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Abstract: We report a quasi T-channel electrokinetics-based micromixer with electrically conductive
sidewalls, where the electric field is in the transverse direction of the flow and parallel to the
conductivity gradient at the interface between two fluids to be mixed. Mixing results are first
compared with another widely studied micromixer configuration, where electrodes are located at
the inlet and outlet of the channel with electric field parallel to bulk flow direction but orthogonal
to the conductivity gradient at the interface between the two fluids to be mixed. Faster mixing is
achieved in the micromixer with conductive sidewalls. Effects of Re numbers, applied AC voltage and
frequency, and conductivity ratio of the two fluids to be mixed on mixing results were investigated.
The results reveal that the mixing length becomes shorter with low Re number and mixing with
increased voltage and decreased frequency. Higher conductivity ratio leads to stronger mixing result.
It was also found that, under low conductivity ratio, compared with the case where electrodes are
located at the end of the channel, the conductive sidewalls can generate fast mixing at much lower
voltage, higher frequency, and lower conductivity ratio. The study of this micromixer could broaden
our understanding of electrokinetic phenomena and provide new tools for sample preparation in
applications such as organ-on-a-chip where fast mixing is required.

Keywords: microfluidics; electrokinetics; mixing; micromixer

1. Introduction

Mixing of two or more fluids is always crucial in the application of microfluidics in
chemical engineering, environmental engineering, and even biomedical and biochemical
analysis such as enzyme reaction, protein folding, DNA purification, etc. [1]. Fast mixing
can generate stronger signals to increase the sensitivity and enable more accurate mea-
surement of chemical reaction kinetics. However, since the flows are mainly laminar in
microfluidics, mixing is carried out by molecular diffusion and fast mixing is not easily
achieved. Highly efficient and fast mixing of two fluids inside microchannels could be
highly challenging. Therefore, developing new techniques and methodologies to increase
the interfacial surface area for enhancing the mixing processes is crucial to improve the
corresponding performance of ‘lab-on-a-chip’ devices [2].

Many new micromixer techniques have been developed in last two decades [3]. Gen-
erally, the ‘micromixer’ can be categorized into two groups: passive and active mixers [4].
Passive mixers do not require external energy. They enhance mixing processes through the
augmentation of diffusion through fluid folding, stretching, and tilting by special design
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of microchannel geometry [5]. In contrast, active mixers usually employ external energy
to introduce disturbances on the flow to enhance fluid mixing. Several types of active
micromixers with flow disturbances generated in terms of temperature [6], pressure [7],
electrohydrodynamics [8,9], acoustics [10], as well as magnetics [11], have already been
reported to effectively enhance fluid mixing in microchannels.

Among the aforementioned methods, liquid or particle motion can be effectively
manipulated by electrokinetic mechanisms, including electro-osmosis, electrophoresis,
dielectrophoresis, and electrowetting, etc., since electric body force (EBF) is more effec-
tive on small scales and interfaces [12,13]. In 2001, Oddy et al. [14] presented an active
micromixer in which an AC electric field induces a chaotic flow field to enhance the mixing
of two pressure-driven flow streams. Moreover, it was demonstrated by Shin et al. [15]
that more chaotic trajectories can be generated in a cross-shaped microchannel by a time-
dependent electric field. Recently, many works on electrokinetic instability (EKI) were
accomplished and attracted much attention, it is a phenomenon described by charge accu-
mulation at perturbed interfaces due to electrical conductivity gradients, which exist in the
bulk flow [16–20]. Although many significant results have already been obtained through
those previous works [21–25], much effort is still needed to improve our understanding of
electrokinetic mixing under AC electric field, to make the electrokinetic micromixers more
efficient and flexible for “lab-on-a-chip” applications.

In 2014, we demonstrated that turbulence [26] and its corresponding ultrafast mix-
ing [27] of two pressure-driven flows can be realized electrokinetically in a microchannel
with slightly divergent sidewalls (fabricated with electrodes) at low bulk-flow Reynolds
number. However, parallel microchannels are mostly used in microfluidics and the mix-
ing enhancement in the electrically conductive sidewalls in parallel has not been studied.
In this paper, we present a parametric study of the rapid fluid mixing inside a T-shaped
microchannel, where two streams of pressure-driven flows are disturbed by an externally
time-dependent electric field, which is orthogonal to the conductivity gradient at the inter-
face between the two fluids to be mixed. The parameters, such as electrode positions and
voltage phase shift between two electrodes, were investigated.

2. Materials and Methods

The schematic of the micromixers is given in Figure 1. Both of the micromixers are
T-shaped with parallel sidewalls. Two cases have been considered in this investigation:
one has electrically conductive sidewalls, the other has insulated sidewalls with electrodes
placed at inlet and outlet. In the former, the sidewalls of the channel are made of gold sheet
(as shown in Figure 1a). Here, x and y denote the streamwise and transverse directions in
the main channel, respectively. In the latter, the sidewalls of the micromixer are fabricated
with acrylic, as shown in Figure 1b. Platinum electrodes are placed at the inlets and out
of the microchannel. The micromixers both have rectangular cross sections of 120 µm in
width and 230 µm in height, with the length of 5 mm. Two inlets and one outlet with the
diameter of 1 mm were drilled at the ends of the channel.

Two fluids with different electrical conductivity and permittivity are used for the study.
Each fluid enters the micro-fluidic chamber through its own inlet channel. As soon as they
contact, a jump in electrical conductivity and/or permittivity is generated at the interface
between the two fluids. The flow of an incompressible and Newtonian fluid in presence of
an electric field is governed by the Navier–Stokes equations:

ρ

∂
⇀
V

∂t
+

⇀
V·∇

⇀
V

 = −∇P + η∇2
⇀
V +

⇀
f e (1)

where ρ is the fluid density,
⇀
V denotes the velocity field, P refers to the pressure, and η is
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the (constant) dynamic viscosity.
⇀
f e is the EBF attributed to Coulombic force, as:

⇀
f e = ρ f

⇀
E (2)

where ρ f is net charge density which can be expressed as [18]:

ρ f = −
ε
⇀
E ·

⇀
∇σ

σ
(3)

where ε is the permittivity of the electrolyte and
⇀
E is the electric field. Due to the presence

of electrical conductivity gradients,
⇀
∇σ at interfaces between two streams with different

electrical conductivity, which exist in the bulk flow [18,28], non-zero net charge will be

accumulated at interfaces when an electric field is applied. Then, an EBF
⇀
f e results which

distorts the interface of the two fluid streams. If the magnitude of the disturbance is
sufficiently large, a transversal convection (secondary flow) can be induced on the interface,
destabilize the interface through electrokinetic instability (EKI), and promote the mixing of

the two fluids. If the there is no conductivity gradient, which means
⇀
∇σ = 0, then no net

charge will be induced (ρ f = 0), consequently, no body force on liquid will be generated

(ρ f
⇀
E = 0), and then no EKI occurs. In this investigation, electric conductivity is not a

passive scalar [27] since the EBF can significantly manipulate the flow and accordingly
affect the field of electric conductivity.
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From Equation (3), it is important to notice that indicated by the term of
⇀
E ·

⇀
∇σ, the

charge density could be minimum when the external electric field is perpendicular to
the electrical conductivity gradients, which is the case in that electrodes are placed at the
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inlets and outlets of the mixing channel. In contrast, when the external electric field is
parallel to the electrical conductivity gradients, the charge density can be maximized. In
our micromixer, the electrodes are directly used to form the sidewall; therefore, the external
electric field is parallel to the electrical conductivity gradients (Figure 1) which will result
in a maximum EBF, and strongest distortion between the interface of the two-liquid flow,
initially. In the present study, AC voltage signals are used instead of DC voltage due
to the fact that bubbles are more easily generated in highly conductive buffer under DC
voltage due to electrolysis, which can block the microchannel and thus be detrimental to
the performance of microfluidic devices [29].

A syringe pump (Harvard, Model PHD2000 Programmable, Holliston, MA, USA)
was used to pump fluorescent dye solution and DI water from the inlets respectively
through the micromixer toward the outlet. Flow visualization were applied to study fluid
mixing. Fluorescein sodium salt (C20H10Na2O5) was used as the fluorescent dye trace for
characterizing the mixing results. Electrically neutral dye rhodamine B (Sigma-Aldrich,
Corp., Burlington, MA, USA) was also used as the scalar marker to study conductivity ratio
influence on fluid mixing. Phosphate buffer (VWR VW3345-1 pH 7.2) was diluted into
DI water as one of the mixing streams to control the conductivity ratio between the two
streams. Figure 2 shows the schematic of the experimental setup. The microchip was placed
on an inverted fluorescent microscope (Olympus-IX70, Tokyo, Japan) for fluorescence
measurements. A function generator (Tektronix, Model AFG3102, Beaverton, OR, USA)
was used to apply AC electric signal between these two electrodes.
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Figure 2. Experimental setup.

A mercury lamp was used as the illumination source in the present study. The excita-
tion beam is 488 nm. Upon excitation, the fluorescent solution would emit fluorescence.
A 10× objective lens (NA = 0.25) was used for the fluorescence imaging. The fluorescence
signal was captured by a sensitive and high-resolution CCD camera (SensiCam QE, PCO,
Bavaria, Germany), with an exposure time of 0.1 s. All concentration was quantitatively
determined by measuring the fluorescence intensity within each pixel of the camera using
MATLAB (MathWorks Inc., Natick, MA, USA). Mixing enhancement results were com-
pared based on concentration profiles of the fluorescent dye along a transverse line that is
perpendicular to flow direction of the microchannel at a given streamwise position.
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3. Results and Discussion
3.1. Effect of External Electric Field Direction

To evaluate the influence of directions of external electric field, the mixing results
in two cases were compared, e.g., electrodes are placed at the sidewalls (case A) and
at the ends of the channel (case B), respectively. The latter has been studied widely as
electrokinetic micromixers [18,30]. However, a direct comparison of the two arrangements
of the electrodes on mixing has not been carried out before.

In the experiment, we kept flow rate at 5 µL/min and conductivity ratio of the two
streams at 10:1, unless otherwise specified. The external electric fields have strength (EA) of
both 200 V/cm for the two cases. In this part, a low AC frequency ( fAC = 1 Hz) was used.

As shown in Figure 3, it is clearly illustrated that under the same EA, the mixing is
much stronger in case A than case B. For the plastic sidewalls, to achieve EA = 200 V/cm,
we had to use a voltage amplifier accompanied with function generator to apply AC
voltage on the case B. In this case, it is difficult to apply high AC voltage and high frequency
signal simultaneously. However, for the case A, no power amplifier is required to achieve
EA = 200 V/cm. The function generator can provide sufficient high EA and AC frequency
on the electrodes simultaneously. Figure 3 clearly indicates, as a result of the parallel of

electric conductivity gradient and external electric field, that
⇀
E ·

⇀
∇σ reaches maximum.

A much larger
⇀
f e can be predicted according to Equation (3), relative to that in the case B.

In the following section, the electrokinetics micromixer with conductive sidewalls will be
characterized.
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3.2. Effect of Electric Conductivity Ratio

According to Equations (2) and (3), two mixing streams with conductivity gradient

were subject to an external electric field; mixing was directly influenced by the
⇀
f e [31].

In order to conduct a parametric study to quantify the effect of the conductivity ratio
of the two streams on the mixing performance, we kept the AC signal of fAC = 10 kHz
and EA = 833 V/cm (corresponding to AC amplitude of 10 Vp-p.) Three conductivity ratios
(γ = σ1/σ2, with σ1 ≥ σ2) between the two streams were investigated, and they are 1, 2,
and 10, respectively.

Mixing performances under different conductivity ratio are shown in Figure 4.
Figure 4a,b indicates that the mixing is stronger at γ = 2 than that at γ = 1. When
γ = 10 (Figure 4c), the mixing is the strongest among these three cases. In Figure 4d, the
corresponding concentration distribution (evaluated by fluorescence intensity) in the trans-
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verse direction is displayed. As we know, the stronger the mixing, the more uniform the
concentration in the transverse direction at a given streamwise position. The curve should
approach flat when the fluids are well mixed in the microchannel. According to Figure 4d,
when the conductivity ratio γ is 10, concentration distribution reached a relatively uniform
profile at x/w = 3 (w is the width of the microchannel) from the entrance. While γ are 1
and 2, at the same streamwise position, C distributions were far away from a flat profile.
The mixing result is evaluated by a mixing index κ, which is similar (but different) to the
mixing criterion used in Arockiam et al.’s work [32] and is defined as:

κ = 1−

√〈
(C− 〈C〉)2

〉
〈C〉 (4)

where 〈·〉 denotes ensemble averaging. Here, 0 ≤ κ ≤ 1. The higher κ, the stronger the
mixing. It can be seen from Figure 4e, when γ = 1, κ is nearly flat which indicates the
mixing is not enhanced under the external electric field. When γ = 2, κ increases gradually
along streamwise direction. At x/w = 4, κ is about 0.65, which is approximately three
times larger than that of γ = 1. When γ = 10, κ increases rapidly and reaches 0.84 at
x/w = 1.5. It is twice larger than that of γ = 2 and the time cost is only 30 ms. Note there
is a little fluctuation of κ along streamwise direction, which is because of the non-uniform
excitation light distribution of the microscope.
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Figure 4. Visualization and comparison of mixing results in the micromixer with different con-
ductivity ratios γ at EA = 833 V/cm. (a) γ = 1, (b) γ = 2, (c) γ = 10, and (d) comparison of
concentration profile in transverse direction at x/w = 3 from the channel entrance (marked by red
line) with different conductivity. (e) Mixing index varying along streamwise direction at different
conductivity ratios.
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Specially, mixing results under the same low γ = 2 in both conductive sidewalls
micromixer and plastic sidewalls micromixer with electrodes located at the ends of the
channel were measured and compared, as shown in Figure 5. In this part, the applied
electric fields are kept constant, i.e., EA = 200 V/cm for the two mixers. For the case of
Figure 5c, a periodic electric field was added to the applied static electric field, to enhance
mixing, which is EA = 1667 V/cm (with 20 Vp-p voltage) in amplitude and fAC = 10 Hz.
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Figure 5. Visualization and comparison of mixing result in micromixer with electrodes located at
ends of channel (a,b) and micromixer with conductive sidewalls (c,d), (a) without voltage, (c) with
voltage; sidewall, (b) without voltage, and (d) with voltage.

Figure 5 clearly shows that, under electric field EA = 200 V/cm, obviously stronger
mixing has been achieved in the micromixer with conductive sidewalls, as shown in
Figure 5d. However, in the micromixer with the nonconductive sidewalls, where the
electrodes are located at ends of the channel, no obvious mixing enhancement was observed
(Figure 5b).

3.3. Effect of AC Frequency

Influence of AC frequency on mixing has also been investigated in a wide range from
100 Hz to 2 MHz. Fluid mixing under DC voltage was also presented as a comparison.
To study the effect of AC frequency on mixing, the electric field was kept constant as well
as in the DC situation, i.e., EA = 1000 V/cm.

Figure 6 shows the results of mixing under DC voltage and different frequencies of
AC voltage. When fAC = 10 KHz, the mixing performance is stronger than that when
the frequencies are 1 MHz and 2 MHz. When DC voltage was applied on electrodes,
strongest mixing was achieved in a very short time. However, bubbles were also generated
within 1 s since voltage was applied. The channel was finally blocked by these bubbles.
C distributions in the transverse direction are shown in Figure 6e for three different AC fre-
quency mixing results. According to this quantitative C distribution, when fAC = 10 KHz,
concentration distribution reaches relative uniformity at x = 2.3w from the entrance. At the
same streamwise position, however, when fAC = 1 MHz and 2 MHz, the profiles of the
concentration distribution are still far from uniform. From Figure 6f, it can be seen that κ is
always the largest at fAC = 10 KHz, compared with that under other AC frequencies.

Moreover, mixing results under high frequency were also investigated. It was found
that, rapid mixing result can be also achieved at high frequency besides low frequency as

long as the
⇀
E is sufficiently strong. Results are shown in Figure 7. Applied frequencies

vary from 30 MHz to 40 MHz, and the EA was increased to 1667 V/cm.
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Figure 6. Visualization and comparison of mixing results in microchannels with different frequencies
of AC and DC signals. Here, γ = 10 and EA = 1000 V/cm. (a) DC, (b) fAC = 10 KHz, (c) fAC = 1 MHz,
(d) fAC = 2 MHz, and (e) comparison of concentration profile in transverse direction at x = 2.3w
from the channel entrance with AC signal. (f) Mixing index varying along streamwise direction at
different AC frequencies.

Figure 7 shows mixing results under each fAC. It obviously shows that mixing is
stronger when fAC = 30 MHz, than that when fAC = 35 MHz and 40 MHz. However, at
EA = 1667 V/cm (limitation of the function generator), 40 MHz was the highest frequency at
which we can achieve mixing augmentation in this mixer. It is also an important advantage
that mixing can be acquired under high AC frequency electric field, since in many cases, low
frequency AC signal could generate bubbles due to electrolysis in microchannels, especially
when highly conductive buffer is used. The present new design of the micromixer could
significantly reduce the risk of generation of bubbles in the microfluidic device, when the
operation AC frequency is increased to higher than 10 kHz. Especially, even in fluids with
relatively high conductivity (1000 µS/cm), no bubble was generated.
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It is known that the EK flow can become unstable or perturbated when applied EA
exceeds a threshold value under a certain frequency. This particular EA value is called
critical EA, beyond which the interface becomes fluctuating. The relation between critical
EA and frequency was investigated in the micromixer with conductive sidewalls, as plotted
in Figure 8.
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Figure 8 suggests that, along with the increasing of frequency, the critical voltage
required for the mixing enhancement is also increased. For fAC = 1 Hz, EA = 67 V/cm
is sufficiently large to result in mixing augmentation inside the microchannel. When the
frequency is increased to 1 MHz, EA = 333 V/cm is required to enhance the mixing. Since the
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applied AC frequency covers 6 orders, several different EK mechanisms could exist in the
mixing process. Although the general form of electric body force is known, a comprehensive
theory for predicting the critical values of local EA has not been established for the broad
frequency range. Nevertheless, in the high frequency regime, i.e., fvc � fAC � 〈σ〉/2πε
(where fvc is the cut-off frequency of velocity fluctuation in frequency domain), according
to the theory of Zhao and Wang [13], we have approximately:∣∣∣∣⇀f e

∣∣∣∣ ∼ − εE2
A

w

(
γ− 1
γ + 1

)(
1− β2

)
(5)

where β = 2π fACε/〈σ〉 is a dimensionless AC frequency. As fAC is increased, β increases

accordingly, and thus,
⇀
f e is decreased. To generate sufficiently large

⇀
f e to disturb the flow,

EA must accordingly increase simultaneously.
According to the theoretical research of Zhao and Wang [12,13], the electric volume

force in DC electric field is larger than that in AC electric field, under equivalent electric
field magnitudes. The present experimental investigation on frequency effect supports the
theoretical conclusion, and the fastest mixing could be achieved under DC electric field
in a very short time. However, for practical applications, to avoid bubbles generated by
electrolysis, the AC electric field is applied.

3.4. Electric Field Effect

As the EBF plays a key role in the currently designed mixing process, mixing should

be directly related to
⇀
E . Therefore, voltage effect on mixing result was investigated. In this

experiment, frequencies of the applied signals are kept constant, i.e., fAC = 10 kHz. EA was
varied from 0 Vp-p to 1167 V/cm (14 Vp-p).

Figure 9 shows mixing performance under different applied EA. As visualized in
Figure 9, despite the molecular diffusion, there is no obvious mixing on the interface of the
two streams when no EA is supplied. However, the mixing can be significantly enhanced
when the applied EA is increased to 500 V/cm. With further increasing EA to 1167 V/cm,
the mixing becomes the strongest.

Figure 9d shows the quantitative concentration C distribution in the transverse direc-
tion, at streamwise position x/w = 3 away from the entrance. It shows that, C distribution
under 1167 V/cm reaches relative uniformity at x/w = 3 from the entrance, while at the
same streamwise position, the profile of the concentration distribution under EA of 0 and
500 V/cm are still far from flat. The same consequence can also be concluded from Figure 9e,
where higher electric field results in higher mixing index. Especially at EA = 1167 V/cm, κ
reaches 0.83 at x/w = 0.71, which only costs time in the amount of 14 ms. All the results
indicate that mixing is enhanced rapidly with increased electric field in the conductive
sidewalls micromixer.

It should be noted that, besides the EK flow generated directly on the interface of
electric conductivity gradient, there are also two additional EK flows generated in the
electrokinetic micromixer system. One is the induced charge electrokinetic flow adjacent to
the electrodes [33], the other is electro-osmotic flow on the top and bottom walls.

When the electric voltage applied is sufficiently large, nonlinear induced charge with
vortical structures can be induced adjacent to the electrodes because of concentration
polarization. The flow can be chaotic and apparently enhance fluid mixing in the diffusion
layer, which is several hundred times of Debye length from electrodes [34]. Therefore, the
mixing of fluids can be enhanced by nonlinear EK flow induced near electrodes. Besides,
due to the unbalanced electric field on the low and high electric conductivity streams, a
large scale vortical flow can be generated by the electro-osmotic flow (EOF) adjacent to
the top and bottom walls, as have been investigated by Nan et al. [25]. The vortical flow
could significantly enhance the 3D mixing of fluids on large scales. Thus, the fast mixing is
achieved as a result of all these EK mechanisms.
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Figure 9. Visualization and comparison of mixing result in microchannels with various EA. Here,
fAC = 10 kHz and γ = 10. (a) 0; (b) 500 V/cm; (c) 1167 V/cm; and (d) comparison of concentration
profile in transverse direction at x/w = 3 from the channel entrance with different AC voltages.
(e) Mixing index varying along streamwise direction at different EA.

3.5. Re Number Effect

Different Re number effects on mixing results were investigated as well. In this
experiment, frequency of the applied signal is kept constant, i.e., fAC = 10 kHz. Applied
EA was kept at 500 V/cm. Flow rate was changed in the range of 1 µL/min to 5 µL/min to
increase Re. Three different Re numbers, i.e., 0.1, 0.3, and 0.5 were compared. Results are
shown in Figure 10.

As visualized in Figure 10, the mixing is strongest at a given downstream position
when the Re number was 0.1, compared with situations where the Re numbers were 0.3
and 0.5. The mixing length (the downstream distance from the inlet of the channel required
for the mixing to be achieved in the transverse direction, not the Prandtl mixing length
in turbulent flows) is much shorter when low Re number was applied than when high
Re number was applied. Note that although the mixing length is shorter at lower Re,
the mixing time (required for the mixing to be achieved in transverse direction) is not
necessarily shorter because the bulk flow velocity is larger in the higher Re.
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Here we use mass transport equation to explain the observed effect of Re on mix-
ing. In EK micromixer, the mixing is dominated by the scalar transport due to velocity
fluctuations. This can be explained by a convection–diffusion equation, as:

∂C
∂t

+
→
u ·∇C = D∇2C (6)

where D is the diffusion coefficient. Considering a quasi-steady process, i.e.,
→
u =

→
u′ + U

(where
→
u′ is the velocity fluctuation primarily attributed to EBF), C = C + c′ and ∂C/∂t = 0.

C and c′ are the mean value and fluctuations of concentration, respectively. Subsequently,
we have:

∂c′
∂t

+

(→
u′ + U

)
·∇
(
C + c′

)
= D∇2(C + c′

)
(7)

Taking temporal averaging on Equation (6), we have:

→
u′·∇c′ + U·∇C = D∇2C (8)

By combining Equations (6) and (7), and considering U is only in streamwise direction,
we further have the transport equation of c′, which is:

∂c′
∂t

+
→
u′·∇C +

→
u′·∇c′ + U

∂c′

∂x
−∇·

(
c′
→
u′
)
= D∇2c′ (9)

Since EBF is perpendicular to the flow direction,
→
u′ is in transverse direction initially

at the interface between the two streams. Normally c′/C � 1, we dimensionally have
→
u′·∇C �

→
u′·∇c′. If we only focus on large-scale concentration fluctuations, the influence
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of the diffusion term can also be ignored. Thus, the initial spreading of the mixing can be
approximately determined by:

∂c′
∂t

+ v′
∂C
∂y

+ U
∂c′

∂x
−∇·(c′u′) = 0 (10)

where v′ is the velocity fluctuation component in y direction. The mixing of fluids is primar-
ily determined by two convection terms, which are v′∂C/∂y and U∂c′/∂x. Dimensionally,

in the EK flow, v′2 ∼
∣∣∣∣⇀f e

∣∣∣∣, and U ∼ Re. When the electric field intensity and solutions are

given,
∣∣∣∣⇀f e

∣∣∣∣ could be approximately fixed in the initial stage in this investigation, and thus

v′2 remains approximately unchanged. In addition, in turbulent flows, commonly, v′
U < 1.

Consequently, as Re is increased, U∂c′/∂x convects and transports more mass downstream
before they are spreading along transverse direction by the relatively smaller v′∂C/∂y.
Hence, mixing in our mixer could have a much shorter mixing length under lower Re
number than that under high Re number.

4. Conclusions

In this paper, a novel quasi T-channel micromixer with conductive sidewalls is intro-
duced. Compared with the conventional micromixers, where electrodes are located at the
ends of the channel and the electric field and conductivity gradient are orthogonal, the
micromixer with conductive sidewalls, where the electric field and conductivity gradient
are parallel, can generate faster mixing under the same electric field. In the present device,
no amplifier or high voltage supply is required, and a function generator is sufficient to
create fast mixing. Furthermore, effects of Re numbers, electric field strength, AC frequency,
and conductivity ratio on mixing results have been studied in the conductive sidewall
micromixer. The results reveal that the mixing length is shorter with lower Re number
and AC frequency, and stronger electric field and higher conductivity ratio. This mixing
strategy provides a new and convenient method for enhancing the mixing of two fluids at
low Re in microchannels, which is a common key step in sample pretreatment in biomedical
and biochemical analysis applications.
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