional hypoxia models that replicate
uniform hypoxia as well as engineered systems that offer spatial
or temporal control over oxygen tension.
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Conventional Hypoxia Models
To recapitulate myocardial hypoxia in vitro (3), one of the most
common approaches is to place cardiac cells in incubators or
hypoxia chambers and replace oxygenwith nitrogen. This enables
the stable, long-term induction of hypoxia, with tunable control
over global oxygen levels by selecting a gas composition of choice.
To enable cell handling, hypoxia workstations have also been
developed that contain gloveboxes to allow for the manipulation
of cells in a hypoxic enclosure. However, these approaches
for physical induction of hypoxia require access to specialized
equipment, such as incubators with oxygen regulation, and are
limited to uniform gas concentrations.

Hypoxia can also be simulated in cells cultured in ambient
oxygen by adding hypoxia mimetic agents, such as cobalt
chloride, to cell media. Hypoxia mimetic agents often work
by stabilizing hypoxia inducible factors (HIF), a family
of transcription factors that facilitates the cellular response
to hypoxia by upregulating genes associated with survival
in low oxygen. In normoxia, HIF is constantly degraded
through hydroxylation of the HIF-α subunit by the enzyme
prolyl hydroxylase, which marks it for ubiquitination by
Von Hippel Lindau protein and subsequent degradation.
Cobalt chloride chemically stabilizes HIF in normoxia by
replacing Fe2+ with Co2+ in the prolyl hydroxylase active site,
thereby inhibiting its hydroxylation of HIF-α and the ensuing
degradation pathway. Other successful hypoxia mimetics include
dimethyloxalylglycine and deferoxamine, which similarly work
by inhibiting prolyl hydroxylase activity (31). Hypoxia mimetics
enable easy access to cells during cell culture, are inexpensive, and
can quickly simulate hypoxic conditions in vitro. However, they
can have adverse effects on other signaling pathways that are not
affected by low oxygen (31, 32), may be cytotoxic (33), and likely
do not capture all the effects of true hypoxia.

Conventional in vitromodels have shown that hypoxia results
in structural and functional changes that may contribute to
the development of arrhythmias. Specifically, the gap junction
protein connexin 43 (Cx43) is known to be affected, which plays a
critical role in conducting electrical impulses in the myocardium.
Hypoxia has been shown to drive electrical uncoupling in vitro,
with effects including decreased Cx43 signal at gap junctions (34,
35), increased Cx43 internalization (35) and dephosphorylation
(36), and decreased conduction velocity (34). Hypoxia is also
associated with inactivation of sodium potassium pumps (Na,K
ATPase), which regulate cardiac action potentials (37, 38).
Hypoxic cardiac myocytes also upregulate fetal, T type calcium
channels, which are absent in healthy, adult myocardium, in a
mechanism dependent on HIF-1α (39). Finally, hypoxia has also
been shown to promote apoptosis in cardiac myocytes (40–43).
These remodeling processes are possibly related to the increased
incidence of arrhythmias observed in post-infarct myocardium.

Studies have also shown that cardiac fibroblasts and other
non-myocyte cell populations are generally more resistant to
hypoxia (40–42). In response to hypoxic stimuli in vitro,
cardiac fibroblasts undergo differentiation into the activated,
myofibroblast phenotype, which is signified by increased α-
SMA expression (44–46), collagen type I expression (44–
47), and migration capacity (46). However, there have been

differing reports of cardiac fibroblast proliferation in response
to hypoxia (44–46), which may result from differences in basal
levels of fibroblast differentiation, or from differences in cell
source, oxygen concentration, and hypoxia duration. In response
to prolonged hypoxia exposure in vitro, cardiac fibroblasts
ultimately undergo apoptosis (48–50).

Hypoxia also changes the secretion of paracrine factors
that are involved in many processes of infarct healing, such
as angiogenesis, fibroblast differentiation, and remodeling of
the extracellular matrix. Hypoxic cardiac myocytes upregulate
vascular endothelial growth factor (VEGF) (51, 52), insulin-like
growth factor 2 (52), inflammatory cytokines (TNF-α, IL-1β, IL-
6), and TGF-β (53). As TGF-β is known to promote fibroblast
differentiation into myofibroblasts, medium conditioned by
hypoxic myocytes has been reported to drive cardiac fibroblast
migration (54) and facilitate faster wound closure in cultured
skin fibroblasts (53). Similar to cardiac myocytes, hypoxic cardiac
fibroblasts upregulate TGF-β1 and also its receptor, TGFβ-
R1, which can play a role in autocrine signaling pathways to
promote fibroblast differentiation (46, 48). Hypoxic fibroblasts
also exhibit increased secretion of inflammatory cytokines
[TNF-α (55–57) and IL-6 (57)], matrix metalloproteinases
[MMP-2 and MMP-9 (56)] and VEGF (56), and conditioned
medium from hypoxic fibroblasts has been shown to reduce
cardiac myocyte viability (55, 58). Thus, hypoxia likely alters
cellular cross-talk between distinct cardiac cell types in post-
infarct myocardium.

Engineered Models With Spatial Oxygen
Gradients
Although conventional hypoxia systems have revealed valuable
insights into oxygen-dependent remodeling of cardiac cell
types, they do not replicate the spatial or temporal changes
in oxygen that are characteristic of post-infarct myocardium.
To mimic spatial oxygen gradients, more complex in vitro
systems have been engineered. In one example, a microfluidic
device was fabricated with a central channel designated for
cell culture embedded between two lateral media channels.
By flowing media containing a chemical hypoxia mimetic
through one channel and standard media through the
other, a chemical hypoxia gradient was established in the
central cell-containing channel. Cardiac myoblasts near the
hypoxic end of the gradient exhibited altered morphology,
including reduced cell area and actin disintegration, which
was accompanied by mitochondrial dysfunction and decreased
cell viability (59). In addition to chemical methods (60–63),
microfluidic devices have also been developed to generate
physical oxygen gradients by culturing cells on a gas-permeable
membrane above microchannels for gas flow (64–66). However,
these methods have not been extensively applied to cardiac
cell types.

Ischemic gradients have also been developed by stacking
thin layers of hydrogels that are mechanically supported by a
paper scaffold, a technique termed “cells-in-gels-in-paper.” To
control oxygen and nutrient diffusion into the stack, one end
of the construct was placed in a base that is impermeable to
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gases and liquids. Nutrients become depleted as they diffuse into
the stack, which creates an ischemic environment in the lower
layers. Cardiac myocytes in the ischemic, lower layers exhibited
reduced viability and circular morphology when compared with
upper layers. Cell-tracking demonstrated that cardiac fibroblasts
embedded in upper layers migrate toward ischemic cardiac
myocytes. Fibroblast migration increased when myocytes were
exposed to higher levels of ischemia (generated through taller
stacks) and was reduced in the absence of cardiac myocytes
or with the pharmacological inhibition of TGF-β (27). Other
methods have been developed that similarly modify hydrogels
to generate oxygen gradients (67) by using oxygen-consuming
enzymes during hydrogel cross-linking (68, 69), embedding a
hydrogel between gas flow channels (70), or linearly increasing
cell density and thus oxygen consumption rates (71), but
these methods have not yet been implemented to model post-
infarct myocardium.

Lastly, cardiac spheroids have also been implemented to
mimic hypoxia gradients. Cardiac spheroids are 3-D aggregates
of cardiac cells that recapitulate select aspects of native
tissue structure and function (72–76). Because the diffusion
limit of oxygen in tissues is around 100–200 microns (77),
cardiac spheroids intrinsically generate oxygen gradients, for
which oxygen tension is highest at the surface and decreases
toward the necrotic core. Though this is conventionally
thought of as a limitation of spheroids, recent work has
harnessed this property to develop “infarct spheroids” that
are exposed to ambient 10% oxygen to generate spatial
hypoxia gradients (0–10% oxygen) that mimic the infarct,
border, and remote zones after infarction (Figure 2A). These
infarct spheroids contained cardiac myocytes, endothelial cells,
and stromal cells and were treated with noradrenaline to
mimic neurohormonal stimulation after infarction. Infarct
spheroids demonstrated similar global gene-expression profiles
to human ischemic cardiomyopathy and animal myocardial
infarction samples. Furthermore, when compared with control
spheroids in ambient oxygen, infarct spheroids exhibited a
metabolic shift toward glycolysis, increased stiffness, increased
expression of myofibroblast markers, decreased cardiac myocyte
contraction amplitude (Figure 2A), and asynchronization of
contractions (78).

Engineered Models of
Ischemia-Reperfusion
In vitro models have also been engineered to replicate dynamic
changes in oxygen characteristic of ischemia-reperfusion.
Microfluidic devices are particularly suitable for this application
because they contain chambers of small volumes that can be
rapidly filled with hypoxic gas or cell medium. For example,
a microfluidic device with integrated bioelectronics was used
to measure intracellular action potential and extracellular beat
rate and propagation velocity in cardiac myocytes cultured
in a microchannel. The microchannel was rapidly filled with
hypoxic cell medium followed by recovery medium to mimic
ischemia-reperfusion. Hypoxic cardiac myocytes demonstrated
substantially reduced depolarization times and beat rates, as

well as irregular propagation patterns, which recovered within
30min after reintroducing normoxic cell media (80). A similar
microfluidic device was fabricated to contain small chamber
volumes that can be quickly filled with hypoxic gas. Gas from the
upper chamber diffused across a thin, gas-permeable membrane
to reach cells cultured in lower microfluidic channels. This
device demonstrated that hypoxic conditions below 5% oxygen
induce changes in cardiac myocyte calcium transients, including
a decrease in amplitude that could be mimicked using L-type
calcium channel antagonists. After a subsequent 10min of
reperfusion with normoxic gas, cardiac myocytes recovered
with normal calcium transients (81). Together, these studies
suggest that hypoxia induces reversible alterations in cardiac
myocyte electrophysiology.

In another model of ischemia-reperfusion, cardiac myocytes
were cultured as an aligned tissue on silicone cantilever substrates
with embedded strain sensors (Figure 2B). The cardiac myocytes
were aligned using microcontact printing, which involves the
preparation of silicone “stamps” that are used to transfer
extracellular matrix proteins to a substrate in desired geometries.
With a spatial resolution of approximately 1µm, microcontact
printing can direct tissue orientation (82–84), single-cell shape
(85), and even subcellular structures (86). When the aligned
cardiac tissues contracted on the cantilever substrates, the
cantilevers deflected, leading to a resistance change in the
embedded strain sensors proportional to the contractile stress
(87, 88). This systemwas used to provide real-timemeasurements
of contractile stress in a simulated ischemia-reperfusion injury by
switching cells from ischemic media at 1% oxygen to standard
media at ambient 21% oxygen. Integrated sensor readouts
demonstrated that cardiac tissues stopped contracting during
ischemia and displayed a minor recovery of twitch stress during
reperfusion. In contrast, pre-treatment with endothelial cell-
derived extracellular vesicles was cardioprotective and enabled
cardiac tissues to continue contracting during simulated ischemia
and exhibit higher recovery of twitch stress after reperfusion
(Figure 2B) (79).

In summary, several technologies, including microfluidic
devices, hydrogels, spheroids, and strain sensors, have been
implemented to mimic the spatial and temporal oxygen gradients
characteristic of post-infarct myocardium and subsequently
quantify changes in cardiac cell phenotypes. Unlike conventional
systems, these approaches can be used to explore oxygen-
dependent regional and temporal changes in cellular phenotypes
at high resolution and uncover cross-talk between cells in
distinct oxygen environments to identify new mechanisms of
infarct remodeling.

IN VITRO MODELS OF MYOCARDIAL
FIBROSIS AND STIFFNESS

Healthy myocardium is a moderately stiff tissue, with an elastic
modulus of around 10 kPa. After myocardial infarction, local
elastic modulus in the infarcted region increases to 20–100 kPa
due to scar formation and fibrosis (89–92). Rat models with
coronary artery ligation demonstrate myocardial stiffening over
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FIGURE 2 | Engineered in vitro hypoxia models that modulate oxygen in (A) space and (B) time. (A) Infarct spheroids generate intrinsic spatial oxygen gradients to

model the infarct, border, and remote zones after myocardial infarction. Infarct spheroids exhibit higher levels of myofibroblast marker expression, exhibit

asynchronous contraction of myocytes, and have lower contraction amplitudes than control spheroids. Reprinted by permission from Springer Nature: Nat. Biomed.

Eng. (78). (B) Muscular thin films with integrated strain gauges can measure changes in contractility in cardiac myocytes pre-treated with endothelial extracellular

vesicles in a simulated ischemia-reperfusion injury. Endothelial extracellular vesicles enhanced the contractility of engineered cardiac tissues during both ischemia and

reperfusion. From Yadid et al. (79). Reprinted with permission from AAAS.

time, with elastic modulus increasing from 18 to 55 kPa (90),
and increased stiffness has been observed in the infarct zone
as early as 1 day post-infarction (93). In addition to temporal
changes, regional stiffness varies between the infarct zone, border
zone, and remote zone by 3 days post-infarction (94). Elastic
modulus progressively decreases in the border zone at a rate of
8.5 kPa/mm toward remote tissue (90). Because investigating the
effects of tissue stiffness with in vivo models is confounded by
many other concurrent changes, including matrix composition
(93), in vitro models have been implemented to elucidate the
effects of stiffness and other aspects of fibrosis on cardiac cell
phenotypes. In this section, we will describe 2-D and 3-D in vitro
models of cardiac fibrosis that focus primarily on recapitulating
uniform or spatiotemporal changes in stiffness.

2-D Models With Uniform Stiffness
Because standard polystyrene dishes used for cell culture
are nearly five orders of magnitude more stiff than the
native myocardium (95), mechanically tunable biomaterials
have been developed to mimic the rigidity of healthy or
fibrotic myocardium (96). For example, hydrogels are cross-
linked, hydrophilic polymers with high water content that are
commonly used as cell culture substrates because they can
be tuned to resemble the elasticity of soft tissue and allow
for efficient mass transfer. Hydrogels can incorporate natural
polymer chains, such as mammalianmatrix proteins, or synthetic
polymer chains, such as polyacrylamide or polyethylene glycol

(97, 98). Other biomaterials commonly used to recapitulate
physiological or pathological stiffness in vitro include elastomers
like polydimethylsiloxane (PDMS), which is biocompatible,
mechanically tunable, and transparent (99–102).

When cultured on rigid hydrogel or elastomer substrates,
cardiac myocytes exhibit disorganized sarcomeres, reduced
sarcoplasmic calcium stores (103), lower amplitude calcium
currents (103, 104), decreased cell shortening during contraction
(103), and a progressive decrease in beat frequency over time
(105) when compared to substrates that mimic the elasticity of
healthy myocardium. Using traction force microscopy, in which
fluorescent beads embedded in substrates are displaced during
cell contraction, several studies have established non-monotonic
relationships between force generation and substrate rigidity.
In these studies, cardiac myocytes generally generate maximum
forces on physiological stiffness, which decrease on substrates
that are either more soft or stiff in both isotropic (103, 106) and
aligned microtissues (107). However, some studies have reported
linearly increasing force generation with increased substrate
stiffness (101, 108, 109), which may be attributed to differences in
experimental methods, such as cell source, biomaterial substrate,
or analysis techniques. Similar results are observed in cocultures
of cardiac myocytes and fibroblasts on polyacrylamide substrates,
in which increased stiffness results in reduced troponin I staining,
increased fibroblast density, and poor electrical excitability (106).

Micropatterning has also been used in combination with
tunable hydrogel or elastomer substrates to modulate both
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cellular architecture and substrate stiffness because both of
these features remodel concurrently in post-infarct myocardium.
Substrate stiffness and cellular architecture has been shown to
modulate metabolic activity (99, 100, 107) and mitochondrial
structure in cardiac myocytes (102). Microcontact printed
hydrogels have also been used to characterize the contractility
of single (85) or coupled (110) cardiac myocytes as a function
of both cellular architecture and substrate stiffness. At the single
cell level, cardiac myocytes with low cell aspect ratios that
mimic concentric hypertrophy do more work on stiff substrates
that resemble fibrotic myocardium, demonstrating a functional
advantage of cell shape remodeling in response to mechanical
overload (85). In coupled myocytes, stiff substrates caused
increased focal adhesion formation at the cell-cell interface,
possibly contributing to cellular uncoupling in post-infarct
myocardium (110).

To model both the cellular and biomechanical aspects of
fibrosis, tissues have also been engineered with cardiac myocytes
and fibroblasts on substrates with tunable stiffness. For example,
microcontact printing has been implemented to engineer aligned
microtissues on polyacrylamide hydrogels with both cardiac
myocytes and fibroblasts. Microtissues generated less work on
rigid substrates, irrespective of cell adhesion ligand or presence
of fibroblasts, revealing the dominant role of substrate elasticity
in regulating contractile output (111). To engineer an artificial
infarct boundary, cardiac myocytes and fibroblasts have been
cocultured on separate halves of cell culture substrates with
rigidities that range from healthy, 1-week post-infarct, and 2-
to 6-weeks post-infarct myocardium. The presence of cardiac
fibroblasts in this coculture setting attenuated mechanical signal
propagation across the infarct boundary in a stiffness-dependent
manner (112).

In addition to affecting cardiac myocytes, rigid substrates that
mimic fibrotic myocardium also promote fibroblast activation
to myofibroblasts. On stiff substrates, cardiac fibroblasts notably
activate into a myofibroblast phenotype, exhibiting increased α-
SMA coverage (113–116), increased contractile force generation
measured through traction forcemicroscopy (117), and increased
nuclear localization of the mechanosensitive transcription factors
yes-associated protein (YAP) and transcriptional co-activator
with PDZ-binding motif (TAZ) (114). Knockdown of YAP and
TAZ reversed or attenuated stiffness-dependent changes in cell
morphology and function, suggesting YAP and TAZ coordinate
fibroblast mechanoactivation (114). In other work, limiting focal
adhesion size through microcontact printing was also sufficient
to interrupt the recruitment of α-SMA to stress fibers on
stiff substrates, indicating that focal adhesion size may control
α-SMA localization (113). Studies that establish mechanisms
behind fibroblast mechanoactivation may reveal new targets for
anti-fibrotic strategies to mitigate adverse remodeling following
myocardial infarction.

In vitro models have also identified stiffness-dependent
secretion of paracrine factors, which may regulate several
processes involved in infarct remodeling. For example, cardiac
myocytes on stiff substrates secrete more VEGF. Consistent
with this finding, media conditioned by myocytes on stiff
substrates promotes angiogenesis, including increased migration

capacity and tube length of microvascular endothelial cells (118).
Fibroblasts cultured on stiff hydrogels and treated with TGF-β
have also been shown to upregulate several cytokines, including
osteopontin, a known regulator of collagen cross-linking via lysyl
oxidase, and insulin-like growth factor 1, which regulates cardiac
myocyte hypertrophy. As a result, conditioned media from TGF-
β-treated fibroblasts cultured on stiff hydrogels has been shown
to induce cardiac myocyte hypertrophy, indicated by increased
cell volume, when compared with medium from cardiac
fibroblasts without TGF-β, regardless of substrate stiffness (119).
This echoes previous work that demonstrates TGF-β may be
a more potent regulator of the myofibroblast phenotype than
substrate rigidity (116). Together, 2-D models that resemble the
elasticity of fibrotic myocardium recapitulate many cellular and
molecular events following myocardial infarction.

2-D Models With Spatiotemporal Control of
Stiffness
2-D models with uniform stiffness do not encompass regional
changes in stiffness between the infarct, border, or remote
zones following myocardial infarction. Spatial stiffness gradients
have been fabricated through graded material cross-linking
(120), including gradient-patterned (121–124) or sliding (125,
126) photomasks, layering of hydrogels of different elasticities
(127), applying a temperature gradient to PDMS during curing
(128), or microfluidic-mixing of prepolymer solutions with
different cross-linker concentrations (129). However, most of
these have not been implemented with cardiac cell types to
model post-infarct myocardium. In one example, a polyethylene
glycol hydrogel was patterned with soft and stiff concentric
circles using a photomask. Cardiac fibroblasts cultured on
stiff regions of the substrate expressed increased α-SMA and
collagen when compared with soft regions. Live imaging
demonstrated a directional cellular migration toward the inner
stiff region. Treatment with a ROCK inhibitor reduced the
population of myofibroblasts, demonstrating that the model
can be used as an antifibrotic drug screening platform (130).
To investigate the effects of pathological matrix stiffening
in lung fibroblasts, a stiffness gradient was made from
polyacrylamide gels polymerized through gradient photomasks.
Human lung fibroblasts cultured on the stiffness gradient show
a progressive increase in fibroblast activation, indicated by
increased proliferation and matrix synthesis, toward the stiff
end of the gradient. Addition of prostaglandin E2, an inhibitor
of fibrogenesis, inhibited fibroblast activation (131). Similar
phenotypes may also be observed in cardiac fibroblasts over
stiffness gradients, though this has not yet been tested.

Mechanical properties can also be controlled in situ to model
changes in stiffness over time, which is characteristic of infarct
scar maturation. This can be achieved with materials that
polymerize in response to light exposure (132, 133) or by varying
themolecular weight of the cross-linking agent in real-time (134).
Engineered models to capture dynamic stiffening have been
used to model development, wound healing, and disease (135),
but few have been implemented in the context of myocardial
infarction. In one study, hyaluronic acid hydrogels seeded with
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FIGURE 3 | Engineered in vitro fibrosis models that modulate stiffness in (A) time and (B) space. (A) A hyaluronic acid hydrogel is polymerized in situ upon exposure

to UV light to mimic scar maturation after myocardial infarction. Stiffening from 8 to 30 kPa results in collagen turnover (*p < 0.05). Republished with permission of the

American Society for Cell Biology, from Herum et al. (115); permission conveyed through Copyright Clearance Center, Inc. (B) A heteropolar biowire integrates normal

(7.6 kPa) and fibrotic (61.1 kPa) cardiac tissue. The white dashed line indicates the interface between normal and fibrotic regions. Normal regions exhibit increased

α-actinin, a component of sarcomeres in cardiac myocytes, while fibrotic regions have increased collagen and α-smooth muscle actin, indicating increased presence

of myofibroblasts. Images reproduced with permission of the American Chemical Society, from https://pubs.acs.org/doi/full/10.1021/acscentsci.9b00052 (136).

Further permissions related to the material excerpted should be directed to the American Chemical Society.

cardiac fibroblasts were modified to dynamically increase in
stiffness in response to UV exposure. Dynamic stiffening to
model scar maturation resulted in increased cell spreading, α-
SMA formation, and collagen I expression (Figure 3A) (115).
Although fibroblast activation correlates with increased stiffness
in 2-D spatiotemporal models, cardiac myocyte phenotype and
function has been relatively unexplored in these settings.

3-D Models With Uniform Stiffness
Modulating stiffness in 2-D only exposes one side of cells to the
fibrotic microenvironments experienced in vivo. To more closely
mimic cell-cell and cell-matrix interactions that occur in native
myocardium, cardiac cells have been mixed into hydrogels to
form 3-D tissues. Similar to findings in 2-D, cardiac myocytes
encapsulated in rigid polyethylene glycol hydrogels demonstrate
reduced cell shortening and increased relaxation time when
compared with soft hydrogels, which was also accompanied
by increased intracellular localization of the mechanosensitive
transcription factor YAP (133). In 3-D, matrix stiffness promotes
fibroblast differentiation into myofibroblasts, demonstrated by
increased stellate morphology, α-SMA and collagen type III
levels, and gel compaction (137), consistent with findings in 2-D.
The simple aggregation of cardiac fibroblasts in 3-D using low-
attachment plates has also been shown to induce gene expression
changes associated with adverse cardiac remodeling and the
extracellular matrix. Conditioned media from 3-D fibroblast
aggregates also causes cardiac myocyte hypertrophy relative to
media from fibroblasts cultured in 2-D (138), indicating that
phenotypes in 2-D do not always translate to 3-D.

Using microfabricated templates, 3-D cardiac tissues have
also been engineered with control over cell composition, matrix
stiffness, and tissue architecture. In one model, cardiac myocytes

and fibroblasts were embedded in collagen hydrogels of varying
fibroblast cell densities or collagen concentrations and suspended
between uniaxial PDMS microposts. Microposts serve as tissue
constraints that promote alignment. Increasing fibroblast density
decreased tissue contraction force and hampered beating
frequency, as measured by displacement of the microposts
(139). In a similar paper, the system was modified to contain
biaxial PDMS microposts to generate isotropic cardiac matrices,
designed to mimic “diseased” architecture. 3-D microtissues of
cardiac myocytes and fibroblasts in isotropic matrices display
more stellate morphology, characteristic of myofibroblasts,
and more heterogeneous force distribution when compared
with “healthy” aligned matrices. Furthermore, increasing the
proportion of fibroblasts in the tissues reduces the overall tissue
beating frequency, suggesting that both matrix organization and
cellular composition regulate cardiac function (140).

Although hydrogels are mechanically tunable, they fail
to recapitulate the fibrous architecture of native cardiac
extracellular matrix. A 3-D fibrous network functionalized
with fibronectin, which anchors cardiac cells in vivo, was
fabricated through electrospinning. Spin speed was adjusted to
tune fiber alignment while photo-initiated cross-linking was
used to tune fiber stiffness to mimic physiologic (9–14 kPa)
or pathophysiologic (>20 kPa) tissues. Cardiac myocytes in
stiff, fibrous networks exhibit slower calcium flux, indicated by
increased decay time and increased peak-to-peak irregularity
(141). In another example, fibrous scaffolds with varying fiber
stiffness were fabricated through two-photon polymerization
and seeded with cardiac myocytes that lack expression of
cardiac myosin binding protein C, which is thought to play
a role in sarcomere sliding during contraction. Mutations in
this protein are also associated with hypertrophic and dilated
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cardiomyopathy. While control cells were able to adapt to the
increased load with increasing contraction force, cells with the
mutation displayed impaired contraction on stiffer fibers. This
work demonstrates the combined effects of mechanical stress and
genetic factors on contraction deficits (142).

Interestingly, fibroblasts in 3-D fibrous matrices depart from
the conventional relationships established between stiffness and
fibroblast activation in 2-D cell culture or 3-D hydrogels (143).
In human lung fibroblasts seeded in the same fibrous matrices,
increasing fiber stiffness actually reduced proliferation and
myofibroblast activation (α-SMA) when compared with cells on
soft and deformable fibrous matrices. This is correlated with
reduced cell spreading and focal adhesion formation that was
also observed with increasing stiffness (144). Fiber density, on the
other hand, has been shown to promote differentiation in lung
fibroblasts, signified by increased fibronectin synthesis, nuclear
localization of YAP, proliferation, and cytokine secretion (145).
Similar relationships may also exist for cardiac fibroblasts but
have yet to be investigated.

3-D Models With Spatiotemporal Control of
Stiffness
Engineered 3-D cardiac tissues have also been fabricated with
increasing spatiotemporal control over stiffness. A 3-D fibrosis
model was developed using the biowire platform, in which
cardiac cells are encapsulated in a fibrin-based hydrogel and
suspended between a pair of polymer wires that function
to promote microtissue alignment. Tissue contractile stress is
measured based on the deflection of the intrinsically fluorescent
polymer wires. To model healthy (7.6 kPa) or fibrotic (61.1 kPa)
myocardium, cardiac myocytes were cocultured with 25 or 75%
cardiac fibroblasts, respectively. Fibrotic tissues underwent more
rapid compaction and had higher collagen content, disrupted
myofibril structures, altered Cx43 distribution, prolonged time
to peak, and lower contractile force generation when compared
with healthy tissues. To next create a spatially heterogeneous
stiffness model, which can mimic the interface between the
infarct zone and viable tissue, fibrotic and healthy tissue were
integrated at opposing sides of a single biowire platform
(Figure 3B). The fibrotic side of the microtissue underwent more
rapid compaction, contained increased collagen content and
myofibroblast activation, and had slower calcium transients with
a lower amplitude compared to the healthy side. In addition,
propagation velocity at the healthy side was diminished when
compared with uniform healthy biowire tissues. Arrhythmic
waves were also observed, especially in the interface region.
This platform was also used to screen antifibrotic drugs (136),
demonstrating the potential impact of these approaches in
drug development.

To alter substrate rigidity over time, one approach is
to encapsulate cells into hydrogels that either degrade or
cross-link in response to specific wavelengths of light. In
one example, a 3-D photodegradable hydrogel was used to
demonstrate that valvular myofibroblasts can be redirected
into a quiescent phenotype by decreasing stiffness. This work
demonstrates fibroblast phenotypic plasticity and the potential

role of the mechanical environment in de-differentiating
fibroblasts, which has therapeutic applications in resolving
fibrotic disease (146). Lastly, one study demonstrated that cardiac
myocytes encapsulated in photopolymerizable polyethylene
glycol hydrogels do not exhibit differences in cell viability after
UV exposure (133), though the impact of progressive stiffening in
3-D on cardiac cell phenotypes has not been further established.

IN VITRO MODELS OF PATHOLOGICAL
STRAIN

Cardiac cells are constantly under cyclic stretch in the
healthy, beating heart. Myocardial infarction results in an
initial loss of contractility in the infarct zone followed by
arrhythmogenesis, which alters strain rates experienced by
surviving cardiac cells, as quantified through echocardiographic
imaging (147). To stretch myocytes and non-myocytes in vitro,
experimental platforms include microchips with stretchable
silicone membranes, custom-built bioreactors, or commercially
available cell straining units in which strain can be applied to cell
culture plates with integrated loading posts.

Chronic cyclic stretch over several days to mimic the diastolic
and systolic movement of cardiac muscle has been shown to
promote the maturation of “engineered heart tissues,” which are
generally defined as cardiac myocytes embedded in hydrogels
and cast around uniaxial tissue constraints or circular molds.
Stretched heart tissues exhibit increased cell alignment (148–
151), sarcomere organization (151, 152), Cx43 expression (150,
151), and contractile force generation (148, 150, 153). In some
studies, morphological changes were also observed that indicate
cardiac myocyte hypertrophy through increased cell size (148,
152) and mitochondrial density (148). In 2-D aligned cardiac
tissues fabricated through microcontact printing, chronic cyclic
stretch has also been shown to induce pathological changes in cell
aspect ratio and sarcomere alignment, promote gene expression
profiles associated with pathological remodeling, and diminish
calcium transients and force generation (Figure 4A) (154). Thus,
chronic cyclic stretch can be beneficial or detrimental to cardiac
myocytes, depending on the specific parameters.

Cardiac fibroblast responses to strain have also been relatively
inconsistent. In some cases, stretching activates many hallmarks
of cardiac fibrosis, including increased fibroblast proliferation,
hydrogel stiffening (156), increased gel compaction and strength
(157, 158), extracellular matrix deposition (156–158), and
enhanced secretion of TNF-α (159). However, responses are
dependent on baseline levels of fibroblast activation, which is
highly sensitive to culture conditions. Cardiac fibroblasts that
are cultured for 1 day on rigid substrates and have lower
initial levels of α-SMA respond to static tensile forces with
increased α-SMA, while cells cultured for 3 days with higher basal
levels of α-SMA respond to the same force with decreased α-
SMA production (160). Consistent with this, fibroblasts grown
on soft hydrogels with minimal basal α-SMA expression and
exposed to static stretch show elevated α-SMA mRNA levels
and expression of various extracellular matrix proteins, including
collagen and fibronectin (115). Fibroblasts also show differing
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FIGURE 4 | Engineered in vitro models to mimic pathological strain post-infarction. (A) Muscular thin films on a stretchable silicone membrane provide real-time

measurements of contractile stress during stretch. Images reproduced from McCain et al. (154). (B) A microfluidic device to evaluate the combined effects of hypoxia

and strain on cardiac fibroblasts. Created with BioRender.com. Both hypoxia (1% O2) and reduced contractility (2% strain) are required for cardiac fibroblasts to

upregulate TGF-β and IL-1β (*p < 0.05, **p < 0.01). Image reproduced from Ugolini et al. (155) (https://creativecommons.org/licenses/by/4.0/).

proliferative behavior in response to mechanical strain, which
may be dependent on baseline α-SMA levels, strain rate (161),
ECM composition (162, 163), serum concentration (164), or
substrate stiffness (115), which highlights a need for more
standardized cell culture methods (165).

To assess the combined effects of strain and hypoxia,
cardiac fibroblasts have been cultured in a microfluidic device
containing a stretchable, gas-permeable membrane situated
above a microchannel for gas flow and between lateral actuation
channels (Figure 4B). Uniform hypoxia (1% oxygen) or reduced
contractility to mimic post-infarct myocardium (2% strain)
are alone sufficient to induce proliferation and collagen type
1 production, although the combined effects of hypoxia and
reduced strain are required to trigger fibroblast secretion of IL-1β
or TGF-β (155).

Paracrine signals secreted by stretched cardiac cells may
also regulate critical aspects of infarct healing. Recent work
has characterized the transcriptomic profile of stretched cardiac
myocytes, which show differentially expressed genes and
regulatory networks that may lead to hypertrophic growth
of cardiac myocytes (166). Consistent with this, stretched
cardiac myocytes upregulate miR208, a mediator of cardiac
hypertrophy, hypertrophic proteins, such as β-myosin heavy
chain, and secretion of TGF-β (167). Neonatal rat cardiac
myocytes on stretched silicone membranes have also been
reported to undergo apoptosis, accompanied by mitochondrial
dysfunction (168). One study explored factors secreted by
stretched cardiac myocytes by fabricating a coculture device
that enables paracrine signaling between cardiac myocytes and

fibroblasts while exposing cardiac myocytes to strains that mimic
the border zone after infarction in vivo. In this device, coculture
with stretched cardiac myocytes increases cardiac fibroblast
proliferation. A media screen indicated the presence of cytokines
such as colony stimulating factor 1 and platelet derived growth
factor B, which were sufficient to increase proliferation in
fibroblast monocultures (115).

OUTLOOK

As described above, post-infarct myocardium is characterized
by distinct biochemical and biomechanical changes in the
cellular microenvironment that vary in both space and
time and are thought to contribute to excessive fibrosis,
hypertrophy, and arrhythmias. Unlike conventional in vitro
and in vivo models, Organs on Chips are able to dissect the
impact of these complex and dynamic changes to the post-
infarct microenvironment by offering a unique combination
of multi-modal microenvironmental control and accessibility
to physiological readouts. For example, the gradient systems
described above showed that cardiac fibroblasts migrate toward
both ischemic cardiac myocytes (27) and stiffer environments
(130), two hallmark features of post-infarct myocardium. These
studies also demonstrated that myofibroblast phenotypes can be
reduced by inhibiting TGF-β (27) or ROCK (130), suggesting
that these molecules or pathways could be exploited as anti-
fibrotic therapies. As another example, microfluidic devices that
offer precise control over oxygen concentration showed that
the electrophysiology of cardiac myocytes becomes irregular
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in response to hypoxia but can recover after 10–30min of
reperfusion (80, 81). Another Organ on a Chip system showed
that pre-treatment with endothelial cell-derived vesicles reduces
ischemia-reperfusion injury in engineered cardiac tissues (79).
Collectively, these and the other examples highlighted above
demonstrate how Organ on a Chip models of post-infarct
myocardium are powerful for determining how disease evolution
is regulated by spatiotemporal heterogeneity while also serving as
platforms for therapeutic development.

Despite the advantages of Organs on Chips, there are still
many challenges that limit their widescale adoption for disease
modeling and drug discovery. First, some findings in response
to hypoxia, stiffness, or strain have produced conflicting results.
For example, studies have reported increased (45, 155), decreased
(46), or unchanged (44) proliferation of cardiac fibroblasts in
response to hypoxia. Similarly, fibroblast proliferation has been
shown to increase (155, 161) or decrease (162) in response
to strain. This may be due to the inherent heterogeneity of
the biological responses or may highlight a need for more
standardized experimental methods. There is also a need for
more characterization of injured myocardium in vivo and ex vivo
through techniques such as atomic force microscopy, fluorescent
oxygen probes, and high-resolution imaging to ensure that
Organs on Chips are accurately modeling relevant features
of post-infarct myocardium and to establish more universal
design parameters.

Another limitation of existing Organ on a Chip models of
post-infarct myocardium is their over-simplified architecture.
As described above, current in vitro models have been
predominantly 2-D monocultures that can be micropatterned
to control tissue architecture or 3-D cocultured tissues or
spheroids with relatively random tissue architecture. Thus,
future work should focus on engineering cardiac tissues with
distinct control over the positioning of multiple cell types and
matrix components, leading to more granular models of post-
infarct myocardium. Emerging methods to pattern multiple
cell types in 2-D (169) and 3-D (170, 171) can improve
the architectural relevance and reproducibility of engineered
tissues. 3-D bioprinting has also advanced considerably in recent
years to provide increasing structural complexity (172, 173),
including spatial gradients in porosity (174) and material and
cell composition (175), and can be implemented to make more
precise tissue models. Model systems should also strive to
incorporate relevant cell types beyond cardiac myocytes and
fibroblasts, such as neurons (176) and immune cells (177).
In addition, there are other types of spatial and temporal
gradients beyond those described above, such as cytokine
and chemokine gradients that orchestrate the inflammatory
cascade after myocardial infarction. Recent approaches to control
gradients of soluble factors using microfluidics (178, 179) or 3-
D hydrogels (180) will enable more complex modeling of small
molecule gradients in the context of myocardial infarction.

Another limitation of many of the studies described above
is their reliance on primary cardiac cells from other species
(usually neonatal rats), which have historically been the most
accessible cardiac cell source. Cells from neonatal rats exhibit

species-specific differences and are relatively resistant to hypoxia,
a key feature of the infarct microenvironment (3). Thus, model
systems will be improved as the field continues to adopt human
induced pluripotent stem cell (hiPSC)-derived cardiac myocytes.
In addition to providing human relevance, hiPSC-derived cardiac
myocytes can also help identify genetic contributions to post-
infarct remodeling (181) and contribute to patient-specific
models and treatment regimens. However, a major concern
is that these cells demonstrate fetal-like maturity, which is
especially problematic for modeling myocardial infarctions,
a condition that affects almost exclusively adults. Recent
approaches to mature hiPSC-derived cardiac myocytes with
electromechanical or biochemical stimuli may help mitigate this
concern (182, 183), but achieving adult-like maturity in hiPSC-
derived cardiac myocytes remains a major hurdle for the field.

Lastly, Organ on a Chip systems need to be more high-
throughput and scalable to be integrated into the drug
discovery pipeline. Thus, the field also needs more scalable
fabrication methods, such as rapid, multimaterial bioprinting
of cardiac biowire scaffolds into 96-well plate formats (184)
or the development of substrates with integrated electrodes to
streamline electrical stimulation (185). Throughput can also
be improved by integrating sensors for real-time readouts of
parameters such as tissue contractility (87, 88), action potentials
(186), the consumption or secretion of biomolecules (187, 188),
or physical aspects of the microenvironment, such as oxygen
concentration and temperature (189). These types of multi-
sensor systems will provide more continuous and detailed insight
into cellular phenotypes in response to drug treatments while also
requiring less manual handling, thereby increasing throughput
and reproducibility.

In summary, engineered Organ on a Chip models of
post-infarct myocardium have exciting potential to address
many of the gaps presented by oversimplified 2-D cell
culture models and animal models that lack human relevance.
As technologies continue to develop, next-generation multi-
dimensional models could provide simultaneous control over
spatial and temporal changes in the physical, biochemical,
and mechanical microenvironment that correspond to the
phases of infarct healing. When further advanced with patient-
derived cells, scalable fabrication techniques, and integrated
sensors, these models have potential to emerge as new
standards for disease modeling and drug screening and
lead to new breakthrough therapies for mitigating post-
infarction remodeling.
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