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Neuroimaging studies have shown that functional brain networks composed from select
regions of interest have a modular community structure. However, the organization of
functional network connectivity (FNC), comprising a purely data-driven network built from
spatially independent brain components, is not yet clear.The aim of this study is to explore
the modular organization of FNC in both healthy controls (HCs) and patients with schizo-
phrenia (SZs). Resting state functional magnetic resonance imaging data of HCs and SZs
were decomposed into independent components (ICs) by group independent component
analysis (ICA).Then weighted brain networks (in which nodes are brain components) were
built based on correlations between ICA time courses. Clustering coefficients and connec-
tivity strength of the networks were computed. A dynamic branch cutting algorithm was
used to identify modules of the FNC in HCs and SZs. Results show stronger connectivity
strength and higher clustering coefficient in HCs with more and smaller modules in SZs. In
addition, HCs and SZs had some different hubs. Our findings demonstrate altered modular
architecture of the FNC in schizophrenia and provide insights into abnormal topological
organization of intrinsic brain networks in this mental illness.
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INTRODUCTION
Modular community structure is one of the most ubiquitous prop-
erties of complex networks (Newman, 2006; Bullmore and Sporns,
2009) and is repeatedly demonstrated in resting state functional
brain connectivity networks (Salvador et al., 2005; Ferrarini et al.,
2009; He et al., 2009; Meunier et al., 2009b; Smith et al., 2009; Shen
et al., 2010). Each module consists of brain regions which may be
functionally associated and subserve similar roles (Ravasz et al.,
2002; He et al., 2009). Modular structure is crucial for robustness
of network stability (Variano et al., 2004) and optimal network
functions (Pan and Sinha, 2007), and is related to the balance
of functional segregation and integration and high resilience to
network node or edge damages (He et al., 2009; Rubinov and
Sporns, 2010). Modularity of brain networks may play a critical
role in its evolution and neurodevelopment (Kashtan and Alon,
2005; Meunier et al., 2010; Bassett et al., 2011). Some studies have
identified different modular communities of brain networks in
different groups. For example, Meunier et al. (2009a) showed age-
related changes of modules in brain networks; Balenzuela et al.
(2010) found differences in the membership of key communi-
ties of frontal and temporal regions; Alexander-Bloch et al. (2010)
detected disrupted modularity of functional brain networks in
childhood-onset schizophrenia. However, these studies typically

work with networks whose nodes are selected regions of interest
(ROIs) which do not necessarily respect the functional boundaries
of the human brain. Several studies have demonstrated detriment
to network estimation using atlas-based ROIs, both with simulated
and real data (Smith et al., 2011; Craddock et al., 2011; Shirer et al.,
2012). In contrast, independent component analysis (ICA), which
has been widely used to analyze fMRI data after the initial work of
McKeown et al. (1998), provides a natural approach to construct
networks by defining brain components as functionally homo-
geneous nodes (Ding et al., 2011; Yu et al., 2011). In this study,
weighted networks were built based on ICA-derived components.

It has been hypothesized that brain disorders such as schizo-
phrenia are associated with developmental factors (van Os et al.,
2010), thus it is sensible to examine modular organization in
schizophrenia in the hope that it may provide biomarkers of
altered brain development in this psychosis (Alexander-Bloch
et al., 2010). Although Jafri et al. (2008) evaluated functional con-
nectivity among brain components (which was called functional
network connectivity, FNC) by computing pairwise correlations
between ICA time courses and identified differences in FNC of
resting state brain networks in patients with schizophrenia (SZs)
as compared to healthy controls (HCs), and Yu et al. (2011)
found altered small-world topological metrics of FNC in SZs, the
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modular organization of FNC in both HCs and SZs has not been
studied.

The present study is aimed to explore the community structure
of resting state brain networks consisting of intrinsic temporally
coherent brain components in both HCs and SZs. Resting state
functional magnetic resonance imaging (R-fMRI) data acquired
from HCs and SZs were decomposed into independent compo-
nents (ICs) by group ICA. To avoid hard thresholding, weighted
networks were built from Pearson correlation of ICA time courses.
Then, a dynamic branch cutting algorithm (Langfelder et al., 2008;
Mumford et al., 2010) was employed to detect modules of the FNC.
Based on previous studies (He et al., 2009; Alexander-Bloch et al.,
2010; Mumford et al., 2010) which found modular organization of
brain networks and dysconnectivity in schizophrenia, we predicted
that the brain components of the FNC could be grouped into mod-
ules in both groups and the modular organization would be altered
in SZs compared with HCs. We believe the results will increase our
understanding of the organization of data-driven functional brain
networks in schizophrenia.

MATERIALS AND METHODS
PARTICIPANTS
Subjects consisted of 24 (eight females) HCs (mean age: 31.7 ± 9.2;
range: 23–50) and 24 (five females) SZs (mean age: 35.9 ± 12.1;
range: 21–52). Age showed no significant group difference (two-
sample t -test, P = 0.18). All subjects provided written, informed,
IRB-approved consent from Hartford Hospital and Yale Univer-
sity and were compensated for their participation. Schizophrenia
was diagnosed according to DSM-IV TR criteria on the basis
of a structured clinical interview (First et al., 1995) adminis-
tered by a research nurse and by review of the medical records.
All patients had chronic schizophrenia (positive and negative
syndrome scale, PANSS; Kay et al., 1987: positive score 16 ± 6,
range 7–28; negative score 15 ± 6, range 7–27) and all were tak-
ing medication (including the atypical antipsychotic medications
aripiprazole, clozapine, risperidone, quetiapine, and olanzapine,
first-generation antipsychotics including fluphenazine, and mis-
cellaneous mood-stabilizing, hypnotic, and anti-cholinergic med-
ications including zolpidem, zaleplon, lorazepam, benztropine,
divalproex, trazodone, clonazepam). All participants except one
HC and three patients were right-handed. Exclusion criteria
included auditory or visual impairment, mental retardation (full
scale IQ < 70), traumatic brain injury with loss of consciousness
greater than 15 min, and presence or history of any central nervous
system (CNS) neurological illness. Participants were also excluded
if they met criteria for alcohol or drug dependence within the past
6 months or showed a positive urine toxicology screen (screening
was for cocaine, opioids including methadone, cannabis, ampheta-
mine, barbiturates, PCP, propoxyphene, and benzodiazepines) on
the day of scanning. Healthy participants were free of any DSM-IV
TR Axis I disorder or psychotropic medication and had no family
history of Axis I disorders. A subset of the data has been reported
in Yu et al. (2011).

IMAGE ACQUISITION
One 5-min resting state run for each subject was acquired at
the Olin Neuropsychiatry Research Center at the Institute of

Living/Hartford Hospital on a Siemens Allegra 3T dedicated head
scanner equipped with 40 mT/m gradients and a standard quad-
rature head coil. Functional scans were acquired transaxially using
gradient-echo echo-planar-imaging with the following parame-
ters: repeat time (TR) 1.50 s, echo time (TE) 27 ms, field of
view 24 cm, acquisition matrix 64 × 64, flip angle 70˚, voxel size
3.75 mm × 3.75 mm × 4 mm, slice thickness 4 mm, gap 1 mm, 29
slices, ascending acquisition. Six “dummy” scans were acquired at
the beginning to allow for longitudinal equilibrium, after which
the paradigm was automatically triggered to start by the scanner.

PREPROCESSING
Functional magnetic resonance imaging Data were preprocessed
using the SPM51 software package. Data were motion corrected
using INRIalign, a motion correction algorithm unbiased by local
signal changes (Freire et al., 2002), spatially normalized into
the standard Montreal Neurological Institute (MNI) space, and
spatially smoothed with a 10 mm × 10 mm × 10 mm full width
at half-maximum Gaussian kernel. Following spatial normaliza-
tion, the data (originally acquired at 3.75 mm × 3.75 mm × 4 mm)
were resliced to 3 mm × 3 mm × 3 mm, resulting in 53 × 63 × 46
voxels.

GROUP ICA
Group spatial ICA (Calhoun et al., 2001, 2009) was performed
using the GIFT software2. Subject-specific data reduction by prin-
cipal components analysis (PCA) retained 100 principal com-
ponents (PCs) using a standard economy-size decomposition.
Group data reduction retained 75 PCs using the expectation-
maximization (EM) algorithm, included in GIFT. Reduced data
for all 48 participants were then decomposed into 75 aggregate
components (this model order was manually set). We chose the
relatively high model order ICA as previous studies demonstrated
that such models yield refined components which correspond
to known anatomical and functional segmentations (Kiviniemi
et al., 2009; Smith et al., 2009; Abou-Elseoud et al., 2010; Allen
et al., 2011). The Infomax ICA algorithm (Bell and Sejnowski,
1995) was repeated 10 times in ICASSO3 and resulting compo-
nents were clustered to estimate the reliability of the decompo-
sition. Following the group decomposition, single subject time
courses and spatial maps were back-reconstructed (Calhoun et al.,
2001; Erhardt et al., 2011). Fifty-seven components that did
not contain large edge effects or ventricles by visual inspection
were selected for further analysis. Temporal band-pass filtering
(0.01 < f < 0.10 Hz; Cordes et al., 2001; Auer, 2008) was per-
formed on all the component time courses before computing the
correlations.

WEIGHTED NETWORK BUILDING
Following Mumford et al. (2010), N × N (N = 57 in this study)
weighted networks (in which nodes are ICs) were built for each
subject. The weighted network approach allows the connection
between two components to be a continuous measure ranging

1http://www.fil.ion.ucl.ac.uk/spm/software/spm5/
2http://mialab.mrn.org/software/gift/
3http://research.ics.tkk.fi/ica/icasso/
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between 0 and 1. The first step was to calculate the Pearson corre-
lation of ICA time courses between all pairs of brain components,
rij. To distinguish between positive and negative correlations, we
then computed a signed similarity measure (Mason et al., 2009)
defined as

Sij = rij + 1

2
· (1)

Note that a correlation of −1 has a similarity of 0.
Since altered network metrics have been found in SZs (Lynall

et al., 2010). It is natural to examine properties such as connectiv-
ity strength and clustering coefficient of the weighted FNC in the
present study. Connectivity strength is a global measure of con-
nectivity (Lynall et al., 2010). The strength of the ith component is
likewise defined as the average of the correlations between it and
all other brain components,

ki = 1

N − 1

∑

j

Sij · (2)

Then the connectivity strength of whole network is

knet = 1

N

∑

i

ki · (3)

The clustering coefficient can characterize the local structure
of graphs (Onnela et al., 2005; Rubinov and Sporns, 2010). In a
weighted network, the clustering coefficient can be computed as

Cw
net = 1

N

∑

i

2t w
i

ki (ki − 1)
,

where

t w
i = 1

2

∑

j ,h

(
Sij SihSjh

)1/3· (4)

IDENTIFYING MODULES
Modules of the weighted FNC were indentified in two steps. First,
a dendrogram was created using average linkage hierarchical clus-
tering with the dissimilarity measure, 1 − Sij. Then, the clusters in
the resulting dendrogram were indentified using dynamic branch
cutting algorithm (Mumford et al., 2010). This approach detects
clusters in a hierarchical tree based on the tree shape, as opposed
to defining each contiguous branch below a fixed height cutoff as
a separate cluster. For details of the algorithm, see Langfelder et al.
(2008).

When performing the dynamic tree cut algorithm, the mini-
mum module size is a free parameter and must be chosen by the
user. By inspection of the dendrogram of controls (see Figure 2),
a branch (i.e., Module I) composed of six nodes is visually dis-
tinct, therefore, a minimum module size of six components was
specified in this study.

Highly connected components within a module could be iden-
tified by the measure of intramodule connectivity which is given
by

k
q
i = Si1 + Si2 + . . . + Sinq · (5)

Where nq is the number of components in module q (Mumford
et al., 2010). Its z-score can be computed as

zi = k
q
i − k̄q

σq
(6)

Where k̄q is the average intramodule connectivity over all nodes
in module q (Guimera and Amaral, 2005; Meunier et al., 2009a;
Balenzuela et al., 2010) and σq is the corresponding SD of the
intramodule connectivity in module q. Thus, zi will be higher for
nodes that are more strongly connected to the other nodes in the
same module. In this study, we define a node with zi > 1.0 as a hub.

STATISTICAL ANALYSIS AND GROUP LEVEL ANALYSIS
Since a weighted network (similarity matrix) was built for each
subject, network metrics and modular organization were deter-
mined for each individual. Statistical differences between HCs
and SZs of connectivity strength (knet) and clustering coefficient
(Cw

net) for the whole network and individual nodes were assessed
with two-tailed two-sample t -tests. A statistical comparison of the
number of modules between the two groups was performed using
a non-parametric permutation test (100,000 iterations).

For modular analysis at the group level, a mean similarity
matrix was first computed for each group (by averaging across
24 subjects), then modules and hub nodes of each group mean
similarity matrix were determined.

For all statistical analyses, false discovery rate (FDR) was used
to correct for multiple comparisons accordingly.

RESULTS
GROUP ICA AND WEIGHTED NETWORK
Brain components indentified by ICA are similar to those observed
in previous studies (Abou-Elseoud et al., 2010; Allen et al.,
2011). Spatial maps for each of the selected 57 ICs are shown
in Figures A1–A6 (images are displayed using neurological con-
vention). ICs are indexed based on the sequence of output from
GIFT. Figure 1 shows the mean connectivity matrix (after order-
ing by modules) calculated by averaging the N × N (N = 57 in
this study) signed similarity matrix across all 24 subjects within
each group.

Connectivity strength of the whole network is slightly higher
(as is evident in Figure 1) in HCs (HCs: 0.558 ± 0.035; SZs:
0.541 ± 0.025; P = 0.057, marginally significant). The cluster-
ing coefficient of the whole network is also higher in HCs
(HCs: 0.548 ± 0.033; SZs: 0.530 ± 0.026; P = 0.043). Connectiv-
ity strengths and clustering coefficients of some individual nodes
are also higher in HCs (see Table A1 in Appendix), though none
of the tests pass significance (P < 0.05) after FDR correcting for
multiple comparisons over 57 nodes.

MODULAR ORGANIZATIONS
Compared with controls, more numerous and smaller communi-
ties were identified in SZs. Module counts, listed as the number of
modules (number of subjects with that number of modules) were
for HCs, 3(3) 4(9) 5(8) 6(4) 7(0), mean 4.54, and for SZs, 3(0)
4(5) 5(9) 6(9) 7(1), mean 5.25 (permutation test for a difference
in means, P = 0.005).
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FIGURE 1 | Structure of mean signed similarity for each group

after organized by modules. ICs’ index (from top to down; from
left to right) is: HC, Module I (22 30 31 36 52 57), Module II (8 13 20
34 50 51 9 37 45 54), Module III (4 21 25 27 39 40 43 53 6 12 15 17
48), Module IV (3 32 42 2 5 7 18 23 26 38 44), Module V (19 24 28

33 35 47 49 55 10 16 29 46 56 1 11 14 41); SZ, Module I (22 30 31
36 52 57), Module II (8 13 20 34 50 51 1 11), Module III (4 21 25 27
39 40 43 53 5 18), Module IV (3 32 42 9 12 14 17 37 41 45 48 54),
Module V (19 24 28 33 35 47 49 55 2 6 15 23 26 38 44), Module VI
(10 16 29 46 56 7).

For group level networks, five and six communities were inden-
tified in HCs and SZs, respectively. Figure 1 shows the structure
of mean connectivity in each group after organizing ICs by mod-
ules. Figure 2 shows group results of dendrogram and modules
indentified by the dynamic tree cut algorithm in HCs and SZs.
After inspecting and counting the number of common ICs in
each community between the groups, the modules were indexed
and labeled as Module I (green), Module II (yellow), Module III
(blue), Module IV (brown), Module V (turquoise), and Module
VI (red). Figure 3 shows the community structure of the FNC
for each group. Table 1 depicts the summary of the community
organization in each group. Spatial maps of the components in
each module for the two groups are shown in Figures A1–A6 in
Appendix.

A descriptive analysis of these findings can be summarized as
follows. Module I is composed of six ICs, most of which are cere-
bellar and occipital components. All of the six ICs are common
in the two groups. We designated this module as the “cerebellar–
occipital module” (C–O Module). In Module II, the two groups
have six common ICs most of which can be considered to represent
default mode network (DMN) regions (Buckner et al., 2008). HCs
have another four nodes which are also loosely characterized as
DMN components, whereas SZs have an additional frontal com-
ponent and temporal component. This module was designated
as the “DMN Module.” In Module III, there are eight common
components for HCs and SZs. HCs have an additional five ICs
and SZs have two unique ICs. As the components of this module
in HCs span almost the whole brain, we designated this mod-
ule as the “Global Module” (G1 Module). Module IV consists of
eleven brain components in HCs and twelve components in SZs

with only three ICs common between groups. Since most of the
brain components of this module in HCs spatially coincide with
elements of the attention network (Corbetta and Shulman, 2002;
Vincent et al., 2008), we designated this module as the “Attention
Module” (A Module). Module V is composed of seventeen ICs
in HCs and fifteen ICs in SZs with eight common brain compo-
nents between groups. Because HCs components represent regions
across almost the whole brain, we designated this module a“Global
Module” (G2 Module) as well. Module VI, which is only present
in SZs, is composed of six occipital components, thus we desig-
nated it the “occipital module” (O Module). Note that the occipital
components are distributed over other modules for the HCs.

HUBS
Hubs of each module in each group were identified by computing
intra-module connectivity. In Module I (C–O Module), HCs have
two cerebellar hubs while SZs have one cerebellar hub. One hub
is common in the two groups. In Module II (DMN Module), a
frontal hub is common in both groups. In Module III (G1 Mod-
ule), there are three hubs including one occipital component one
cerebellar component and one precuneus component in HCs; two
hubs including one occipital and one cerebellar component in SZs.
One occipital hub is common. In Module IV (A Module), there
are two parietal hubs in HCs and two hubs including one pari-
etal and one cingulum components in SZs. No hub is common
in this module. In Module V (G2 Module), two hubs including
one parietal and one temporal component were identified in HCs,
whereas three hubs including one motor, one temporal, and one
parietal component were identified in SZs. The temporal hub is
common in both groups. See Table 1 for a summary of hubs
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FIGURE 2 | Dendrogram and modules found using the dynamic tree

cutting algorithm in each group. Each figure shows the hierarchical
structure of the FNC based on the mean signed similarity across 24 HCs or 24
SZs. Modules are labeled by colors. Numbers under maps of brain
components are IC indexes as determined by the sequence of output from
GIFT. Not all nodes in a same module are close to each other in the

dendrogram (see Module IV and Module V of HCs for example). That is
because “Dynamic Hybrid” variant which improves the detection of outlying
members of each cluster was selected when performing the dynamic branch
cut algorithm. In addition to information from the dendrogram, it utilizes
dissimilarity information among the objects. For details of the algorithm see
Langfelder et al. (2008).

in each community. For the spatial maps of hub component see
Figures A1–A6 in Appendix.

DISCUSSION
The main aim of this study was to evaluate the modular
organization of FNC in HCs and SZs. Weighted networks were
built based on Pearson correlation coefficients between time
courses for 57 brain ICs (selected as physiologically relevant from
all 75 ICs obtained) decomposed from R-fMRI data. HCs had
slightly higher connectivity strength and higher clustering coeffi-
cient. Communities of the FNC in both groups were identified by
using a dynamic tree cut algorithm. Compared to HCs, SZs showed
more numerous and smaller modules. In addition, some hubs dif-
fered in the FNC of SZs. Our results suggest that brain networks in
schizophrenia are dysfunctional due to dysmodular organization
of FNC. This kind of aberrant functional brain organization may
contribute to abnormal mind of schizophrenia or vice versa.

Rather than using topological nodes defined by anatomical
templates such as automated anatomical labeling (AAL; Tzourio-
Mazoyer et al., 2002) as in most previous studies (Bullmore and
Sporns, 2009), the nodes of our weighted brain graphs are ICs.

Our nodal definition is purely data-driven. Each IC presents a
temporally coherent set of regions which we believe will pro-
vide a more accurate representation of intrinsic functional brain
organization. Although some components overlap, the degree of
spatial overlap is small because the components are maximally
spatially independent.

The finding that connectivity strength of the FNC is higher
in HCs provides supporting evidence for the schizophrenia func-
tional dysconnectivity hypothesis (Friston and Frith, 1995) con-
sistent with previous studies (Liang et al., 2006; Bluhm et al., 2007;
Pettersson-Yeo et al., 2011). Meanwhile, higher clustering coef-
ficient in HCs is in line with prior studies employing a graph
theoretic analysis of brain networks (Liu et al., 2008; Lynall et al.,
2010). Our results present novel evidence for altered topological
properties in schizophrenia.

The grouping of ICs into several communities by the dynamic
branch cut algorithm in both groups is consistent with previous
studies which identified modular organization in human brain
networks during the resting state (He et al., 2009; Meunier et al.,
2009a). Interestingly, we found five corresponding communities
in controls and patients which were designated as “C–O Module,”
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FIGURE 3 | Schematic modular architecture of FNC for each group. Nodes
in a given module are placed in a small circle. To show how edges disappear
with threshold (T) change, graphs (each consisted of 57 ICs) built by T at 0.4,

0.5, 0.6, and 0.7 are shown respectively. An edge (either inter- or intra-module
edge) is shown in the graph if its weight bigger then T. The thicker and the
darker an edge, the higher its weight. Hubs are indicated by square nodes.

Table 1 | Summary of the modular organization of the group results in HCs and SZs.

IC index IC index

HC SZ HC hub SZ hub

Module I (green) 22 30 31 36 52 57 22 30 31 36 52 57 30 52 30

Module II (yellow) 8 13 20 34 50 51 8 13 20 34 50 51 50 50

9 37 45 54 1 11

Module III (blue) 4 21 25 27 39 40 43 53 4 21 25 27 39 40 43 53 40 48 53 40 27

6 12 15 17 48 5 18

Module IV (brown) 3 32 42 3 32 42 32 38 3 17

2 5 7 18 23 26 38 44 9 12 14 17 37 41 45 48 54

Module V (turquoise) 19 24 28 33 35 47 49 55 19 24 28 33 35 47 49 55 49 28 49 24 38

1 11 14 41 2 6 15 23 26 38 44

10 16 29 46 56

Module VI (red) 10 16 29 46 56 46

7

Common nodes (or hubs) in each module are bolded.

“DMN Module,”“Global Module” (G1 Module), “A Module,” and
“Global Module” (G2 Module) respectively. At the same time, our
analysis suggests a unique module (O Module) that is more distinct
in SZs. Some of these communities are consistent with previous
studies (He et al., 2009; Balenzuela et al., 2010). For example, He
et al. (2009) identified similar “attention” and “default” modules.
However, it is notable that only the brain components in the C–O
Module are identical between HCs and SZs. Some ICs in the DMN
Module, G1 Module, A Module, and G2 Module differ in patients.
This alteration in modular level of brain networks is in agreement

with other reports of functional dysconnectivity in schizophrenia
(Stephan et al., 2006; Cole et al., 2011). In addition, we identified
more and smaller communities in SZs. The O Module in SZs is
segregated from G2 Module of HCs. The findings may suggest that
communication is disrupted in the schizophrenic brain.

Hubs interact with other brain components, facilitate func-
tional integration, and play a key role in each module organization
(Rubinov and Sporns, 2010), thus it is important to examine the
changes in role of these nodes between groups (Balenzuela et al.,
2010). Here we found some hub differences between HCs and SZs.
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For example, there are five ICs including two cerebellar compo-
nents, one precuneus component, one parietal component, and
one central component that are hubs only in controls. Another
five ICs including one cerebellar component, one cuneus compo-
nent, one parietal component, one cingulum component, and one
motor component are hubs only in SZs. This finding is consistent
with previous studies which found abnormal activation (Gillig and
Sanders, 2010; White et al., 2011) or dysconnectivity of these brain
regions (Danckert et al., 2004; Cheung et al., 2008; Sui et al., 2010;
Zalesky et al., 2010) and support our hypothesis that modular
organization of FNC is altered in schizophrenia.

Several methodological issues should be considered. First, the
sample size is modest (24 HCs and 24 SZs), thus the robustness
of our results must be evaluated by replicating the work in larger
samples. We further note that although the group difference in
number of modules is statistically significant, some subjects from
different groups have the same number of modules based on the
individual results (nine HCs and five SZs showing four modules;
eight HCs and nine SZs showing five modules; four HCs and nine
SZs showing six modules). Thus, although we have focused mainly
on the differences in modular organization at the group level, there
is considerable variation at the individual level. Currently, it is not
clear how well modular organization may be estimated at the sub-
ject level, and this will be critical to address in future studies before
the modularity of FNC may be used in a clinical setting.

Another limitation is that all patients were taking psychotropic
medications, therefore drug effects can not be distinguished from
those related purely to the disorder. Future research should exam-
ine whether these results are similar in neuroleptic naive patients
or animal research examining changes in network connectivity
with administration of medication. Previous studies found func-
tional connectivity of R-fMRI was sensitive to the influence of head
motion (Van Dijk et al., 2012). However, in this study, estimated
movement parameters between groups were not significantly dif-
ferent (for maximum translation, two-sample t -test P = 0.434;

for maximum rotation, two-sample t -test P = 0.234), suggesting
that head motion may have little impact on the group differences
observed in our sample.

Finally, we comment on the impact of the minimum mod-
ule size, a free parameter which must be selected in the dynamic
branch cutting algorithm. For our primary analysis, we used a
minimum module size of six based on the distinctness and con-
sistency of Module I, however there is currently no mathematical
method to determine the appropriate parameter and it’s possible
that other values may lead to different results. Thus, we repeated
the analysis for values of the minimum module size ranging from
4 to 8 and found the same trend (SZs showing more modules. For
details of the results, see Table A2 in Appendix). We conclude that
although the ability to detect group differences is affected by the
choice of the minimum module size, the directionality of the effect
and resulting inference is unchanged.

CONCLUSION
To our knowledge, this is the first fMRI study using ICA and a
graph theoretic approach to explore modular organization in HCs
and SZs during the resting state. SZs showed decreased connectiv-
ity strength and clustering coefficient. Community structures of
the weighted FNC were detected in both groups using a dynamic
tree cut algorithm. Patients showed more and smaller modules
compared with controls. Different hubs between the two groups
were also identified. These findings suggest that intrinsic com-
munication among temporally coherent brain networks is dis-
rupted in schizophrenia, which may help to understand this brain
disorder at the level of connectivity among independent brain
components.
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APPENDIX

Table A1 | Connectivity strength and clustering coefficient of each individual node in HCs and SZs.

IC’s index Connectivity strength (mean ± SD) Clustering coefficient (mean ± SD)

HCs SZs HCs SZs

1 0.549 ± 0.050 0.537 ± 0.042 0.544 ± 0.043 0.528 ± 0.038

2 0.585 ± 0.064 0.559 ± 0.048 0.566 ± 0.052 0.542 ± 0.040

3*∧ 0.563 ± 0.050 0.529 ± 0.042 0.552 ± 0.042 0.521 ± 0.034

4 0.573 ± 0.060 0.548 ± 0.040 0.559 ± 0.050 0.535 ± 0.034

5 0.583 ± 0.056 0.559 ± 0.044 0.565 ± 0.046 0.541 ± 0.037

6*∧ 0.586 ± 0.070 0.549 ± 0.054 0.567 ± 0.056 0.535 ± 0.045

7 0.540 ± 0.056 0.520 ± 0.039 0.536 ± 0.044 0.516 ± 0.036

8 0.536 ± 0.058 0.521 ± 0.047 0.533 ± 0.048 0.513 ± 0.042

9 0.535 ± 0.073 0.533 ± 0.038 0.533 ± 0.057 0.524 ± 0.037

10 0.553 ± 0.046 0.539 ± 0.043 0.545 ± 0.035 0.529 ± 0.035

11 0.544 ± 0.050 0.545 ± 0.032 0.539 ± 0.041 0.534 ± 0.029

12 0.553 ± 0.056 0.536 ± 0.033 0.545 ± 0.045 0.527 ± 0.028

13 0.537 ± 0.054 0.530 ± 0.043 0.535 ± 0.047 0.523 ± 0.037

14 0.576 ± 0.059 0.551 ± 0.054 0.561 ± 0.049 0.536 ± 0.044

15*∧ 0.578 ± 0.060 0.538 ± 0.042 0.563 ± 0.049 0.528 ± 0.037

16 0.587 ± 0.060 0.562 ± 0.039 0.567 ± 0.048 0.545 ± 0.032

17*∧ 0.608 ± 0.061 0.565 ± 0.054 0.581 ± 0.050 0.546 ± 0.045

18 0.530 ± 0.063 0.540 ± 0.040 0.529 ± 0.046 0.530 ± 0.033

19*∧ 0.589 ± 0.052 0.557 ± 0.048 0.570 ± 0.043 0.541 ± 0.040

20 0.485 ± 0.065 0.492 ± 0.047 0.495 ± 0.052 0.495 ± 0.035

21*∧ 0.596 ± 0.046 0.559 ± 0.050 0.573 ± 0.040 0.543 ± 0.040

22 0.488 ± 0.078 0.492 ± 0.045 0.498 ± 0.055 0.496 ± 0.030

23 0.547 ± 0.060 0.524 ± 0.042 0.541 ± 0.049 0.519 ± 0.035

24*∧ 0.604 ± 0.058 0.563 ± 0.054 0.578 ± 0.048 0.544 ± 0.044

25 0.567 ± 0.062 0.551 ± 0.058 0.554 ± 0.050 0.536 ± 0.048

26 0.584 ± 0.060 0.557 ± 0.044 0.565 ± 0.049 0.541 ± 0.037

27 0.602 ± 0.054 0.585 ± 0.044 0.577 ± 0.045 0.559 ± 0.037

28*∧ 0.595 ± 0.053 0.566 ± 0.044 0.573 ± 0.044 0.547 ± 0.037

29∧ 0.521 ± 0.048 0.502 ± 0.045 0.522 ± 0.032 0.502 ± 0.033

30 0.504 ± 0.058 0.515 ± 0.039 0.512 ± 0.039 0.513 ± 0.029

31 0.507 ± 0.051 0.527 ± 0.045 0.514 ± 0.039 0.520 ± 0.034

32 0.570 ± 0.053 0.548 ± 0.049 0.556 ± 0.045 0.535 ± 0.039

33 0.584 ± 0.058 0.568 ± 0.043 0.565 ± 0.047 0.549 ± 0.036

34 0.472 ± 0.047 0.482 ± 0.036 0.485 ± 0.042 0.486 ± 0.030

35 0.545 ± 0.044 0.533 ± 0.034 0.541 ± 0.037 0.526 ± 0.032

36 0.468 ± 0.061 0.488 ± 0.044 0.485 ± 0.042 0.492 ± 0.026

37 0.511 ± 0.049 0.496 ± 0.042 0.516 ± 0.041 0.498 ± 0.032

38∧ 0.577 ± 0.062 0.546 ± 0.046 0.559 ± 0.052 0.532 ± 0.039

39 0.588 ± 0.061 0.564 ± 0.048 0.568 ± 0.049 0.546 ± 0.041

40*∧ 0.600 ± 0.047 0.575 ± 0.034 0.575 ± 0.041 0.552 ± 0.029

41*∧ 0.524 ± 0.053 0.495 ± 0.047 0.525 ± 0.042 0.496 ± 0.036

42 0.568 ± 0.059 0.549 ± 0.048 0.555 ± 0.049 0.536 ± 0.039

43 0.570 ± 0.060 0.570 ± 0.047 0.557 ± 0.048 0.550 ± 0.038

(Continued)
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Table A1 | Continued

IC’s index Connectivity strength (mean ± SD) Clustering coefficient (mean ± SD)

HCs SZs HCs SZs

44 0.540 ± 0.055 0.541 ± 0.042 0.537 ± 0.044 0.530 ± 0.036

45 0.561 ± 0.065 0.543 ± 0.042 0.551 ± 0.053 0.532 ± 0.038

46*∧ 0.600 ± 0.049 0.568 ± 0.046 0.574 ± 0.041 0.547 ± 0.040

47*∧ 0.568 ± 0.059 0.536 ± 0.049 0.555 ± 0.048 0.528 ± 0.040

48* 0.602 ± 0.064 0.569 ± 0.046 0.577 ± 0.051 0.548 ± 0.040

49 0.599 ± 0.058 0.573 ± 0.049 0.574 ± 0.048 0.552 ± 0.040

50 0.577 ± 0.063 0.561 ± 0.048 0.560 ± 0.052 0.542 ± 0.041

51 0.521 ± 0.056 0.522 ± 0.036 0.522 ± 0.046 0.516 ± 0.033

52 0.497 ± 0.043 0.516 ± 0.045 0.507 ± 0.034 0.513 ± 0.034

53 0.570 ± 0.057 0.555 ± 0.042 0.556 ± 0.046 0.540 ± 0.034

54*∧ 0.589 ± 0.061 0.558 ± 0.039 0.568 ± 0.050 0.542 ± 0.034

55 0.580 ± 0.062 0.556 ± 0.051 0.562 ± 0.049 0.540 ± 0.042

56*∧ 0.593 ± 0.043 0.562 ± 0.044 0.572 ± 0.036 0.544 ± 0.038

57 0.538 ± 0.076 0.522 ± 0.040 0.535 ± 0.059 0.516 ± 0.031

*Denotes connectivity strength of that node is uncorrected significantly different (P < 0.05) between groups.
∧Denotes clustering coefficient of that node is uncorrected significantly different (P < 0.05) between groups.

Table A2 | Number of modules for individuals when using different minimum module size.

Minimum module size Number of modules Number of subjects with that

number of modules

Mean number of modules across

24 subjects in each group

HC SZ HC SZ

4 5 0 1 7.79 8.08

6 5 1

7 6 3

8 5 9

9 5 10

10 3 0

5 4 2 0 5.88 6.38

5 7 6

6 8 7

7 6 8

8 1 2

9 0 1

7 2 1 1 3.83 4.17

3 6 5

4 13 9

5 4 7

6 0 2

8 2 3 3 3.33 3.58

3 10 7

4 11 11

5 0 3
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FIGURE A1 | Spatial maps (z-score maps, same in Figures A2–A6) of

components in module I for HCs and SZs. Hubs of this module in each
group are labeled. Each column shows one component in axial, sagittal, and
coronal views. In this module, both groups have six common components

including three cerebellar networks, two occipital networks, and one
temporal network. We designated this module as “cerebellar–occipital
module” (C–O Module). Two cerebellar components are hubs in HCs and one
cerebellar component is hub in SZs.
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FIGURE A2 | Spatial maps of components in module II for HCs

(upper) and SZs (lower). Hubs of each module are labeled. Each
column shows one component in axial, sagittal, and coronal views.
There are six common components [in the box, most of which are
default mode network (DMN) areas] between the groups. This module

was designated as “DMN Module.” HCs have another four networks
which are also loosely characterized as DMN regions, whereas SZs
have another two networks including one frontal component and one
temporal component. HCs and SZs have the common frontal hub in
this module.

Frontiers in Systems Neuroscience www.frontiersin.org January 2012 | Volume 5 | Article 103 | 13

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Yu et al. Modular organization in schizophrenia

FIGURE A3 | Spatial maps of components in module III for HCs (upper)

and SZs (lower). Hubs of this module in each group are labeled. Each column
shows one component in axial, sagittal, and coronal views. There are eight
common components (in the box) including three occipital components, three
cerebellar components, one parahippocampal component, and one temporal
component. HCs have five additional components including two frontal

components, two cingulum components, and one precuneus component.
SZs have two additional components including one occipital component and
one temporal component. As the components of this module in HCs
represent regions distributed across almost the whole brain, we designated
this module as “Global Module” (G1 Module). There are three hubs in HCs
and two hubs in SZs.
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FIGURE A4 | Spatial maps of components in module IV for HCs

(upper) and SZs (lower). Hubs of this module in each group are labeled.
Each column shows one component in axial, sagital, and coronal views.
There are three common components (in the box) including two parietal
components and one frontal component. HCs have another eight
components including two frontal components, two occipital
components, one temporal component, one central component, one

putamen component, and one temporal-frontal component. SZs have
another nine components including three frontal components, three
precuneus component, one angular component, one cingulum
component, and one central component. As most of the components of
this module in HCs are from attention network, we designated this
module as “Attention Module” (A Module). There are two different hubs
in this module for the two groups.
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FIGURE A5 | Spatial maps of components in module V for HCs (upper)

and SZs (lower). Hubs of this module in each group are labeled. Each
column shows one component in axial, sagittal, and coronal views. There
are eight common components (in the box) including three temporal
components, four sensory motor components, and one parietal component.
HCs have another nine components including two cerebellar components,
three occipital components, one temporal component, one central

component, one motor component, and one frontal component. SZs have
another seven components including one putamen component, one
temporal-frontal component, one central component, one cingulum
component, and three frontal components. As the components of this
module in HCs are distributed across almost the whole brain, we
designated this module as “Global Module” (G2 Module) as well. There are
two hubs in HCs and three hubs in SZs.

FIGURE A6 | Spatial maps of brain components in module VI for SZs.

Hub of this module is labeled. Each column shows one component in axial,
sagittal, and coronal views. This module was designated as “occipital
module” (O Module) because all the components are centered over
occipital cortex. For HCs, occipital components were distributed across
other modules.
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