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ABSTRACT

A major challenge in cancer genomics is uncovering
genes with an active role in tumorigenesis from a
potentially large pool of mutated genes across
patient samples. Here we focus on the interactions
that proteins make with nucleic acids, small mol-
ecules, ions and peptides, and show that residues
within proteins that are involved in these inter-
actions are more frequently affected by mutations
observed in large-scale cancer genomic data than
are other residues. We leverage this observation to
predict genes that play a functionally important role
in cancers by introducing a computational pipeline
(http://canbind.princeton.edu) for mapping large-
scale cancer exome data across patients onto
protein structures, and automatically extracting
proteins with an enriched number of mutations af-
fecting their nucleic acid, small molecule, ion or
peptide binding sites. Using this computational
approach, we show that many previously known
genes implicated in cancers are enriched in muta-
tions within the binding sites of their encoded
proteins. By focusing on functionally relevant
portions of proteins—specifically those known to
be involved in molecular interactions—our
approach is particularly well suited to detect infre-
quent mutations that may nonetheless be important
in cancer, and should aid in expanding our func-
tional understanding of the genomic landscape of
cancer.

INTRODUCTION

Understanding how the genetic and epigenetic alterations
acquired during tumorigenesis give rise to specific cancer
phenotypes represents a major aim of cancer biology, and
is an important motivation for profiling human cancers at
the genomic level. The Cancer Genome Atlas (TCGA) and

the Cancer Genome Project have already generated vast
amounts of information (1), and have opened up unpre-
cedented opportunities for studying the functional conse-
quences of the molecular alterations found in human
cancers. Because of emerging technologies such as exome
sequencing (2,3), characterizing human cancers at the level
of proteins in large cohorts of patients has now become
feasible, with the prospect of even more data at lower cost
in sight (4). Analyzing these data sets represents a
promising avenue for furthering our understanding of
cancer and for ultimately obtaining better patient stratifi-
cation, refined prognostic tools and novel therapeutic
targets (5).
Although numerous mutations are usually observed in

each cancer genome (6), it has been proposed that the
majority of them play no role in tumorigenesis (5,7),
even when focusing on the protein coding regions of bio-
logically plausible candidate genes (8). The mutational
landscape of cancer is described as dotted for the most
part by ‘hills’ (infrequently altered genes, some of which
are functionally important), with only a few ‘mountains’
(i.e. genes altered in a high percentage of cases) (6).
Therefore, a major challenge in cancer genomics is in

distinguishing ‘driver’ genes—with an active role in
tumorigenesis—from genes with ‘passenger’ mutations;
this is especially difficult in the case of infrequently
mutated genes that are nonetheless important in cancers
(9). Further, systematic analyses of cancer genomes are
necessary due to the high degree of molecular heterogen-
eity displayed by tumors, even among patients diagnosed
with the same cancer type. In fact, cancer heterogeneity
goes beyond inter-patient variability, as at least some
tumors have been shown to contain distinct clones, with
complex and shifting dominance hierarchies (10,11). It has
also been argued that mutations that are neutral with
respect to the initial tumorigenesis may affect the way a
patient will respond to a treatment, or the evolution of the
disease in later stages (9).
Here we introduce an approach for uncovering genes

that play a functional role in cancer by focusing on the
distribution across patient samples of missense mutations
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in the nucleic acid, small molecule, ion and peptide
binding sites of the proteins they encode. Because
proteins accomplish most of their functions by interacting
with other molecules, the residues that participate in these
interactions and comprise their binding sites represent
critical functional regions. The motivation behind our
method is that if a binding site has an enriched number
of mutations across patient samples as compared with the
total number of mutations uncovered for the entire
protein, it may play a functionally important role in
cancer even if the protein itself is not frequently mutated
overall.
A small number of previous studies have confirmed the

critical functional impact of cancer somatic mutations on
binding sites (12–15). Further, a number of tools have
been developed to distinguish passenger from driver mu-
tations by screening for genes with high mutation rates
(16–18), by training classifiers for this task (19–22) or by
applying methods developed for assessing the functional
impact of SNPs (23–29). Other approaches exploit
patterns of conservation in sequence alignments (30), or
take into account the specific tolerance to variation ex-
hibited by functional groups of genes (31). The distinct
topological properties of cancer genes in protein inter-
action networks provide another discriminating feature
for ‘true’ cancer genes (32–34), as does the gain or loss
of phosphorylation sites (35,36), or aggregated mutation
data at the level of individual domains (37). Homology
modeling of protein–protein interactions has also been
proposed as a way to discover novel cancer-related genes
(38). Further, some methods integrate multiple features in
a probabilistic framework (39), whereas others exploit
pathway information (40–42). Despite a wealth of
previous studies, a large-scale comprehensive analysis of
the distribution of cancer mutations with respect to
protein binding sites is still lacking.
We aim to fill this gap by providing a fully automated

pipeline for mapping missense mutations across cancer
(and other types of) exomes, and analyzing their distribu-
tions with respect to protein–nucleic acid, protein–peptide,
protein–small molecule and protein–ion interactions. We
show that this pipeline can map a significant fraction of
human proteins onto structures with annotated binding
information. We next demonstrate that binding site
residues are more frequently affected by cancer missense
mutations than are other residues, but are less affected by
single nucleotide polymorphisms (SNPs) observed across
populations. Finally, we show that by focusing on binding
sites, our approach identifies many genes already known
to be causally implicated in cancers. Our software is avail-
able online at http://canbind.princeton.edu as a web server
to explore the data deposited in TCGA, and as a
standalone package to study newly sequenced genomes.

MATERIALS AND METHODS

Reference sequence data sets

Somatic missense mutations were obtained from TCGA.
Eight cancer types with unrestricted data (as of March
2013) were used for this analysis: breast cancer (BRCA,

775 samples), clear cell kidney cancer (KIRC, 219
samples), colon adenocarcinoma (COAD, 84 samples),
endometrial cancer (UCEC, 247 samples), glioblastoma
multiforme (GBM, 290 samples), lung squamous carcin-
oma (LUSC, 176 samples), ovarian cancer (OV, 151
samples) and rectal adenocarcinoma (READ, 38 samples).

Chromosomal coordinates of the missense mutations
provided by TCGA were converted to protein sequence
coordinates by building the transcripts according to the
Genome Reference Consortium assembly (GRCh37.p10)
and by mapping the mutated codons to the corresponding
position in protein sequence space. For each gene,
mutation data were mapped to all the isoforms reported
in the assembly, and the isoform that allowed the largest
number of mutated positions to be mapped was selected.
In the case of ties, the first isoform reported in the
Genome Reference Consortium assembly was retained.
We refer to these protein sequences as ‘reference’ se-
quences. There are 17 556 reference protein sequences
with a missense or synonymous mutation in at least one
of the eight cancer data sets. Additionally, SNP data,
already mapped to reference transcripts, were obtained
from the Single Nucleotide Polymorphism Database
(dbSNP) repository (43), release 137.

Assigning binding information to reference sequences

Binding information for structures deposited in the
Protein Data Bank (44) was obtained from BioLip (45),
a repository of biologically relevant protein–ligand inter-
actions. We considered all the different types of inter-
actions reported in BioLip (DNA/RNA, peptides, metals
and small molecules), and extracted the sequences of the
protein chains for which binding information was avail-
able. To increase coverage, we used the redundant version
of BioLip (45).

The protein chain sequences were converted into a
BLAST database using the BLAST +2.2.26 suite (46).
For each reference sequence under consideration, we ran
a BLASTP search with default parameters and an E-value
<10�6. All hits with sequence identity >60% and coverage
of the matching structure >80% were aligned to the initial
reference sequence using Clustal Omega with default par-
ameters (47). Using these pairwise alignments, the binding
information contained in BioLip was transferred to the
reference sequence only if the sequence identity in the
binding residues was >90%.

We note that with the procedure outlined above, the
same structure can map to multiple reference sequences,
and more than one structure can map to the same refer-
ence sequence. To deal with this issue, for each reference
sequence with multiple matching structures, we merged
the mapped binding sites if they had at least one residue
in common. Multiple binding sites within the same
sequence with no residue in common were treated
independently.

Analyzing the distribution of cancer mutations and SNPs
in protein binding sites

For both TCGA and dbSNP sets, we calculated (i) the
total number of positions with structural information,
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N; (ii) the total number of binding residues, K; (iii) the
total number of positions with a mutation (or SNP, re-
spectively) in a structural part, n; and (iv) the total number
of binding positions hit by a mutation (or SNP, respect-
ively), k. We then calculated the probability of observing a
given number of positions affected by a cancer mutation
(SNP, respectively), using the hypergeometric distribution,
and assuming that affected binding positions have the
same probability of being mutated or affected by a SNP
as non-binding positions. The probability density curves
shown in Figure 2 were obtained from the hypergeometric
distribution:

PðX ¼ kÞ ¼

K
k

� �
N� K
n� k

� �

N
n

� � ð1Þ

by using K, N and n from each data set, and varying the
parameter k. The same procedure was followed to
generate probability distributions for each type of
binding site (Figure 2). P-values for the observed k were
computed as PðX � kÞ for cancer missense mutations and
PðX � kÞ for SNPs.

Assigning binding scores to protein sites

To capture the relative importance of a given residue
within a binding site, we devised a score that uses the
fraction of all heavy atoms of the residue within 4 Å of
any ligand atom as a weight. In case of multiple structures
matching the same TCGA sequence, the per-residue score
was averaged over all the structures. That is, the binding
score b for residue i in a given TCGA sequence was
computed as:

bi ¼
1

N

XN
j¼1

jA�ijj

jAijj
ð2Þ

where N is the number of structures that match the
sequence at position i; Aij is the set of heavy atoms of
residue i in structure j; and A�ij is the subset of atoms of
Aij within 4.0 Å of any ligand atom. All binding residues
received a score between 0 and 1.

Selecting significantly mutated binding sites

For each human reference sequence with at least one
reported mutation in a binding residue, we calculated
the score si of each residue by multiplying its binding
score bi [see Equation (2)] by the number of samples
with a reported missense mutation in that residue. We
then summed these si scores over all the mutated
residues in the binding site, obtaining the total score per
binding site sb. Next, we calculated the total number of
mutations m within the sequence that affected residues
with structural information, and to calculate empirical
P-values, we generated 100 000 replicates, where for each
replicate m residues with structural information are
uniformly sampled with replacement. Finally, for each
replicate, we calculated the binding score (as described
above) using the sampled mutational data, and

computed empirical P-values by counting the fraction of
random samples with a more extreme score than that
observed in the real case. In sequences with more than
one binding site, we considered each site independently.
We note that in the case of identical scores for all binding
residues, this procedure would approximate sampling
from a binomial distribution.
In Figure 3, we aggregated the mutations for all cancer

types, whereas in Figure 4 we considered each cancer
type separately. P-values of all binding sites in each
cancer type were converted into false discovery rates
(FDRs) using the Benjamini–Hochberg procedure (48).

RESULTS

We developed a computational approach (shown in
Figure 1) that (i) takes as input mutations uncovered
in exomes; (ii) maps them onto reference protein se-
quences; (iii) determines for each reference sequence if
it is possible to transfer structural information from
BioLip (45), a semi-manually curated database of
protein–ligand interactions; (iv) extracts residues in the
reference sequences that comprise binding sites for
small molecules, DNA, RNA, peptides or ions, if struc-
tural information is available; (v) highlights genes with
mutations that fall into a binding site of the corresponding
proteins; and (vi) uncovers genes whose proteins are
significantly enriched in mutations in at least one of
their binding sites.
We applied this procedure to eight fully-available

cancer data sets in TCGA, as well as to SNP data avail-
able from dbSNP, a catalog of both common and rare
variants in nucleotide sequences. The cancer data sets
consist of 1980 patient samples from either BRCA,
KIRC, COAD, UCEC, GBM, LUSC, OV or READ.

More than 20% of human genes can be mapped to protein
structures that have binding information

Given the increasing number of cancer genomes that are
being sequenced, it is likely that a cancer mutation
will eventually be observed in almost every human gene;
thus, we first set out to determine how many human genes
can be mapped to protein structures with binding infor-
mation. We gathered all the Uniprot protein sequences
for Homo sapiens (May 2013); this yielded 88 817 protein
sequences, which mapped to 20 421 genes. For each
Uniprot sequence, we performed a BLAST search
against the BioLip database, and found that 4471
human genes (21.9%) are similar to at least one BioLip
entry (E-value <10�6, coverage of the structural part
>80% and sequence identity >60%).
In the TCGA data set, we found 17 379 genes with at

least one missense mutation in at least one of the eight
cancer types that we included in the analysis (see
‘Materials and Methods’ section for more details). Of
these 17 379 genes, 3943 (22.7%) were similar to a
BioLip entry, using the same criteria as above. When
requiring �90% sequence identity in the binding sites
between the human sequence and the protein structure,
the number of mappable genes went down to 3656 (21%).
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Common polymorphisms and cancer missense mutations
show opposite trends in their propensity to affect protein
binding sites

As a proof of concept, we first addressed the question
of whether cancer missense mutations show a different
propensity to affect protein binding sites as compared
with SNPs obtained from dbSNP (43). In addition to
missense mutations, we also considered synonymous
mutations observed in TCGA.
We computed the total number of binding residues

where cancer missense mutations, cancer synonymous mu-
tations and population SNPs were observed. For this part
of the analysis, only the number of affected positions (and
not the frequency with which they were affected) was con-
sidered. An excess of cancer missense mutations was
found in protein binding sites (P < 3:45E�9,
hypergeometric test, Figure 2a, left). In contrast, SNPs
tended to avoid protein binding sites (P < 1:83E�28,

Figure 2a, middle). We hypothesized that if cancer
missense mutations are enriched in binding sites because
they play a functional role, we should not find this enrich-
ment when considering the distribution of synonymous
mutations found in the same cancer types. As expected,
the total number of synonymous mutations in protein
binding sites lay within the expected range (Figure 2a,
right).

To determine whether the same trend could be observed
for each type of binding sites, we repeated the analysis by
considering in turn each of (i) nucleic acid binding resi-
dues, (ii) peptide binding residues and (iii) small molecule
and ion binding residues. The global trends observed
with aggregate binding data were recapitulated for each
of the three types of binding sites, with cancer missense
mutations hitting more than expected by chance nucleic
acid binding residues (P < 3:67E�14, Figure 2b), peptide
binding residues (P < 0:0085, Figure 2c) and small
molecule and ion binding residues (P < 0:0057,
Figure 2d). In contrast, SNPs were less likely than
expected to hit nucleic acid binding residues (P < 0:013,
Figure 2b), peptide binding residues (P < 8:9E�4,
Figure 2c) and small molecule and ion binding residues
(P < 4:64E�42, Figure 2d).

We also set out to determine whether the same conclu-
sions held when considering the frequency with which
binding positions were affected. Because dbSNP does
not directly provide the number of times a SNP was
observed, we limited this analysis to cancer missense and
synonymous mutations. We computed the mutation fre-
quency in binding and non-binding residues and per-
formed a binomial test, defining the probability of
randomly hitting a binding residue as the fraction of
residues with structual information that are binding
residues. Across our entire data set, the probability of
observing at least the observed number of cancer
missense mutations in binding residues by chance alone
was < 2:2E�16, whereas the probability of observing at
least the observed number of cancer synonymous muta-
tions in binding sites by chance alone was 0.28.

It is important to point out that the type of analysis
shown in Figure 2 only reflects global tendencies, and
biologically important exceptions for specific genes can
be observed. For example, while SNPs tended to fall
outside protein binding sites, we found that genes belong-
ing to the major histocompatibility complex had between
two and three times more binding positions with SNPs
than expected, confirming the well-known allelic diversity
of major histocompatibility complex genes (49). No other
genes had more than two times the binding positions with
SNPs than expected.

Genes that are significantly mutated in protein-binding
sites are enriched in well-known cancer genes

Having confirmed that cancer missense mutations tend to
occur in protein binding sites more frequently than
expected, we set out to identify genes with a statistically
significant excess of mutations in binding sites across the
TCGA data, aggregating the mutations found in the eight
cancer types. For each binding site, we calculated a

Figure 1. Schematic representation of the pipeline. Our computational
pipeline to integrate sequence and structural information to identify
genes whose encoded proteins have an enriched number of mutations
in their binding sites proceeds as follows. First, mutations are mapped
to a reference protein sequence. Second, information on protein binding
is obtained from the Protein Data Bank (44) using the BioLip (45)
database, and mapped onto the reference sequences. Then, mutations
within each protein are statistically analyzed for their propensity to hit
residues involved in binding with DNA, RNA, peptides, small mol-
ecules or ions.
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Figure 2. Cancer mutations and SNPs show opposite trends in their propensity to hit protein binding sites. The number of observed SNPs, cancer
synonymous and cancer missense mutations (red arrows) as compared with the theoretical distributions for (a) all binding residues; (b) nucleic acid
binding residues; (c) peptide binding residues; and (d) small molecule and ion binding residues. Theoretical distributions were computed using the
hypergeometric distribution, under the null-hypothesis that binding residues have the same probability of being affected by SNPs or mutations as
non-binding residues (see Materials and Methods). The P-values inside the panels (for SNPs and cancer missense mutations) of obtaining a value at
least as extreme as the one observed were computed using the hypergeometric test.

PAGE 5 OF 11 Nucleic Acids Research, 2014, Vol. 42, No. 3 e18



mutation score, defined as the sum across the positions that
comprise it of the number of mutations affecting each
position weighted by the binding score of the position.
The binding score is calculated as the fraction of all the
heavy atoms of the residue in that position in the mapped
structure that are in proximity (�4.0 Å) of the ligand. We
then computed an empirical P-value for each binding site
using a permutation test (see ‘Materials andMethods’). We
note thatbyusingdataobtained exclusively from large-scale
DNA sequencing, we minimize the risk of study biases that
would artificially inflate the mutation count for well-
characterized binding sites.
To validate the method in the absence of a gold standard,

we computed the enrichment for Cancer Census Genes
(CCGs)—a curated list of genes causally implicated
in cancer (50)—in gene sets with progressively smaller
P-values. The results showed that smaller P-value thresh-
olds yielded increasingly higher CCGs enrichment values
(Figure 3). For example, 39 genes were in the top 2.5% of
the P-value distribution, and 10 of them were CCGs;
because the total number of binding sites with at least one
mutation in a binding site was 1379, of which 104 were in
CCGs, this is an enrichment factor of >3.40 (P < 3:9E�4,
hypergeometric test). As a control, we repeated the analysis
on synonymous cancer mutations, obtaining—as
expected—no enrichment in CCGs for small P-values
(Figure 3).

Per-cancer type analysis

The analysis described above was carried out by consider-
ing all the reported somatic mutations in the eight cancer
types together. Although the results suggest that genes
whose corresponding proteins are significantly affected
by mutations in their binding sites are enriched in those
with a known role in tumorigenesis, they do not reveal
what happens at the level of individual cancer types.
To address this question, we carried out a per-cancer

type analysis, using only the mutations reported in

each cancer type. Using an FDR< 0.1, we obtained 42
genes whose encoded proteins were significantly mutated
within binding sites in at least one cancer type. Figure 4
shows the significant genes, with the total number of
mutations in binding residues normalized by the number
of samples. As expected, most of the CCGs appeared
to be mutated at a higher frequency in multiple cancer
types, whereas other genes displayed more cancer-
specific patterns.

Figure 4. Genes whose proteins are significantly mutated in binding
residues (per cancer type). Genes in each of the eight cancer types
with FDRs< 0.1 are shown and colored according to their frequency
of mutation in the binding residues of their encoded proteins,
normalized by the number of samples. The frequency of mutation in
binding residues is simply the fraction of samples with a mutation in a
binding residue. The left panel shows the different types of binding sites
within the protein that are found to have mutations (NUC: nucleic acid
binding site; PEP: peptide binding site; and SMI: small molecule and
ion binding site). CCGs [50] are highlighted in red. BRCA: breast
cancer; KIRC: clear cell kidney cancer; COAD and READ: colon
and rectal adenocarcinoma; UCEC: endometrial cancer; GBM: glio-
blastoma multiforme, LUSC: lung squamous carcinoma; and OV:
ovarian cancer.

(a) (b)

Figure 3. Genes whose encoded proteins are significantly mutated in
binding sites are enriched in well-known cancer genes. The enrichment
of CCGs at given P-value thresholds, computed using (a) missense
mutations and (b) synonymous mutations. For each P-value threshold,
we obtained the set of genes whose proteins have at least one binding
site with a mutation enriched at this level of significance and computed
the enrichment as the ratio between the fraction of CCGs in the genes
at the given P-value threshold and the fraction of CCGs in the whole
set of genes. The results shown here were obtained by aggregating the
mutations observed across all eight cancer types.
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The contribution of different types of binding sites is
also shown in Figure 4. We note that while mutations
observed in small molecule or ion binding sites far out-
number the mutations in other binding sites, these binding
sites were also the most highly represented in our struc-
tural data set. A small molecule or ion binding site was
found in >82% of the structural entries, whereas nucleic
acid and peptide binding sites were found in 14 and 23%
of the entries, respectively, with some proteins having
more than one type of binding site.

We performed Gene Ontology (GO) (51) biological
process enrichment analysis on this set of 42 genes.
Using a Bonferroni corrected P-value threshold of <0.05,
the most specific GO-enriched terms were fibroblast
growth factor receptor signaling pathway, epidermal
growth factor receptor signaling pathway, response to
insulin stimulus, neurotrophin TRK receptor signaling
pathway and phosphate-containing compound metabolic
process; we note that these terms are mostly related to
signaling.

The original publications for seven of the eight cancer
types considered here reported genes with significantly
recurrent mutations (Supplementary Text S1). As
expected, there was agreement between our approach
and the list of recurrently mutated genes for several
well-known players (e.g. AKT1, FBXW7, KRAS,
PIK3CA and TP53). However, by focusing on protein-
binding sites, our approach was able to uncover genes
that were not detected as recurrently mutated, a few of
which are discussed further below.

Examples of genes significantly mutated in binding sites

To showcase how our computational pipeline may
assist in analyzing cancer proteomes, we briefly highlight
a few proteins that were found to have an enriched
number of mutations in their binding sites across cancer
proteomes.

DICER1
Our approach suggests a role for DICER1 in endometrial
cancer (Figures 4 and 5a), where six of the nine observed
mutations cluster around two Mg2+ binding sites in the
RNase IIIb domain. Mg2+ions have been shown to play
a role in DICER’s ability to bind RNA and cleave it (52),
and are found in a negatively charged valley (Figure 5a).
The six mutations in endometrial cancer replace the nega-
tively charged amino acids (Asp and Glu) with either posi-
tively charged (Lys) or non-charged amino acids (Asn,
Gly and Ala), thereby suggesting a potential loss of
Mg2+binding and RNase activity.

Supporting the potential role of DICER in cancer, we
note that global microRNA (miRNA) downregulation is
frequently observed in human cancers (57). Work by
Martello et al. showed that the miRNA family miR103/
107 (over-expressed in some breast cancers) can lead to
less-differentiated cancer cells and a metastatic phenotype
by targeting DICER, a crucial component of miRNA pro-
cessing (58). More recently, recurrent somatic mutations
of DICER1 around metal-binding residues were found in
non-epithelial ovarian cancer (59).

AKT3
AKT consists of three isoforms (AKT1, AKT2 and
AKT3) encoded by distinct genes but each containing a
pleckstrin homology domain (60). AKT3—a gamma
serine/threonine kinase in the phosphatidylinositol 3-
kinase pathway—has only two mutations in clear cell
kidney cancer (Figure 4). However, both these mutations
(Gly16Val and Glu17Lys) fall in the binding site for
phosphatidylinositol (3,4,5)-trisphosphate, in the
pleckstrin homology domain of the kinase (Figure 5b).
It has previously been found that over-expression of

AKT3 is a critical factor that correlates with cell prolifer-
ation in ovarian cancer (61). The Glu17Lys mutation seen
in the binding site of AKT3 in kidney cancer was also
found in the pleckstrin homology domain of AKT1 in
breast, colorectal and ovarian cancers, and results in the
activation of AKT1, followed by downstream signaling
and cell transformation (62). The same gain-of-function
mutation in AKT1 was also subsequently observed in
squamous lung cancer, with a frequency of 0.6% (63).

MBD1
Methyl-CpG-binding domain protein 1 (MBD1) is a tran-
scriptional repressor that functions by binding CpG
islands in gene promoters (64). MBD1 has been shown
to bind the promoters of known tumor suppressor genes
(e.g. p16, VHL and E-cadherin) (64). Our pipeline
found MBD1 to be significantly mutated in binding sites
in the endometrial cancer data set (Figure 4) because
of four somatic mutations affecting a binding site that
recognizes methylated DNA (Figure 5c). The mutations
replace two Arg residues in positions 18 and 22 with
either His or Cys. Interestingly, another mutation
(Arg17Cys) that falls just outside the binding site (>4 Å
from DNA) but is next to Arg18 has been associated with
Rett syndrome in the MeCP2 gene, which has an identical
MBD domain (55).

FBXW11
FBXW11 (also known as HOS) is part of the SCF
complex, which mediates the proteasome-dependent deg-
radation of phosphorylated substrates (65). We found
FBXW11 to be significantly enriched in binding site mu-
tations in colon adenocarcinoma (FDR< 0.1), and of bor-
derline significance in glioblastoma multiforme (FDR=
0.104) (Figure 4). Three of the four mutations observed in
the two cancer types occur in proximity to a site that binds
beta-catenin (Figure 5d), a well-studied protein involved
in the Wnt signaling pathway, and implicated in several
malignancies, such as colon cancer, melanoma,
medulloblastoma and others (66). In the complex shown
in Figure 5d, Arg370 is 2.4 Å away from a phosphorylated
Ser in beta-catenin, and is replaced with a Gln in colon
adenocarcinoma and a Trp in glioblastoma multiforme.
Another mutation in colon adenocarcinoma affects
Gly347, which is replaced with a negatively charged
amino acid (Asp). We note that mutations in beta-
catenin, FBXW11’s substrate, have also been observed
in colon cancer, where they affect Ser and Thr residues
that are essential for the phosphorylation-dependent
degradation of beta-catenin (67).
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DISCUSSION

Owing to the growing catalog of molecular events that
occur during tumorigenesis, cancer biology has reached
a turning point. A high resolution view of the mutational
landscape in cancer is now becoming available and—as a
consequence—almost every gene has been or will be found
to be mutated in at least a few patient samples.
In this article, we have described a novel structural bio-

informatics approach that aims to understand the effects
of mutations in the broader context of a protein’s molecu-
lar interactions, and to assess the potential of mutations to
disrupt these interactions. Our pipeline represents a com-
plementary approach to existing methods, as it directly
uses structural information in the context of large-scale
cancer resequencing data, and is a step toward providing
mechanistic interpretations of the effects of mutations.
One important aspect of our approach is that it can high-
light genes that may be infrequently mutated overall, but
for which mutations preferentially occur in binding sites.
It has previously been observed that genes that are
mutated at low frequency can play important functional
roles in cancer, and account (at least in part) for the high

degree of clinical heterogeneity observed in many cancer
types (10,11).

Given the complexity and diversity of cancer prote-
omes, it is not surprising that many computational
methods to prioritize candidate genes have been developed
over the years. Perhaps most similar to the work described
here are earlier attempts to combine structural informa-
tion about protein binding sites with cancer mutation
data. Stehr et al. (14) characterized the structural differ-
ences between oncogenes and tumor suppressors, and
their analysis included protein functional sites. However,
their aim was to describe the structural impact of muta-
tions in well-known and frequently mutated genes, and
thus they analyzed 24 well-characterized genes. In
contrast, our method analyzes thousands of genes and
identifies those that may be infrequently mutated
overall, but are nonetheless important. A more recent
paper by Nishi et al. (15) studied the changes in binding
energy caused by mutations in glioblastoma multiforme
and further included protein–protein interfaces. Our
method does not attempt to estimate the impact of any
individual mutation on the binding energy, but simply

(a) (b)

(c) (d)

Figure 5. Examples of proteins significantly mutated in binding residues. (a) RNase IIIb domain of DICER1[PDB code: 2eb1 (52)]. Six of the nine
mutations that fall in the RNase IIIb domain of DICER1 in ‘endometrial cancer’ and two of the two mutations in ‘glioblastoma multiforme’ affect a
negatively charged valley involved in magnesium binding (52). Magnesium ions are required for the catalytic activity of DICER RNase IIIb domain
(52,53). Binding and non-binding residues are colored in red and blue, respectively. (b) Pleckstrin homology domain of AKT3 with mutations in
‘clear cell kidney cancer’ [PDB code: 1h10 (54)]. Both of the observed mutations fall in proximity to the binding site for phosphatidylinositol (3,4,5)-
trisphosphate. (c) MBD1 (in complex with DNA) with mutations in ‘endometrial cancer’ [PDB code: 1ig4 (55)]. Four of the six mutations replace
two arginines in proximity to DNA. (d) FBWX11 (in complex with beta-catenin) with mutations in ‘colorectal cancer’ and ‘glioblastoma multiforme’
[PDB code: 1P22 (56)]. The arginine mutation at 370 was found in both colorectal cancer (to glutamine) and glioblastoma multiforme (to trypto-
phan). The mutation at 257 from arginine to cysteine outside the binding site was found in colorectal cancer.
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highlights genes whose mutation patterns statistically
deviate from expectation, thereby suggesting a selective
process at work. The power of our method lies in its
ability to detect genes with only a few mutations
concentrated in a small functional part of the protein
(i.e. its binding sites). For this reason, we excluded
protein–protein interfaces from our analysis, which can
contain a substantial fraction of a protein’s residues. For
example, in the data set used in (15), on average, 41% of
the residues within a protein take part in protein–protein
interfaces (see Supplementary Text S2).

One limitation of our approach is that it requires struc-
tural information to accurately pinpoint the binding
residues. As a consequence, a little over one-fifth of
human genes can be studied at this time, although
we expect this number to grow over time as our knowledge
of protein structures increases. Moreover, we note
that an excess of mutations in binding sites does not
reveal whether a loss or a gain of function is at play,
although it has been proposed that gain of function
is more likely to occur in binding sites (14). Further
work will be required to predict the functional implica-
tions at the cellular level of a mutational event in a
binding site.

To conclude, by focusing on protein binding sites, we
developed an automated approach that is particularly
well suited to capture relatively rare mutations that
are likely to perturb protein function. Therefore, our
approach and the accompanying software should prove
useful to the community as a hypothesis-generating tool,
and as a bridge between detailed structural analyses of
select genes and broad statistical screenings of cancer
genomes.
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