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Networks are fundamental for our understanding of complex systems. The study of net-
works has uncovered common principles that underlie the behavior of vastly different
fields of study, including physics, biology, sociology, and engineering. One of these
common principles is the existence of network motifs—small recurrent patterns that
can provide certain features that are important for the specific network. However, it
remains unclear how network motifs are joined in real networks to make larger circuits
and what properties emerge from interactions between network motifs. Here, we
develop a framework to explore the mesoscale-level behavior of complex networks. Con-
sidering network motifs as hypernodes, we define the rules for their interaction at the
network’s next level of organization. We develop a method to infer the favorable
arrangements of interactions between network motifs into hypermotifs from real
evolved and designed network data. We mathematically explore the emergent properties
of these higher-order circuits and their relations to the properties of the individual mini-
mal circuit components they combine. We apply this framework to biological, neuro-
nal, social, linguistic, and electronic networks and find that network motifs are not
randomly distributed in real networks but are combined in a way that both maintains
autonomy and generates emergent properties. This framework provides a basis for
exploring the mesoscale structure and behavior of complex systems where it can be used
to reveal intermediate patterns in complex networks and to identify specific nodes and
links in the network that are the key drivers of the network’s emergent properties.

emergence j feedforward loops j feedback j mathematical modeling j systems biology

Complex systems describe a collection of multiple agents that influence each other.
A common and powerful tool in exploring the structure of complex systems is the use
of a network description, where the nodes represent the individual agents and the edges
represent the interactions between them (1–6). Interactions between individual nodes
in networks generate network motifs—small patterns that are significantly enriched in
real networks compared to randomized networks (7). Network motifs can be consid-
ered the network’s building-block components, providing certain dynamical properties.
Network motifs such as the feedforward loop (FFL) have been studied separately both
theoretically and experimentally in various fields and their dynamical properties were
elucidated (8–10). However, it remains unclear how network motifs are arranged
within real networks into larger patterns and what properties can emerge from these
higher-level functional modules (Fig. 1A).
Indeed, it has been established that although the same network motifs appear in differ-

ent contexts, the way that they are joined varies to provide distinct features. For example,
FFLs are joined in bacterial transcription networks with multiple outputs to produce a
first-in-first-out response. During sporulation, Bacillus subtilis uses cascades of FFLs to
activate genes in a series of temporal waves. In neuronal networks, FFLs can combine
with multiple inputs to provide coincidence detection and pain relief when multiple pain
sensation inputs are integrated into a single output (11, 12) (Fig. 1B). Thus, combining
the same kind of canonical motifs in different ways can generate novel properties and can
also be used to “silence” certain motif properties when they are not needed.
Work on modularity (13–15) and networks of networks (16) has revealed hierarchical

structures (17) where several levels of organization are sometimes needed to describe the
network. Recently, Battiston et al. (18) reviewed existing approaches to explore higher-
order interactions in complex networks including the use of hypergraphs and simplicial
complexes (19) and highlighted the challenges in the field where higher-order interactions
are hard to infer from real data that are mostly based on simple pairwise interactions. Pre-
vious studies have explored higher-order clusters and generalizations of network motifs
(20–23) and studied network motifs at different scales in real networks (24). However,
there are currently no approaches to explore how building-block circuits such as network
motifs interact with each other in the network based on specific circuit topologies to form
the next level of organization. In order to understand the origin of emergent properties in
complex systems it is important to study how network motifs interact with each other as
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defining the rules of atom interactions that form molecules was
crucial for the understanding of the macroscale behavior of
matter.
Here, we develop a framework for exploring the rules for

emergent properties at intermediate levels of organization of com-
plex networks. In this framework, we consider that the individual
agents that interact with each other are the minimal building-
block circuit topologies in the network and explore the emergent
properties that result from the way that they are embedded in the
network, which we call hypermotifs. We develop a method to
explore the favorable arrangements of these hypermotifs in real
networks and apply it to biological, neuronal, social, linguistic,
and electronic networks. This approach sheds light on the inner
structure of complex networks and reveals levels of organizations
in real evolved and designed networks.

Results

A Framework for Exploring High-Level Modules of Network
Motifs. To explore how two network motifs are integrated to
form hypermotifs—higher-level network modules—we consider
two ways in which motifs can be directly joined. The first is

where the two motifs share at least one node, which we define
as a combination of motifs. The maximal number of shared
nodes (NV , max ) must be smaller than the size of the smallest
motif embedded such that the autonomy of each motif’s topol-
ogy is maintained. Therefore, NV , max ¼ minðnA,nBÞ � 1 where
nA and nB are the sizes of motifs A and B, respectively. The
identity of the nodes that are shared between the motifs is
based on categorizing the nodes in each motif according to
their unique roles. For example, nodes that participate in FFLs
will be categorized into three distinct groups: 1) input, 2) inter-
mediate, and 3) output nodes. If the roles in a certain motif are
symmetric, we consider them in the same category (21). We
mark a combination of motifs A and B in which nodes fig of
motif A are shared with nodes fjg of motif B as Afig*Bfjg
(Fig. 1C).

The second way two network motifs can be joined, which
we define as an interaction between motifs, is when they are
linked through at least one edge. When two motifs interact,
every pair of nodes that do not participate in the same motif
can be linked. Therefore, the maximal number of linking edges
is NE , max ¼ 2nAnB for directed networks, and half as much for
undirected networks. We mark an interaction between motifs
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Fig. 1. A framework to explore hypermotifs in complex networks. (A) Network motifs such as the coherent type 1 FFL (C1FFL) and the mutual feedback loop
where u is an activator and w is a repressor can filter out transient input signals and generate damped oscillations, respectively. However, it is unclear what
would be the properties of the circuits made up of combinations of different network motifs. (B) Examples of four real networks in which the FFL is a network
motif, but the way it is joined with other FFLs is different and provides distinct dynamical properties. (C) A table that exemplifies the two ways in which network
motifs can be directly joined together for the Lock-ON mutual feedback loop (LMFL) and the coherent type 1 FFL (C1FFL). Combination of motifs A and B is where
the two motifs share at least one node. These are marked by Afig*Bfjg, where fig, fjg is the set of nodes each motif is sharing. Interaction of motifs A and B is
where the two motifs are linked through at least one edge, Afi,jg+Bfk,lg, where i and k are the set of sender nodes, and j and l are the set of receiver nodes
from motifs A and B, respectively. The shared nodes in the “Combinations” column and the linking edges in the “Interactions” column are marked in red.
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A and B as Afi,jg+Bfk,lg, where there are links from nodes
fig of motif A to nodes fl g of motif B and links from nodes
fkg of motif B to nodes fjg of motif A (Fig. 1C).
In Fig. 1C we exemplify these definitions for several pairs of

motifs. Two mutual feedback circuits can only be combined by
sharing one node. A mutual feedback circuit and an FFL can be
combined by sharing one node which can be either the FFL’s
input, intermediate, or output node. The space of possible com-
binations increases substantially as the size of the motifs that are
being combined increases. For example, two FFLs have 12 dif-
ferent ways to be joined when they share either one or two
nodes. Note that we list in Fig. 1C the core topology of each
possible combination. However, each such combination can be
extended where every pair of nodes that do not participate in the
same motif can be linked (Materials and Methods and SI
Appendix, Fig. S1). For each pair of motifs in Fig. 1C, we pro-
vide an example of the way they can interact (see Materials and
Methods for all possible topologies of motif interactions and SI
Appendix, Fig. S1). This framework thus provides a way to count
all possible circuit topologies for combinations and interactions
of two motifs.

Observed Combinations of Network Motifs in Real Networks.
To explore whether network motifs are joined in real networks
in specific ways, we developed a method to detect enriched com-
binations of network motifs in large networks. Given a real net-
work of interest, the first step is to detect the network motifs (up
to size n) that characterize the network. There are several algo-
rithms for finding network motifs in large networks (7, 25, 26).
After the network motifs of up to n-order have been identified,
we categorize the nodes that participate in the network motifs
based on their role in the motifs. Next, we compute the level of
overlap between nodes in every pair of motif roles. A large over-
lap between two groups of motif roles means that the motifs are
often combined in the network by sharing these nodes (Fig. 2A).
Finally, in order to test the statistical significance of these combi-
nations, we compare the observed overlap in the real network to
the overlap in randomized networks when we keep properties of
the network including the degree distribution and the frequency
of all subgraphs up to size n the same as in the real network.
This comparison allows us to find statistically significant over-
and underrepresented combinations of network motifs that
do not emerge due to topological constraints in the network
(27, 28) (Materials and Methods). We highlight that detecting
enriched hypermotifs is different from simply detecting larger
motifs. Hypermotifs are composed of elementary motifs. There-
fore, hypermotifs are a subset of all possible larger motifs. In SI
Appendix we apply the method to detect hypermotifs on syn-
thetic networks that we generated with specified distributions of
network motifs and hypermotifs (SI Appendix, Fig. S2).
We applied this method for several natural and designed net-

works of different origin. In the Escherichia coli transcription net-
work (29) the nodes are transcription factors and their target
genes, and the edges represent regulatory interactions. In this net-
work the self-loop and FFL motifs are often combined such that
the intermediate node of the FFL shows autoregulation. In the
neuronal network of Caenorhabditis elegans (7, 30) where edges
represent synaptic connection between neurons, there are six net-
work motifs including the FFL and five different versions of
mutual feedback circuits. We find a large number of overrepre-
sented combinations of these motifs in the network, in line with
the abundance of evidence for high-order circuits in neuronal sys-
tems (31, 32). The overrepresented combinations show that the
neuronal network has a layered structure where in most cases an

output node of one motif serves as an input of another motif.
Moreover, most combinations in which two motifs are not com-
bined in a layered way are excluded in the network. One excep-
tion to this structure is a combination where two double mutual
feedback circuits are intertwined. We discuss potential emergent
properties of this combined circuit in the next section. Interest-
ingly, there is a large number of combinations that are excluded
in the C. elegans neuronal network (SI Appendix, Fig. S3), sup-
porting the notion that network motifs are not distributed ran-
domly in the network but are arranged in a way that provides a
desired functionality in a given system.

In an electronic circuit network (digital fractional multipliers)
(33, 34) where the nodes represent different logic gates and flip-
flops, the three-node feedback loop circuits are often combined
by sharing two nodes with other three-node feedback loop cir-
cuits. In a food web of lizards on the St. Martin island (35) where
the edges represent predator–prey relations, the network motifs
are a three-node chain and an FFL. These motifs are often com-
bined in the network where they either share the highest predator
or the lowest prey in the motifs, or both. The network motifs in
this food web tend not to share intermediate-level predators or
preys and avoid very long food chains.

In a citation network (36, 37) where nodes are researchers
and edges represent scientific citations, the FFLs are arranged
in cascades. This structure is in line with the fact that citation
networks are a type of an information network where the flow
in the network is possible only in one direction. The over- and
underrepresented combinations in the citation network further
show that scientists tend to cite recent papers more than origi-
nal ones. We considered a social network (38) where nodes are
people and an edge is drawn from person A to person B if per-
son A considers person B as a close friend. In this friendship
network, the network motifs include the FFL and four versions
of mutual feedback circuits. These motifs are often combined
such that two FFLs share the input and intermediate nodes,
and two regulating mutual feedback loops share the nodes that
mutually interact with each other. In these enriched combina-
tions the “output” nodes usually show mutual links in the net-
work. This suggests a pattern where popular people are liked by
either members of the same clique or individuals that do not
show a mutual friendship. Finally, we analyzed word adjacency
networks of texts in English and Japanese where each node rep-
resents a word and a directed connection occurs when one
word directly follows the other in the text (39). The network
motifs in both languages are a three-node cascade, a regulating
and regulated V circuits. We find that these motifs show two
distinct patterns where they either combine in a layered manner
or that certain words have multiple words that are adjacent to
them (Fig. 2B and Materials and Methods). Interestingly, the
examination of combinations of network motifs in these lin-
guistic networks shows that there are common principles in the
way the network motifs are integrated where the enriched and
excluded combinations of network motifs in the Japanese text
are also found in the English network. See SI Appendix, Fig. S3
for information on the statistical significance of all overrepre-
sented combinations we detected in real networks. Identifying
network hypermotifs in real networks thus reveals specific pat-
terns that the network motifs are often combined into and
sheds light on the inner structure of the network.

Emergent Properties of Combinations of Building-Block Circuits.
We next explore the dynamical properties of combinations of
network motifs. In our modeling framework, we use nonlinear
Hill functions to describe relations between the nodes in a circuit
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Fig. 2. A method to detect enriched combinations of network motifs in real networks. (A) Schematics of the method to detect enriched combinations of net-
work motifs in real networks. (B) A table that summarizes the analysis of real networks with the type of network, its number of nodes and edges, its network
motifs, and over- and underrepresented combinations. Shared nodes are marked in red. We list in SI Appendix, Fig. S3B the full list of underrepresented combi-
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Methods for details about the downsampling method we used).
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(Materials and Methods). This modeling approach describes the
relationship between nodes in biological networks such as gene
regulatory, signaling, and neuronal networks. Other types of net-
works such as social and linguistic networks require different
modeling assumptions. As our minimal building-block circuits,
we consider three classes of circuit topologies that were found as
network motifs in real natural and engineered networks (11).
The first is a self-loop circuit which is a simple motif with only
one node (X) positively autoregulating its own levels that can pro-
vide bistability. This means that X converges to a high steady-
state level only if its initial level is above a certain threshold, and

otherwise it declines to zero (Fig. 3A). The second class of circuits
we consider includes three types of mutual feedback circuits: the
toggle switch circuit (TMFL) in which X and Y mutually inhibit
each other, leading to a switch between their final levels (Fig.
3B), the Lock-ON circuit (LMFL) in which X and Y are both
turned ON or OFF due to their mutual activation (Fig. 3C), and
the oscillator circuit (OMFL) with X as a repressor and Y as an
activator (Fig. 3D). The third class of circuits is the FFL circuit
with two main types: a coherent type 1 FFL (C1FFL) in which
the input (X) activates an intermediate node (Y) and both X and
Y activate the output (Z) (Fig. 3E) and an incoherent type 1 FFL
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Fig. 3. Emergent dynamical properties of combinations of network motifs. (A–F) Three classes of circuits that we consider as minimal building blocks and
examples of their dynamical properties for given parameter values. In the phase portraits of the mutual feedback circuits the black circles represent stable
fixed points and the white circles represent unstable fixed points. The corresponding equations for each panel are described in Materials and Methods.
(G and H) Combinations of self-loop and mutual feedback circuits and their phase portraits. (I and J) Combinations of self-loop and coherent (I) or incoherent
(J) FFLs and their output Z dynamical behavior. We used initial conditions of X0 ¼ 0,0:1,0:5, Y0 ¼ 0:185, Z0 ¼ 0:19. (K–M) Three different combinations of two
oscillator circuits and their dynamical properties when the initial level of X varies. We used Y0, Z0 ¼ 0:2 throughout and X0 ¼ 0,0:1,0:2,0:4,0:6,0:7 for each
combination. (N and O). Combinations of an oscillator circuit and a coherent (N) or an incoherent (O) FFL and their output Z dynamical behavior. We used
X0, Z0 ¼ 0:01,Y0 ¼ 0:3 throughout and W0 ¼ 0:1,1,10 for each combination.
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(I1FFL) where Y is a repressor of Z (Fig. 3F). We show in Fig. 3
E and F examples of previously explored dynamical features
that the FFL circuits can exhibit for a wide range of parameters
(Materials and Methods). These dynamical properties were experi-
mentally measured in various contexts ranging from transcription
networks in bacterial cells to organismal-level sensory systems
(40, 41). We note that in general when we discuss a circuit’s
dynamical properties we are referring to properties that are
observed for a given choice of models (e.g., nonlinear relations,
AND vs. OR logic gates) and a certain range of model parame-
ters. We therefore chose parameters for which the circuit in ques-
tion shows a typical dynamical behavior (e.g., bistability for the
SL, pulsatile behavior for the I1FFL, etc.). However, the circuits
may show other properties for other choices of models or parame-
ter values (42, 43). When we discuss the properties of a combina-
tion of circuits, we compare them to the properties of each circuit
component when we keep the same choice of parameter values.
Combining a self-loop motif with other motifs provides bist-

ability to the node that is positively self-regulating. Therefore, a
toggle-switch circuit combined with self-loops gives rise to a new
stable state in which both X and Y are turned OFF (Fig. 3G).
The oscillator circuit with both nodes self-regulating shows two
additional stable steady states: an OFF state where both X and Y
are turned OFF and a state where only Y (the activator) is turned
ON. A state where only X (the repressor) is turned ON is not
possible since the repressor cannot increase its levels without the
presence of the activator Y (Fig. 3H). A Lock-ON circuit com-
bined with self-loops does not provide new steady states since
bistability is already provided in a simple Lock-ON circuit. Here
we focus on a positive self-loop motif that can provide new
steady states. A negative self-loop motif combined with other
motifs does not provide bistability but can accelerate the circuits’
response time (44).
When exploring combinations of a self-loop motif and FFL

circuits, we asked whether the FFL’s behavior is sensitive to the
identity of the node that has a self-loop. To that aim, we com-
pared the dynamics of the output Z of a simple FFL (without
self-loops) to FFLs with a self-loop on the FFL’s input, interme-
diate, or output nodes. The FFL combined with self-loops pro-
vides bistability to the FFL’s response where the final level of the
output depends on the initial level of the input. However, FFL
circuits in which the output node is autoregulated are less sensi-
tive to the initial levels of the input (Fig. 3I). The incoherent
FFL shows an interesting nontrivial behavior when the self-loop
is on the intermediate repressor, Y. For high initial levels of input,
the output shows a pulsatile behavior, which is similar to the
behavior of a simple incoherent FFL. However, if the initial levels
of input are low, the output rises to a high steady-state level with
a delayed response. The reason for this behavior is that for low
levels of input the repressor Y declines to zero due to its self-loop,
thus lifting the repression on the output Z and allowing it to
increase its levels (Fig. 3J). The emergence of this new high
steady-state level is possible only if the intermediate node is the
one that is positively autoregulated (Materials and Methods).
Thus, the self-loop provides an additional thresholding mecha-
nism for the behavior of the dynamical circuits it is coupled with.
This mathematical model therefore provides a possible explana-
tion for why the FFL and self-loop motifs are combined in the
E. coli transcription network such that the FFL’s intermediate
node has a self-loop interaction. This combination may provide
bistability where the E. coli target genes are sensitive to the levels
of the input signal.
We next show that different combinations of the same two

motifs can yield different dynamical properties when keeping

the same parameter values. To demonstrate this, we consider
three different combinations of two oscillator circuits. Explor-
ing the dynamical behavior of the combinations of circuits for
varying initial conditions shows that the different combinations
behave dynamically differently and converge to different steady
states (Fig. 3 K–M and Materials and Methods).

We find that coupling the oscillator circuit with the coherent
and incoherent FFLs through their intermediate node yields
interesting features of a pulsatile response (for a coherent FFL)
or a delayed rising response (for an incoherent FFL) for low
and high initial levels of W. The width of the pulse and the
duration of the delay are proportional to the initial levels of W
(Fig. 3 N and O and Materials and Methods). In SI Appendix,
Figs. S4 and S5 we show the modeling results of the combina-
tions of all possible pairs of circuits from these three classes of
circuit topologies.

There are several observations that this framework demon-
strates when one considers the potential emergent properties of
combinations of network motifs. First, the way that the motifs
are combined or the identity of the shared nodes that link the
two motifs is an important factor that can drastically affect the
resulting behavior. Second, we find that when multistablity
emerges from combining two motifs, oftentimes the combined
circuit can both preserve the autonomy of each circuit compo-
nent where it shows their individual properties and show emer-
gent properties (properties not present in individual motifs),
depending on the initial conditions.

Emergent Properties of Combinations of Network Motifs in
Real Networks. We next model the dynamical behavior of sev-
eral overrepresented combinations of network motifs that we
detected in real networks in order to exemplify the potential
emergent properties that may result from these combinations.
The first combination of motifs that we model is the double
mutual feedback motif from the C. elegans neuronal network
(Fig. 2B). In this motif there are two pairs of neurons that
mutually interact with each other (X, Y and Y, Z) while X
interacts with Z only in one direction. We find that this motif
is often combined in the neuronal network with other motifs
of the same type where the one-direction edge from X to Z is
shared between the two motifs. Considering that the interac-
tions in the motif are all positive, each motif separately is a
generalization of the Lock-ON feedback circuit where it can
provide bistability such that X, Y, and Z are all either turned
OFF or ON. Combining two such double mutual feedback
motifs link the fates of the Y and W neurons from both motifs
and can also provide a temporal order for their pulsatile behavior
(Fig. 4A and Materials and Methods). We also model the same
motif combination where we consider that X inhibits the activity
of Z. Here, each double mutual feedback can provide oscillations
for a certain range of model parameters or converge to an OFF
state. When the two motifs are combined such that the X-to-Z
inhibitory edge is shared, the oscillations of one circuit propagate
to the neuron that participates in the other motif although it
would not have shown oscillations autonomically with the same
parameter values. Moreover, it will synchronize and have the
same phase as the motif it is linked with, demonstrating in-phase
synchronization, which is an important property of neuronal net-
works (45) (Fig. 4B and Materials and Methods).

The second combination of motifs that we model is of the
three-node feedback loop that was found to be enriched in the
electronic circuits network (Fig. 2B). A combination of two
three-node loop circuits where one has three positive interac-
tions (all-positive-interactions circuit) and the other has one
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negative and two positive interactions show emergent properties
(Fig. 4C). Here the oscillations of the circuit with the negative
interaction propagate to the second all-positive-interactions cir-
cuit where it oscillates with an opposite phase showing anti-
phase synchronization. We note that here the emergence of
oscillations in the all-positive-interactions circuit is especially
interesting since on its own this circuit does not show pure
oscillations even for a different choice of model parameters
(Fig. 4 C and D and Materials and Methods).
These examples illustrate the complexity that can emerge

from simple combinations of minimal building-block circuits
in real networks.

Emergent Properties of Interactions of Network Motifs. The
second way of joining two network motifs that we consider is
an interaction between network motifs. Here, every motif can
be considered as a hypernode in a higher-level circuit. Interac-
tion of network motifs can thus show properties of circuits at
two levels: the high-level circuit topology in which the motifs

are single nodes and the properties of the low-level circuits that
are being interconnected. To illustrate this, we model an inter-
action of two oscillator circuits in a toggle-switch high-level
topology. We find that this module shows a toggle switch
between the properties of the oscillator circuits. However, the
identity of the connecting nodes in each circuit and the choice
of parameter values may influence the properties of the new
high-level module (Fig. 5A and Materials and Methods). Simi-
larly, two oscillator circuits that mutually activate each other
can show all possible combinations of their individual steady
states, which is a high-level version of the Lock-ON circuit
property where the motifs are either both turned OFF or ON
(Fig. 5B and Materials and Methods).

Interaction between two motifs can sometimes lead to emergent
properties that cannot be observed in each of the motifs separately.
For example, a coherent FFL and a toggle-switch feedback circuit
that mutually activate each other can exhibit oscillations which are
not a property of an FFL or a toggle-switch circuit (Materials and
Methods). Joining them in this manner creates a new path that is
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Fig. 4. Overrepresented network motif combinations in real networks provide emergent properties. (A) Dynamical behavior of the C. elegans overrepre-
sented combination of two double mutual feedback circuits where all arrows are positive interactions. Y from the separated X, Y, Z circuit with the same
parameters would have converged to a high steady-state level. (B) Dynamical behavior of the C. elegans overrepresented combination of two double mutual
feedback circuits where X inhibits Z. Y from the separated X, Y, Z circuit with the same parameters would have declined to zero without oscillations.
(C) Dynamical behavior of the electronic circuits over-represented combination of two three-node loop circuits where all edges are positive except for one
where Y inhibits Z, where it shows antiphase synchronization. (D) W from the separated X, Y, W circuit with the same parameters (or any other choice of
parameters; Materials and Methods) does not show oscillations.
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equivalent to an activator–inhibitor type of circuit that can gener-
ate oscillations (Fig. 5C). Oscillations can also emerge from two
FFLs that interact with each other where one serves as an activator
and the other as a repressor (Fig. 5D). This example demonstrates
the importance of exploring the way network motifs are integrated
in a large network in order to understand the potential properties
that the network can exhibit. Although oscillations cannot arise
from individual FFLs for any choice of parameter values (oscilla-
tions are impossible in any strictly feedforward motif), they can
emerge when the FFLs mutually interact with each other in the
large network.

Discussion

Complex systems are composed of multiple levels of organiza-
tion. Here, we developed a theoretical framework to identify
and explore the intermediate levels of organization in complex
networks. We defined how two subgraphs are joined together

in a network at two levels by sharing at least one node or by
being directly linked by at least one edge. We developed a
method to reveal how network motifs are assembled into hyper-
motifs in real complex networks and demonstrated it in diverse
evolved and designed networks. Finally, we used a nonlinear
class of models to explore potential emergent properties of
combinations and interactions of network motifs including the
autoregulation, FFL, and several feedback circuits.

Applying the network hypermotif framework on real networks
can help to reveal patterns in the inner topological structure of
the network and to make specific predictions on the behavior
that is expected to emerge at the mesoscale level of the network.
Exploring properties of combinations of building-block circuits
provides a way to rigorously explore emergence in complex sys-
tems and to define new levels of organization based on functional
modules that provide important and emergent properties.

The method we present in this work to identify combina-
tions of network motifs in real networks is not limited by the
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Fig. 5. Emergent dynamical properties of interactions of network motifs. (A and B). Examples of interactions of two oscillator feedback circuits where they
mutually repress each other (A) and mutually activate each other (B). The stable steady states for the same choice of model parameters for all four circuits
are shown where white squares represent the OFF state, black squares are shown when a variable is fully turned ON, and the gray squares represent
damped oscillations around an intermediate level steady state. (C) An example of a mutual activation interaction between a coherent FFL and a toggle-
switch feedback circuit with the dynamic behavior of all variables for two different initial conditions with the same model parameters (Materials and
Methods). (D) An example of an interaction between two FFLs where the coherent FFL is an activator and the incoherent FFL is a repressor and the dynamic
behavior of all variables. See Materials and Methods for the equations we used for all interactions of motifs.
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size of the motif and does not entail counting specific higher-
order subgraphs, which can be computationally hard. However,
in order to estimate the statistical significance of hypermotif cir-
cuits, one needs to randomize the network such that the fre-
quencies of all subgraphs up to the size of the motifs considered
is kept constant. Creating such a null model is currently feasible
for up to three-node motifs. Future work can address larger
motifs by developing a method of network randomization with-
out affecting the frequencies of network motifs of any size.
Another challenge in the hypermotif framework is to identify

the real functionality that is associated to the interacting motifs
in different real-world networks. Here we demonstrated a vari-
ety of potential dynamic behavior that overrepresented hyper-
motif circuits can exhibit. Future work can focus on enriched
hypermotif circuits in specific contexts and explore their func-
tionality experimentally. In our modeling approach we focused
on examining the dynamical behavior of hypermotifs in biolog-
ical and ecological networks. It would be interesting to explore
the properties of the hypermotifs that are enriched in other
types of networks including social and linguistics networks
which are represented by virtual links rather than physical links.
It would be also interesting to further explore the role of simple
larger motifs versus hypermotifs which are composed of smaller
motifs in real networks.
Here, we considered how network motifs are joined in net-

works with pairwise interactions where edges connect a pair of
nodes. Network motifs were previously identified also in hyper-
graphs where edges can connect any number of nodes describing,
for example, collaborations of researchers and joint interactions of
proteins (46). It would be interesting to generalize the hypermotif
framework to hypergraphs where motifs can be joined through
specific hypernodes in the network.
The framework presented here could be useful for developing

a new mnemonic way to categorize the nodes in a network into
distinct classes based on their position in the network’s motifs
and their higher-order modules. This categorization is comple-
ment to previously suggested criteria including the nodes degree
and contrabillity properties (47) where nodes with the same level
of connectivity can play different roles in the network’s modules.
Identifying these categories of nodes in real networks can high-
light the key drivers of the network’s emergent properties. For
example, in biology this could have important implications in
pinpointing genes that are key for essential biological processes
as well as genes with a potential to drive a biological system into
a pathological state.

Materials and Methods

Counting All Possible Combinations and Interactions of Network
Motifs. Consider two network motifs, A and B, with nA and nB nodes, respec-
tively. A and B can be combined by sharing Nv nodes such that the following
condition applies: 1 ≤ Nv < minðnA,nBÞ: This condition ensures that the
topology of each motif is kept as a subgraph of the combined circuit. The identity
of the Nv nodes that are shared among the two motifs defines a core topology
of a combination of the two motifs. Each core topology can be extended to
include additional edges between pairs of nodes that do not participate in the
same motif (SI Appendix, Fig. S1A).

A and B interact when they have at least one edge that directly links them.
Since each node from motif A can interact with each node from motif B, the max-
imal number of possible edges is the number of pairs of nodes that do not par-
ticipate in the same motif, nAnB. For directed networks where every pair of nodes
can have two directed edges this number should be multiplied by 2. The num-
ber of possible topologies of interaction between motifs A and B is therefore
22nAnB for directed networks and 2nAnB for undirected networks (SI Appendix,
Fig. S1B). We note that in both combinations and interactions of motifs there

could be circuits that are isomorphic to each other and therefore the number of
unique topologies may be smaller than the maximal number of circuit
topologies.

Detecting Enriched Combinations of Network Motifs in Real Networks.

Consider a network G with N nodes and E edges. To detect over- and underrepre-
sented combinations of network motifs we followed the following steps:

1) Identify network motifs of up to three nodes (see remark below). We used
MFinder (7) and also verified consistency with finding network motifs in
Mathematica using the IGraphM package and its function IGRewire to ran-
domize the network and IGMotifs to find the motifs and their frequencies.
We denote Nm as the set of nodes in G that participate in the network
motifs.

2) Categorize nodes in Nm to different groups according to their roles in the
network motifs: fn1,n2,…,nkg, where k is the number of the different net-
work motif roles in G. Note that certain nodes in Nm may appear in more
than one of the fn1,n2,…,nkg groups (which are the cases where network
motifs are combined).

3) Compute the Jaccard index for all kðk� 1Þ=2 pairs of motif roles:
Jðni,njÞ ¼ jni/njj=jni0njj, which is the size of the intersection of nodes
in roles i,j divided by the size of their union.

4) For nodes that appear more than once in the same role, we compute the Jac-
card index by the ratio of the number of nodes that appear in a network
motif role more than once to the total number of nodes that participate in
that motif role.

5) We use the MFinder package to create 100 random networks that have
N nodes, E edges, the same incoming and outgoing edges per node, and
the same frequency of all subgraphs up to three-node subgraphs.

6) We repeat steps 2 through 4 for all the random networks and compute
Jrandðni,njÞ for all pairs of motif roles for the random networks.

7) For every i,j such that i, j ∈ f1,…, kg we compute the Z-score of Jðni,njÞ of
network G from the distribution of fJrandðni,njÞg : Zij ¼ ðJðni,njÞ�
meanðfJrandðni,njÞgÞÞ=stdðfJrandðni,njÞg and compute the P value by
estimating the cumulative density of Zij for a normal distribution with zero
mean and unit variance. We use the function NormalPValue in the package
HypothesisTesting in Mathematica to compute the P value. We then use the
Benjamini–Hochberg procedure to correct for multiple hypothesis testing,
which provides us a corrected q-value for each pair of motif roles.

8) We consider over- and underrepresented motif combinations if their q-value
is smaller than 0.05, where Zij > 0 for overrepresented combinations and
Zij < 0 for underrepresented combinations.

Our method detects situations in which two network motifs are joined by
sharing certain nodes. The difference between our method and detecting net-
work motifs of a larger size is that our method does not detect a specific sub-
graph as a recurring pattern but rather finds classes of subgraphs in which the
two network motifs in question are combined in a certain way. This means that
in certain networks the exact topology of the combination of the two network
motifs may include additional edges that are in accordance with our definition
of a core topology of a combination of network motifs and its possible extensions
(SI Appendix, Fig. S1A). In SI Appendix, Fig. S3A we show the frequencies of the
core topologies of each overrepresented motif combination and its extensions.
We find that in most cases the most enriched motif combinations are with a core
topology (without additional edges).

To analyze the word adjacency network, we downsampled the network (G)
using the following steps:

1) Define the size of the downsampling, sz, as a parameter that can be tuned.
2) We construct a list of nodes which we sample, s, from the large network G.
3) Randomly choose one node from G, s0, to be the first entry of s:
4) Randomly choose a node that is a member of the neighborhood of s0,

s1 ∈ Ns0 , to be the next entry of s.
5) Insert additional entries to s for i ∈ f2,…, sz=3g by randomly choosing a

node that is a member of the neighborhood of si�1 with probability of
85%, or a node that is a member of the neighborhood of s0.

6) Certain entries of s could be repeated more than once. If the length of the
unique list of s is smaller than ðsz=3Þ=2 consider a new s0 which is a ran-
domly chosen node from G. Otherwise, keep the previous s0.
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7) Insert additional entries to s for i ∈ fsz=3þ 1,…, 2sz=3g by randomly
choosing a node that is a member of the neighborhood of si�1 with proba-
bility of 85%, or a node that is a member of the neighborhood of s0.

8) If the length of the unique list of s is smaller than ðsz=3Þ consider a new s0
which is a randomly chosen node from G. Otherwise, keep the previous s0.

9) Insert additional entries to s for i ∈ f2sz=3þ 1,…, szg by randomly
choosing a node that is a member of the neighborhood of si�1 with proba-
bility of 85%, or a node that is a member of the neighborhood of s0.

10) The downsampled network Gd is the network that contains nodes from the
unique list of s.

We repeated the downsampling procedure multiple times with varying sam-
pling size (sz), where we check that the downsampled networks show a similar
degree distribution and the same network motifs as the complete large network.

Modeling Known Network Motifs and Their Combinations. We model
several previously identified network motifs where we consider that each node
has a linear removal term and that interactions between nodes can be described
by Hill functions. A positive interaction from node X to node Y is modeled by an
increasing Hill function, Ynxy=ðkxynxy þ YnxyÞ, and a negative interaction is mod-
eled by a decreasing Hill function, kxynxy=ðkxynxy þ YnxyÞ. Each interaction is
therefore described by two parameters: the cooperativity coefficient nxy and the
level at which the interaction effect reaches halfway of its maximal level kxy . We
used the functions Streamplot and Contourplot in Mathematica 12.1.1.0 to plot
the phase portraits of the circuits.

The models and parameter values that we use in Fig. 3 are listed in SI
Appendix.

In SI Appendix we explore combinations of FFL circuits with self-loops on the
different FFL nodes where we assume that X is not a dynamical variable but
rather rises in a step function manner. This assumption allows us to explore the
phase portraits of Y and Z and to compare their nullclines when the self-loop
appears on Y or Z (SI Appendix, Fig. S4 A and B).

Modeling Enriched Combinations in Real Networks. The models and
parameter values that we use to model several observed overrepresented combi-
nations of network motifs are listed in SI Appendix.

In the combination of two three-node loop circuits (Fig. 4C), undamped oscil-
lations emerge in the all-positive-interactions three-node loop circuit. The reason
is that pure oscillations require negative feedback and a delay. However,
we note that this all-positive-interactions circuit can show damped oscillations
(with a spiral fixed point) which in the presence of noise can become undamped
oscillations (11).

Modeling Known Network Motifs and Their Interactions. The models
and parameter values that we use to model interactions of network motifs that
are shown in Fig. 5 are listed in SI Appendix.

In the example of an interaction between two FFLs (Fig. 5D), the oscillations
are an emergent property since they are absent from FFL circuits on their
own. To prove that, consider the Jacobian matrix of the FFL circuit:

J¼
 �1 0 0

1 �1 0
1 1 �1

!
, which is a lower triangular matrix. The eigenvalues of

a lower (or an upper) triangular matrix are the entries on its diagonal and there-
fore they are always�1 in our case and cannot be complex.

Data Availability. The code and data files (48) required to generate all the fig-
ures in this study have been deposited in a publicly accessible database and are
available on GitHub at https://github.com/miriadler/network-hyper-motifs. All
other study data are included in the article and/or SI Appendix.
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