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Abstract: The influence of hyperhomocysteinemia (HHCy) on cardiovascular disease (CVD) remains
unclear. HHCy is associated with inflammation and atherosclerosis, and it is an independent risk
factor for CVD, stroke and myocardial infarction. However, homocysteine (HCy)-lowering therapy
does not affect the inflammatory state of CVD patients, and it has little influence on cardiovascular
risk. The HCy degradation product hydrogen sulfide (H2S) is a cardioprotector. Previous research
proposed a positive role of H2S in the cardiovascular system, and we discuss some recent data
suggesting that HHCy worsens CVD by increasing the production of H2S, which decreases the
expression of adenosine A2A receptors on the surface of immune and cardiovascular cells to cause
inflammation and ischemia, respectively.

Keywords: adenosine; adenosine A2A receptors; cardiovascular disease; hydrogen sulfide; hyperho-
mocysteinemia

1. Introduction

Cardiovascular disease (CVD) includes conditions that affect the heart or blood vessels.
The heart is a pump, and blood vessels are conduits for blood and cells that supply oxygen
and nutrients to maintain the molecular mechanisms necessary for vascular development
and the functioning of different tissues. Each organ has its own capillary network to fulfill
its specific functions, and endothelial cells provide the microvasculature of the different
organs. These endothelial cells form a vascular wall that controls organ development,
homeostasis and tissue regeneration. Pathological processes, such as arteriosclerosis,
compromise the integrity and structure of this vascular wall, and arteriosclerosis most often
leads to CVD. The initiating events of atherogenesis involve the retention of lipoproteins in
the subendothelial space of the arteries and the activation of endothelial cells. Circulating
monocytes adhere to activate endothelial cells, enter the vascular wall, and differentiate
into tissue macrophages. These macrophages ingest lipoproteins and turn into foam
cells. In addition, synthetic vascular smooth muscle cells accumulate in atheromas and
secrete extracellular matrix proteins, and smooth muscle cells and collagen are important
components of the fibrous cap that covers the atherosclerotic plaque. It is believed that
plaques with a reduced ratio of smooth muscle cells to foam cells are vulnerable to rupture,
which is the event inducing thrombosis and, therefore, myocardial infarction [1].

CVD is a leading cause of death, but how the multifactorial pathology develops is
not clear. The incidence of cardiovascular morbi-mortality from CVD varies according
to conventional risk factors [2]. Factors that affect the risk of developing CVD include a
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genetic history (gender, family, or ethnicity) [3] or a poor lifestyle (smoking, alcohol use,
lack of activity, or unhealthy diet) [4]. Hypertension is the most common modifiable risk
factor in CVD [5]. High blood pressure is often associated with metabolic deregulation,
which leads to high blood cholesterol levels that, such as glucose in type 2 diabetes, damage
blood vessels and lead to atherosclerosis. The mechanisms that link the regulation of blood
pressure and hypercholesterolemia, the mutual interaction between hypertension and
hypercholesterolemia and their influence on the development of atherosclerosis are mainly
the renin-angiotensin-aldosterone system, oxidative stress, endothelial dysfunction and
increased production of endothelin-1 [6]. Hypertension is also associated with metabolic
deregulation of the methionine cycle, which leads to hyperhomocysteinemia (HHCy) [7].
Of all the established risk factors associated with the development of hypertension and
its complications such as accelerated cardiac atherosclerosis and premature death, HHCy
is probably the most elusive. The aim of this review is to propose a mechanism by which
HHCy causes an increase in H2S levels, which affects the adenosinergic system, ultimately
promoting CVD.

2. HHCy as a Risk Factor in CVD

Homocysteine (HCy) is a thiol group-containing amino acid metabolite that is pro-
duced in all cells via the methionine cycle. HCy synthesis occurs via the transmethylation
of methionine by S-adenosylmethionine synthetase (SAMS) to form SAM from methion-
ine and ATP. Methyltransferase (MT) converts SAM to S-adenosylhomocysteine (SAH),
and SAH hydrolase metabolizes SAH into adenosine and HCy [8–10] (Figure 1). HCy
is remethylated to methionine and transsulfurated to cysteine. Remethylation of HCy
involves folate/vitamin B12-dependent and vitamin B12-independent mechanisms. The
former step is catalyzed by the vitamin B12-dependent enzyme methionine synthase (MS)
and uses N-5-methyl tetrahydrofolate (THF) as the methyl group donor, and the latter step
is catalyzed by betaine-homocysteine S-methyl transferase (BHMT) and uses the methyl
group from betaine [11] (Figure 1).

Approximately 5~10% of the total daily cellular production of HCy that is not metab-
olized within the cell is exported to the plasma compartment, where normal HCy levels
range from 5 to 15 µmol/L, and this baseline value is maintained in healthy human subjects
via constant clearance by the kidney [12–14]. Vitamin B12 and folic acid deficiencies may
lead to HHCy, which is linked to the development of CVD [15,16]. HHCy is a condition in
which the plasma concentration of HCy is elevated, which occurs as a result of an imbalance
between its biosynthesis and catabolism [17]. The definition of HHCy is controversial, but
it is generally defined as plasma HCy ≥ 10 µmol/L [18–20]. However, a slight increase
(10–15 µmol/L) in plasma HCy level is associated with morbi-mortality [21], and a higher
cut-off (≥15 µmol/L) was also considered to designate HHCy [22,23]. In conclusion, HHCy
is categorized into three classes as mild, moderate and severe HHCy with plasma HCy
levels ranging from 15 to 30 µmol/L, 31 to 100 µmol/L and > 100 µmol/L, respectively [24].

HCy contributes to the development of CVD via several mechanisms, such as its
adverse effects on the vascular endothelium and smooth muscle cells, which lead to alter-
ations in subclinical arterial structure and function. Therefore, HHCy is an independent
risk factor for atherosclerosis leading to CVD [16,25–27]. Several studies showed a clear
correlation between HCy plasma levels and the severity of atherosclerosis [28] and support
an association between elevated HCy levels and increased cardiovascular mortality [29].
HHCy is associated with the etiology of myocardial infarction and stroke, but the mech-
anisms of HCy promotion of CVD are not clear [30,31]. HCy may promote CVD via
mechanisms involving vascular muscle cell proliferation, a decrease in circulating HDL,
conversion to HCy-thiolactone and induction of an autoimmune response and thrombo-
genesis [32–35]. HHCy activates Nuclear Factor-kappa B (NF-κB), which regulates the
transcription of various genes involved in inflammatory and immune responses to increase
pro-inflammatory cytokines and downregulate anti-inflammatory cytokines [36]. HHCy
also induces endothelial cell dysfunction by decreasing endothelial antioxidant defense to
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cause oxidative stress and an increase in the intracellular concentration of reactive oxygen
species (ROS) [37]. ROS disturb lipoprotein metabolism, which contributes to the growth of
atherosclerotic vascular lesions [38]. HCy acts on vessels by controlling the contractility of
vascular smooth muscle cells and the permeability of endothelial cells via the inhibition of
endothelial nitric oxide synthase, which produces nitric oxide (NO) [39,40]. Increased HCy
is also associated with DNA hypomethylation in vascular disease [41] but this complex
regulatory mechanism is tissue-specific [42]. To alleviate the intracellular accumulation
of HCy when the remethylation pathway is impaired, endothelial cells export HCy to the
circulation [43]. The mechanism of HCy transport in the vascular endothelium is not well
defined, but human aortic endothelial cells bind and import L-HCy via at least four of the
known cysteine sodium-dependent transport systems, namely, XAG, L, ASC and A, and
L-homocysteine is imported via the XAG, L, ASC and xc systems [44]. The effects of HHCy
on CVD may also be due to the increased production of hydrogen sulfide (H2S).
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which requires folate and vitamin B12, and betaine homocysteine S-methyltransferase (BHMT), 
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tetrahydrofolate (5-MTHF), which is derived from 5,10-methylenetetrahydrofolate (5,10-MTHF) in 

Figure 1. Methionine cycle. Homocysteine (HCy) is biosynthesized from methionine by S- adenosylme-
thionine synthetase (SAMS), methyltransferase (MT) and S-adenosylhomocysteine hydrolase (SAHH)
in sequential steps. Methionine is activated by condensation with adenosine triphosphate (ATP) to
yield the ubiquitous methyl donor SAM, which is transformed into S-adenosylhomocysteine (SAH)
by donating its methyl group to the substrates of methylation reactions. SAH gives rise to HCy in a
reversible reaction that favors SAH over HCy production. SAH is a competitive inhibitor of methylation
reactions, and rapid elimination of adenosine and HCy is required to prevent its accumulation. HCy
may be remethylated to methionine by methionine synthase (MS), which requires folate and vitamin
B12, and betaine homocysteine S-methyltransferase (BHMT), which requires betaine, a metabolite of
choline. Remethylation of HCy via MS requires 5-methyltetrahydrofolate (5-MTHF), which is derived
from 5,10-methylenetetrahydrofolate (5,10-MTHF) in a reaction catalyzed by MTHFR with vitamin B2
as a cofactor. 5-MTHF is converted into tetrahydrofolate (THF) after it donates its methyl group, and
THF is converted into 5,10-MTHF by serine hydroxymethyltransferase (SHMT) with vitamin B6 as a
cofactor to complete the folate cycle. HCy may enter the transsulfuration pathway, and adenosine can
reach its metabolic process.
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3. H2S as a Gasotransmitter

H2S is the final product of HCy metabolism. Transsulfuration of HCy is catalyzed
via the vitamin B6-dependent enzymes cystathionine β-synthase (CBS) and cystathionine
γ-lyase (CSE). CBS converts HCy and serine into cystathionine, which is used by CSE
to generate cysteine [8,9] (Figure 2). CBS and CSE are the major enzymes responsible
for the biogenesis of hydrogen sulfide, which is endogenously generated in mammalian
tissues [45,46]. CBS and CSE catalyze various biochemical mechanisms. CBS produces H2S
from cysteine via a β-elimination reaction, and CSE generates H2S via the α,β-elimination
of cysteine. CBS and CSE perform a β-replacement reaction, which condenses two cys-
teine molecules or catalyzes the condensation reaction of HCy with cysteine via β- or
γ-replacement to produce H2S. CBS and CSE also affect cysteine α,β-elimination produc-
tion of cysteine persulfide to ultimately generate H2S [47] (Figure 2). CBS also produces
H2S via β-replacement in which cysteine is hydrolyzed and condensed with HCy, which
provides a biochemical explanation for the HCy-lowering effects of N-acetylcysteine treat-
ments in humans [48]. Under conditions of high HCy levels, the α,γ-elimination and
γ-replacement reactions likely account for most H2S production by CSE [49] (Figure 2).
3-Mercaptopyruvate (3-MP) sulfurtransferase (MST) in combination with cysteine amino-
transferase (CAT) also produces H2S from cysteine [50,51] (Figure 2). L- and D-cysteine
may be involved in the biosynthetic pathway for the production of H2S via MST and
D-cysteine oxidase. The D-cysteine-dependent pathway acts primarily in the cerebellum
and kidney [52]. Cardiovascular cells and tissues are limited in their capacity to metabolize
HCy because these cells do not express cystathionine β-synthase, which is the first enzyme
in the transsulfuration pathway [53,54].
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Figure 2. Transsulfuration pathway. HCy may be sequentially converted into cystathionine then
cysteine by two vitamin B6-dependent enzymes, cystathionine β-synthase (CBS) and cystathionine
γ-lyase (CSE), which subsequently results in the generation of H2S. HCy and cysteine are substrates
for H2S production by CBS, CSE, cysteine aminotransferase (CAT) and 3-mercaptopyruvate (3-MP)
sulfurtransferase (MST).

Genetic disorders in the enzymes responsible for HCy metabolism, such as mutations
in N-5,10-methylenetetrahydrofolate reductase (MTHFR) and CBS, may result in moderate
or severe HHCy [55]. CBS, CSE and MST are differentially expressed in various systems
and affect the functions of these systems via the production of H2S. The physiological
functions of H2S are mediated via different molecular targets, such as different ion channels
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and signaling proteins [56]. Immunohistochemistry localized CBS in the endothelium of
small pial arteries and intracerebral arterioles, capillary walls, neurons and vascular nerves.
CSE is localized in smooth muscles and the thoracic aorta, where it is the main enzyme
producing H2S. MST and CAT are localized in the vascular endothelium of the thoracic
aorta [57,58].

H2S is a gasotransmitter known for its regulatory role in many physiological pro-
cesses [59]. H2S works with NO and carbon monoxide (CO) as an important endogenous
signaling molecule in mammalian cells and tissues [60–64], specifically in the cardiovascular
and nervous systems [65,66]. One important property of H2S is its biphasic pharmacolog-
ical mode of action. At low concentrations, H2S exerts modulatory effects and acts as a
cytoprotective, antioxidant and anti-inflammatory agent [63,67]. In contrast, higher con-
centrations of H2S induce deleterious actions, including pro-oxidant effects and cytostatic
and cytotoxic responses. These responses involve numerous signal transduction pathways
and molecular targets, including KATP channels, Akt, AMP kinase, PTEN, NF-κB, Nrf2,
proline-rich kinase 2, the adenylate cyclase and guanylate cyclase systems and inhibition
of cytochrome C oxidase [63,67–69].

3.1. H2S in Pathophysiological Conditions

The role of H2S in vascular diseases, inflammation, critical illness, reperfusion in-
jury, various nervous system diseases, metabolic diseases and cancer was extensively
reviewed [70–78]. Evidence in support of a role of H2S deficiency in vascular disorders,
such as hypertension and atherosclerosis, is accumulating [79,80]. Other review articles
addressed the vascular biology of H2S and the mechanisms of HHCy-induced vascu-
lar injury [81,82]. CSE may be primarily responsible for changes in H2S production in
HHCy [49]. Accumulating evidence supports the inhibitory effect of HCy on H2S gen-
eration [83–85], but there were also reports of elevated H2S levels in HHCy [86,87]. The
evidence of defective and enhanced H2S production under HHCy conditions and the
metabolic imbalance of HCy and H2S in cardiovascular pathologies suggests that changes
in the H2S/HCy ratio may be more valuable than changes in the absolute concentrations
of H2S and HCy in depicting the role of these metabolites in disease pathogenesis [88–90].
There are growing controversies on the physiologically significant concentrations of H2S
and its biological effects [91,92]. H2S stimulates or inhibits intracellular transduction path-
ways, cell proliferation, apoptosis and hemostasis [59,93–98]. H2S also exerts pro- and
anti-inflammatory effects [65,99,100]. Only a few studies showed changes in the levels of
H2S in human diseases, and most of these measurements were indirect and measured com-
pounds linked to H2S, such as thiosulfate or sulfhemoglobin, rather than H2S itself [101].
Due to its vasorelaxative and vasoprotective properties, H2S may be useful in the treatment
of arterial hypertension by decreasing peripheral resistance [92]. Research on the clinical
and fundamental aspects of H2S is in full development, particularly the relationship be-
tween the production of H2S and epigenetics such as DNA methylation and DNA damage
repair [102].

3.2. H2S in Immune Cells

The immune cells are in permanent contact with H2S because of the endogenous
and exogenous production from the surrounding parenchymal cells, which regulates
their viability and function. The downregulation or genetic defect in endogenous H2S-
producing enzymes leads to the onset or development of autoimmune diseases [103].
Monocytes/macrophages express CBS, CSE and MST, and CSE and MST are likely the pri-
mary enzymes. Pro-inflammatory agents, such as liposaccharide (LPS), tend to upregulate
CSE, and anti-inflammatory and cytoprotective agents, such as steroids and statins, inhibit
its expression [104–107]. Bacterial LPS increases CSE expression and concomitant H2S pro-
duction in macrophages via activation of the p38 MAP kinase pathway, and glucocorticoids
prevent this upregulation [104,105,108]. CSE upregulation in macrophages is also depen-
dent on activation of the NF-κB and ERK pathways [109]. H2S-induced signaling appears
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to play an important role in T cell activation. Whether H2S is produced by activated T
cells or administered exogenously, it acts as an autocrine or paracrine enhancer of T cell
activation. Administration of H2S at nanomolar concentrations boosts T cells and upregu-
lates the expression of activation markers, such as CD69, IL-2 and CD25 [110]. The action
of H2S protects immune cells from various deleterious effects, such as oxidative stress
(ROS production) or inflammatory runaway. The exogenous administration of H2S donors
exerted anti-inflammatory effects in various local and systemic inflammatory diseases, such
as brain disease, neoplastic disease of the colon, inflammatory disease joints, kidneys, car-
diovascular, ophthalmic and dermatological diseases [67,111–123]. Paradoxically, a given
H2S donor may have beneficial effects on the immune system but undesirable effects on the
vascular system and vice versa. Although H2S acts on various immune cells (macrophages,
T lymphocytes, etc.), it exerts little-known complex effects on the interactions between
immune and nonimmune processes. For example, H2S reversed adenosinergic impairment
of T cell viability via suppression of NF-κB, which downregulated A2AR expression and
may also affect the cardiovascular system [124].

4. Adenosine as a Purinergic Modulator of Cardiovascular and Immune Systems

Adenosine is a ubiquitous autacoid that is derived from the dephosphorylation of
ATP intracellularly or via the extracellular ectoenzymes CD39 and CD73. Most types
of cells release ATP. At the intracellular level, some adenosine also originates from the
methionine cycle via the hydrolysis of SAH, which leads to the formation of HCy and
adenosine in a stoichiometric ratio. Intra- and extracellular adenosine is deaminated to
inosine by adenosine deaminase and joins the end product of the catabolism of purines,
uric acid via nucleosidase and xanthine oxidase to yield hypoxanthine and xanthine, re-
spectively [125,126] (Figure 3). Extracellularly, adenosine acts as a signaling molecule by
interacting with the integral membrane proteins adenosine receptors or P1 purinergic
receptors. Four subtypes were cloned and named: A1, A2A, A2B and A3 receptors. The
intracellular segment of each adenosine receptor subtype interacts with the appropriate
heterotrimeric guanine nucleotide-binding protein (G-protein) with subsequent activa-
tion of an intracellular signal transduction mechanism. Adenosine receptor subtypes are
divided into two main categories: (i) receptors that are coupled to inhibitory G-proteins
(Gi), such as adenosine A1R and A3R; and (ii) receptors that are coupled to stimulating
G-proteins (Gs), like A2AR and A2BR [127]. Adenosine receptors are pleiotropic, and other
G-protein subtypes (Go, Gq, Golf) are also involved in signal transduction depending on the
degree of activation or cellular/subcellular localization [128]. In addition to the exofacial
expression of adenosine receptors, adenosine availability and extracellular concentration
are also crucial in distinguishing which adenosine receptor subtype is activated. Interstitial
adenosine levels increase under conditions of high metabolic demand, such as exercise,
and low energy intake, such as ischemia, to reach physiologically relevant concentrations.
Adenosine is released into the extracellular space to restore the balance between local
energy needs and energy supply [129].

The transfer of adenosine to both sides of the cell is performed via specific proteins, called
nucleoside transporters (NTs). NTs alter cellular and plasma adenosine levels [130,131]. The
transport of adenosine across the cell membrane is crucial because it regulates the levels of
extracellular adenosine that come into contact with surface receptors. Two types of NTs
were identified: (i) four equilibrative nucleoside transporters (ENT1 to ENT4) [132,133];
and (ii) three concentrative transporters (CNT1 to CNT3) [134]. The increase in ENT
and CNT activities may reduce the availability of extracellular adenosine for its receptors,
which attenuates their effects. Therefore, NTs act as crucial players in adenosine function by
controlling the local levels of adenosine near adenosine receptors. The effectiveness of this
transport system is particularly active in humans, and it is responsible for the extremely
short half-life of adenosine in human blood. Adenosine, its receptors and nucleoside
transporters together form the “adenosinergic system”, which exerts fine regulation in
multiple physiological and pathophysiological processes [135–137].
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Figure 3. Intracellular adenosine metabolism. Adenosine comes primarily from ATP degrada-
tion in the intra- and extracellular environment. In the cytosol, adenosine produced from AMP
via 5′-nucleotidase (5′-NT) may be phosphorylated again by adenosine kinase (AK). Some adeno-
sine arises intracellularly from the metabolism of methionine (Met) via the reversible action of
S-adenosylhomocysteine hydrolase (SAHH). Intra- and extracellular adenosine is successively de-
graded into inosine by adenosine deaminase (ADA), into hypoxanthine by nucleosidase (NS) and
into xanthine then uric acid by xanthine oxidase (XO).

4.1. Adenosine Receptors in the Immune System

Adenosine and its receptors play a role in the modulation of inflammation and the
immune response [138]. Adenosine released into extracellular spaces occurs in response
to inflammation [139,140]. Molecular agents other than adenosine stimulate (agonist) or
inhibit (antagonist) its receptors in certain diseases. Coffee consumption is associated with
a lower risk of type 2 diabetes. Overall, the experimental and epidemiological evidence
elucidated a protective effect of coffee consumption in this disease and showed that caffeine
reduced the production of pro-inflammatory cytokines and increased anti-inflammatory
processes via the inhibition of A1R, A2AR and A2BR signaling. Caffeine produces biphasic
effects. Effects of low doses of caffeine are mediated by adenosine blockade. High dose
effects are not due to adenosine antagonism but have a less well known underlying
mechanism [141,142]. Coffee consumption seems to have beneficial effects on subclinical
inflammation and HDL cholesterol and repeated intake of caffeine paradoxically leads to
upregulation of A2AR which is accompanied by sensitization to the actions of the agonist
HE-NECA [143,144].

Pharmacological activation of A2AR using the agonist ATL-146e in diabetic rats ame-
liorated diabetes-induced histological and functional changes in kidneys and reduced
the inflammation associated with diabetic nephropathy [145]. Chronic treatment with
the A2AR agonist CGS-21680 prevented proteinuria and glomerular damage in diabetic
rats via an anti-inflammatory mechanism that was independent of oxidative stress and
kidney hypoxia [146]. Adenosine receptors regulate the immune system and act on in-
flammation and immunes disorders. A2AR agonists have anti-inflammatory actions in
numerous diseases, including ischemia, arthritis, sepsis, pulmonary and bowel disease and
wound healing. Studies in mice and rats demonstrated that the anti-inflammatory effects
of methotrexate were lost when animals were treated with A2AR and A3R antagonists
and when these receptors were deleted. Similar effects were observed in patients with
rheumatoid arthritis treated with methotrexate who ingested large amounts of caffeine,
an adenosine receptor antagonist [138,147]. Activation of A2AR by endogenous adenosine
contributed to the production of interleukin-10 (IL-10) in polymicrobial sepsis [148]. IL-
10-mediated signaling was significantly attenuated in macrophages derived from A2BR
knockout mice [149]. Accumulating evidence suggests that chronic silent inflammation is a
key feature of abdominal obesity, metabolic syndrome, type 2 diabetes and cardiovascular
disease [150–152]. The contribution of inflammation to the disease is supported by the re-
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sults of preclinical studies and new clinical trials using anti-inflammatory approaches [151].
A3R has a complex immune-modulatory role and may promote pro- and anti-inflammatory
processes. Current knowledge on the role of adenosine A3R in CVD is limited, but studies
in knockout mice demonstrated that the absence of A3R signaling prevented the devel-
opment of hypertension and alleviated kidney and cardiovascular damage via various
mechanisms, including a reduction in the population of antigen-presenting cells, an in-
crease in immune homeostasis and a decrease in chronic inflammation and oxidative stress
during disease [153]. Activation of A2AR and A2BR via the inhibition of oxidative activity
may have strong modulatory effects on the immune system and arrest the progression of
adverse effects in various disorders.

Neutrophils express the four types of adenosine receptors [154]. A2AR has a high
affinity for adenosine, and it is expressed on basophils, mast cells, monocytes, dendritic
cells, T and B cells and NK cells [155]. Several studies demonstrated that activation of
A2AR signaling enhanced IL-10 production, inhibited macrophage infiltration, suppressed
pro-inflammatory cytokines from T cells and myeloid cells, and increased regulatory
T cell expression [147]. Suppressive effects of the A2AR on leukocyte function in vitro
and in vivo are widely described [156]. A2AR agonists inhibit human neutrophil activa-
tion [157–159] and reduce cytokine production induced by T cell receptor engagement [160].
A2AR agonists inhibit neutrophil adhesion and infiltration, inflammatory cytokine produc-
tion, neutrophil degranulation and oxidative burst [156]. A2AR knockout mice exhibited
increased leukocyte migration and poor defense against tissue damage in various mod-
els of inflammation, such as lipopolysaccharide-induced lung damage, inflammation by
methotrexate and its analog MX-68 and the formation of excisional wounds [161–164]. In
mice deficient in A2AR and apolipoprotein E, which play crucial roles in the regulation of
lipid metabolism and atherogenesis, the absence of A2AR improved leukocyte recruitment
and increased the size of the arterial neointima in injured carotid arteries [165]. Neutrophil
A2AR inhibited inflammation in a rat model of meningitis and the oxidative activity of hu-
man neutrophils via the AMP/PKA cyclic pathway [166,167]. A2AR are negative immune
regulators that may be used to manipulate T cells, particularly during anti-tumor immune
responses [168].

4.2. The Adenosinergic and Cardiovascular Systems

The adenosinergic system regulates many physiological and pathophysiological states
via modification of adenosine production or the tissue expression of different types of
receptors [169,170]. During myocardial ischemia, most cell types, including myocytes and
vascular endothelial cells, release adenosine extracellularly into the blood in response to
decreased oxygen levels. The adenosine concentration in the coronary sinus is proportional
to the degree of coronary artery stenosis [171]. Elevated adenosine plasma levels are higher
in severe CAD than in healthy subjects [172]. Notably, HHCy was also associated with
severe CAD [173].

Most of the cells involved in the cardiovascular system express adenosine receptors
on their surface [174]. A1R, A2AR, A2B and A3R were localized in the heart, and their dis-
tribution depends on the tissue [175]. For example, high levels of A1R, with a high affinity
for adenosine, are expressed in the atria, primarily in the right atrium and lower expression
was found in ventricular myocytes [174,176]. A1R is also expressed in smooth muscles and
endothelial coronary tissues [177]. A2AR is fully expressed in the cardiovascular system,
particularly in the arteries, atria and ventricular tissue [174,178,179].

Adenosine and its receptors strongly affect heart rhythm and blood pressure [169].
A1R and A3R protect the cardiovascular system against ischemia/reperfusion injury by
improving mitochondrial function [140]. During spontaneous or induced myocardial
ischemia, adenosine acts on coronary blood flow via A2AR and A2BR. During ischemia,
adenosine release from endothelial cells induces A2AR activation and cAMP production,
which correlate with coronary vasodilation [180]. Myocardial anti-ischemic properties
were attributed to A1R and A2AR because a selective A1R agonist restricted the increase in
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heart rhythm and A2AR knockout mice suffer from tachycardia and hypertension [181]. In
addition to this cardioprotective property, the activation of A2AR exerts a pleiotropic action
on coronary smooth muscle cells, endothelial cells and mononuclear cells, which leads to
vasodilation, neoangiogenesis and decreased levels of pro-inflammatory cytokines (IL-1β,
IL-6 and TNF-α) [127,182]. A2BR is also involved in coronary vasodilation in myocardial
ischemia [183,184]. Although the activation of A2AR and A2BR upon exposure to high
plasma levels of adenosine results in beneficial effects on the myocardium for a short-
term period, the long-term activation of these receptors during chronic exposure to high
adenosine plasma levels is harmful [127]. Primarily A2AR, but also A2BR despite having
the lowest affinity for adenosine, are expressed in ventricular myocytes and fibroblasts
and modulate inotropic properties and ventricular function in animals [185,186]. Reported
evidence reveals that activation of A2BR in smooth muscles of coronary arteries contributes
to coronary vasodilation [187]. The myocardial expression of A3R is very low, but it is
expressed within the heart and seems to play a role in coronary artery muscle cells and
other smooth muscle cells, where these receptors modulate inward potassium channels
and cAMP production [188–190].

4.3. Adenosine and Its Receptors in Coronary Artery Disease (CAD)

Acute coronary syndrome and its most common consequence, sudden cardiac death,
is a major public health problem and accounts for approximately 50% of all cardiovascular
deaths, of which at least 25% are the first symptomatic cardiac events [191]. Coronary
artery stenosis causes a severe imbalance in oxygen supply and demand, which results
in ischemia. Reperfusion strategies are the current standard treatment for acute coro-
nary syndrome, but these strategies may lead to paradoxical cardiomyocyte dysfunction,
known as ischemic reperfusion injury, and the exact mechanisms are not known (e.g., deep
inflammatory response, neurohumoral activation and oxidative stress) [192]. Adeno-
sine exerts numerous effects in the heart, including modulation of the cardiac response
to stress, particularly during myocardial ischemia and reperfusion [193]. Adenosine is
also a potent autocrine and paracrine immunosuppressive nucleoside that is released
in the vicinity of damaged cells in conditions of metabolic stress, such as ischemia, tis-
sue injury or inflammation [155,194]. Extracellular adenosine has been referred to as a
“safety signal” that dampens hypoxia-induced inflammation during ischemia and reperfu-
sion [195]. Extracellular conversion of ATP to adenosine has a central role in attenuating
sterile inflammation during ischemia-reperfusion injury. Experimental studies showed
that pharmacological strategies to increase the breakdown of ATP to adenosine were ef-
fective in attenuating tissue injury and pathogen-free inflammation during ischemia and
reperfusion [196–202]. Several experimental trials provide evidence of a protective role
of adenosine signaling in models of ischemia and reperfusion via activation of A2AR on
inflammatory cells [203–205] or activation of A2BR on the vascular endothelium, epithe-
lium or cardiac myocytes [200,206–208]. A2BR signaling controls the expression of the
circadian protein Per2, which stabilizes hypoxia-inducible factor (HIF), promotes glycolytic
metabolism and has cardioprotective effects. Exposure of mice to intense light stabilized
Per2 in the heart and reduced cardiac injury after myocardial ischemia [209]. Activation
of A2AR on T cells attenuated ischemia and reperfusion in experimental models of sickle
cell disease [204]. A2AR reduces inflammation by acting on pro-inflammatory cells to
attenuate the release of pro-inflammatory cytokines and decreasing the level of endothelial
adhesion molecules. Numerous preclinical studies using A2AR agonists and antagonists,
A2AR knockout and chimeric mice showed the therapeutic potential of A2AR agonists for
the treatment of ischemia-reperfusion injury and autoimmune diseases [210].

We showed that patients with CAD had low levels of A2AR on the surface of peripheral
blood mononuclear cells (PBMCs) [129,172,211]. PBMCs are a valuable surrogate for
cardiovascular cells to study the adenosinergic profile in patients with CAD because
the behavior of A2AR in the two cell types is similar in terms of A2AR level and cAMP
production, which was reported for the left ventricle in cardiac transplant recipients, the
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aorta and coronary artery tissues, and femoral arteries [172,212,213]. The properties of
A2AR expressed by PBMCs mirror the properties of A2AR in the vascular wall likely because
PBMCs are exposed to blood flow and are in contact with all tissues. This correlation of
expression and function of A2AR in the two compartments is certainly a reflection of
systemic regulation. Therefore, it offers a unique opportunity to study the adenosinergic
system and its behavior under ischemic conditions in coronary arteries [126].

A recent study correlated a low level of A2AR in PBMCs with a high level of plasma
cholesterol in patients with familial hypercholesterolemia, which reinforces the link be-
tween the immunosuppressive adenosinergic system and chronic inflammation in the
atherogenic process [214]. Notably, the final product of adenosine degradation, uric acid,
was significantly associated with CAD and endothelial dysfunctions [215,216]. The de-
crease in the level and activity of A2AR contributes to the maintenance and worsening of
CAD via modification of the adaptive vasodilation of the coronary arteries when an oxygen
supply is necessary, such as during the exercise stress test [129,136].

5. Adenosinergic System, HCy and H2S in CAD

As previously shown, adenosine comes from the methionine cycle, and its production
is linked to HCy metabolism. HCy and adenosine are independently associated with
cardiovascular disorders. Recent data suggest a link between HCy and adenosine, which
may explain the higher cardiovascular risk observed in HHCy. For example, hypoxia
increased intracellular adenosine production from ATP to form SAH with HCy via SAH
hydrolase. HCy enters the cell through transporters, and it is no longer the limiting
substrate for the production, along with adenosine, of SAH by reversing the reaction of
SAH hydrolase. The resulting high concentration of SAH forces the enzyme to return, as in
basal conditions, to the production of adenosine and HCy, which accumulate in the cell
and are catabolized to uric acid and H2S, respectively [217]. Notably, HCy plasma levels
in CAD patients correlated with adenosine and uric acid plasma levels and a decrease
in A2AR production and function [218,219]. Alternately, adenosine induced a time- and
dose-dependent increase in HCy in hepatoma cultured cells [218]. H2S also decreased the
level of A2AR expression in lymphocytes, which led to adenosinergic immunosuppression
and the promotion of inflammation against a background of elevated HCy [217]. The
downregulation of A2AR due to the increase of HCy in the blood may be explained by
a decrease in the level of A2AR in the PBMCs, which was found concomitant with their
accumulation in extracellular vesicles isolated from the plasma of CAD patients with
HHCy [220]. A2AR is the major adenosine receptor expressed in platelets and mediates the
inhibition of platelet aggregation [221]. A decrease in the expression of A2AR on platelets
due to HHCy via H2S could promote their aggregation. Consistently, HHCy in patients was
associated with increased platelet aggregation via the H2S pathway, which contributed to
atherothrombosis, stroke and myocardial infarction [86]. Therefore, we propose that HHCy,
via the elevated production of H2S, damages the cardiovascular system by reducing the
number of A2AR expressed on cardiac myocytes, and endothelial and immune cells under
ischemia-hypoxia (Figure 4). By neutralizing vasodilation and the adenosinergic immune
suppression via the action of H2S on NF-κB and HIF, HHCy may decrease blood flow and
exacerbate T cell infiltration and the concomitant release of pro-inflammatory cytokines in
cardiovascular tissue. Therefore, the increased risk of coronary heart disease associated
with HHCy may be the consequence of elevated levels of H2S on the adenosinergic system.
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Figure 4. Proposed mechanism of the role of HHCy in CAD. In cases of CAD with HHCy, H2S
accumulates in cells and reverses adenosine-induced A2AR expression by endothelial and immune
cells via the NF-κB pathway. Therefore, the vasodilation of the arteries and the immunosuppressive
action of the lymphocytes are hampered, which promotes the processes of ischemia and inflammation,
respectively, that aggravate CAD.

6. Conclusions and Future Directions

This article is an overview of the available evidence, which may appear partial and/or
controversial, on the interaction between the adenosinergic system and the metabolism of
HCy. The way in which these interactions are orchestrated in the cardiovascular system,
particularly under conditions such as inflammation or hypoxia/ischemia, has highlighted
the putative role of H2S as a gas mediator in various immune/inflammatory diseases
affecting the cardiovascular system, with CAD being the most characterized. These data
are consistent with the hypothesis that HCy participates in CAD pathophysiology by
lowering A2AR expression on blood vessels and T cells to reduce coronary blood flow and
promote inflammation, respectively.

This described system may be a contributor, but given all of the side effects of HHCy
on CVD and the compelling evidence that H2S protects against CAD, it is possible that it
all depends on the context and cell type. Many other factors, such as age, weight, lipid
status and a family history of high blood pressure or diabetes mellitus may also interact.
The question of the importance of the production of H2S in situ or in the peripheral
circulation in relation to the level of expression of transsulfuration enzymes in the cells of
the cardiovascular and immune systems remains to be studied. However, measuring the
level of A2AR expression on PBMCs could offer a new risk factor for CVD. Innovative and
targeted treatments on the modulation of A2AR by H2S could be considered.
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