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Abstract 

Demand for in vitro fertilization (IVF) treatment is growing; however, success rates remain low partly due to difficulty in selecting 
the best embryo to be transferred. Current manual assessments are subjective and may not take advantage of the most informative 
moments in embryo development. Here, we apply convolutional neural networks (CNNs) to identify key windows in pre-implanta-
tion human development that can be linked to embryo viability and are therefore suitable for the early grading of IVF embryos. We 
show how machine learning models trained at these developmental time points can be used to refine overall embryo viability assess-
ment. Exploiting the well-known capabilities of transfer learning, we illustrate the performance of CNN models for very limited data-
sets, paving the way for the use on a clinic-by-clinic basis, catering for local data heterogeneity.
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Introduction
Machine learning (ML) has already demonstrated great promise 
in many areas of medical imaging [1–3] and has the potential to 
revolutionize the field of medical diagnostics. There has been re-
cent interest in applying ML approaches to tackle infertility, a 
growing health crisis impacting both individuals and society that 
has led to a rising demand for in vitro fertilization (IVF) treat-
ments [4]. Due to low success rates, multiple IVF attempts are of-
ten required, leading to additional costs and distress for the 
patients. One of the main challenges in IVF is the difficulty in 
selecting an embryo to be transferred, as the general consensus 
on what the healthy, human embryo looks like, and which em-
bryos are the most suitable for transfer is still under extensive 
debate [5–7]. The selection process routine in most clinics 
involves visual assessment of embryos in real-time or via time- 
lapse videos. Embryos are assessed based on morphological fea-
tures such as the number and size of cells at the cleavage stage 
and in the trophectoderm (TE) and inner cell mass (ICM) in the 
blastocyst (Fig. 1A), the expansion of the cavity, developmental 
timings, cellular fragmentation, and multi-nucleation. This man-
ual assessment is subjective, with up to 83% variation between 
embryologists [8], and uses only a fraction of the information 
that is potentially available. A convolutional neural network 
(CNN)-based approach that automatically assesses embryos 

using more extensive information from across the time-lapse 
videos could potentially provide a consistent and reproducible 
method for embryo selection [9].

In recent years, many CNN approaches to assessing embryo 
viability have been developed [8, 10–23], demonstrating the po-
tential for deep learning to inform embryo selection. Most of 
these CNN-based studies focus on the blastocyst stage, mirroring 
the most widely used process of embryo selection by trained 
embryologists. Although embryologists may pay attention to ear-
lier stages, there is no consensus on which stages are crucial to 
look at and there is no standardized method of combining mor-
phological features and/or assigned grades from across develop-
ment into a single overall viability score. A few CNN-based 
approaches have incorporated frames from earlier embryonic 
stages [12, 15, 17, 22, 23], and some have succeeded in making vi-
ability assessments using solely pre-blastocyst stages [15, 17, 23], 
demonstrating that it is possible for CNNs to extract information 
about embryo viability from this early developmental period. It is 
yet to be determined whether there are specific moments in this 
period that are particularly informative, and therefore, the choice 
of which frames to include requires further investigation. This 
choice could impact model performance, as frame selection based 
just on video timestamp could miss crucial moments or add un-
necessary data, potentially leading to overfitting. Identifying 
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moments in development that are most predictive of live birth 
could lead towards further improvements in viability assessment, 
based on the most important information across development.

In this work, we used a CNN to determine the moments in de-
velopment that can be linked to higher embryo viability (defined 

as the most predictive of live birth) and demonstrated the 
importance of including these developmental time-points when 
assessing embryo viability. First, through the development of 
a stage classification algorithm, we demonstrated the high 
efficiency of our chosen model in correctly classifying stages of 
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Figure 1. Performance of developmental stage classification models with increasing amount of training data. (A) The typical development of human 
embryo and an overview of embryologist assessments carried out at each stage. (B) The methodology of training developmental stage classification 
models from time-lapse data. (C) The accuracy of the test set on models trained to classify an image as zygote or 2-cell with varying amounts of 
training data. (D) The accuracy of the test set on models trained to classify an image as before NEBD or after NEBD with varying amounts of training 
data. (E) The accuracy of the test set on multi-class models trained to classify an image into one out of five developmental stage classes with varying 
amounts of training data. Subparts (C–E) show the average scores over 50 training attempts with 25 embryos in each class for the test and validation 
set. The accompanying error bars are the standard error across these 50 training attempts.
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pre-implantation embryos. We then showed that this ML frame-
work can assess blastocyst viability at a similar level to embryol-
ogists. Subsequently, we successfully applied this model to 
predict live births at earlier stages, for which no standardized as-
sessment methods exist. Capitalizing on that, we used ML to 
identify previously unknown pivotal time-points for live birth 
prediction in the pre-blastocyst embryo, which is a first step for 
better understanding of the biology of human development and 
offers the means for better overall viability assessment and/or 
earlier transfer. Finally, we showed that combining information 
from our identified time-points of embryo development with 
blastocyst stage predictions allows for a quantitative ranking of 
high-quality blastocysts that could not have been achieved by 
any of the existing assessment methods. Critical to widespread 
clinical application, our findings also confirm that it is possible to 
train a CNN model in this domain to a high standard using lim-
ited data.

Material and methods
Patients and time-lapse videos
Time-lapse videos of developing embryos were supplied by the 
IVF clinic in the Department of Reproductive Medicine at Old 
Saint Mary’s Hospital, Manchester University NHS Foundation 
Trust, Manchester, UK. Embryos were cultured in either the 
EmbryoscopeTM or EmbryoscopeþTM time-lapse incubator sys-
tem (Vitrolife, Sweden). Throughout the study period, there were 
no changes to the culture media or other culture conditions. 
Embryos were cultured in GTL overlaid with Ovoil (Vitrolife, 
Sweden) from post-injection (after ICSI, approximately 40 h post- 
human chorionic gonadotropin (hCG) trigger) to day 5 of develop-
ment. EmbryoscopeTM slides can hold up to 12 embryos in indi-
vidual wells with 25 µl of media, overlaid with 1.2 ml of oil. 
Embryoscopeþ TM slides can hold up to 16 embryos, in 2 rows of 
8 wells, each row of 8 wells is overlaid with 180 µl of media. 
Embryos were not removed from the incubators during the ob-
servation periods, and media was not changed. Each time-lapse 
video exported had a frame-rate of 5–10 frames an hour. All 
images were irreversibly anonymized by clinic staff before being 
given to us.

The dataset comprised fresh ICSI transfers from 2016 to 2019 
that resulted in either live birth or no pregnancy (defined as no 
pregnancy ever detected, including miscarriages and biochemical 
pregnancies), including both single-embryo transfers (SET) and 
double-embryo transfers (DET). Only DET that resulted in no 
pregnancy or male/female twins (to exclude the possibility of 
monozygotic twinning) were included. In total, we used time- 
lapse videos for 443 successful embryos and 257 unsuccess-
ful embryos.

Preparation of input image data
The frame numbers of specific stages in development were 
recorded by viewing each video in ImageJ. The frames at various 
time intervals before and after this moment were then automati-
cally extracted using the timestamp (displayed in the bottom 
right of each frame). Measuring time in hours rather than frames 
was necessary as the time between frames was inconsistent be-
tween videos.

The datasets for each stage contained a frame from almost ev-
ery embryo in the whole time-lapse dataset of 700 videos; how-
ever, there were a small number of frames where the image 
quality was too low or the specific moment could not be deter-
mined (due to out-of-focus cell divisions or excessive 

fragmentation), therefore 10 embryos were excluded from the PN 
dataset, 13 from the 4-cell dataset, and 15 from the 8- to 16-cell 
dataset. We ensured that the EmbryoscopeTM/EmbryoscopeþTM 

ratio was equal across the two groups by randomly removing 
some of the successful Embryoscope embryos (this group initially 
had more embryos recorded by the Embryoscope).

All images before the blastocyst stage were cropped to 300 × 
300 pixels as this was the smallest size that captured the whole 
embryo including the zona. As embryos at the blastocyst stage 
expand a variable amount, occasionally almost filling the image, 
this stage was left uncropped. All images were then resized to 
224 × 224 as this is the input size required by the pre- 
trained model.

Model
The model we have used is the MobilenetV2 model [24], a CNN 
for which weights pre-trained on the ImageNet [25] database are 
available. Using these weights allowed us to easily implement 
transfer learning from ImageNet, a standard strategy for rela-
tively small datasets that is often used in studies classifying hu-
man embryos [8, 10, 11, 13, 14, 17–19, 22, 26]. MobileNetV2 is one 
of the commonly used models in computer vision and has previ-
ously been shown to be capable of successfully classifying medi-
cal images by several studies [27–30]. In addition, MobileNetV2 is 
a computationally light model, therefore is convenient for any 
clinics wishing to repeat model training on their own dataset. We 
used fixed convolutional features, training only the final layer of 
the model. Prior to hyper-parameter tuning, we used a base 
learning rate of 0.0001, a dropout of 0.5, and the cross-entropy 
loss function. For the live birth prediction models, we applied a 
class weight of 2 to the live birth class to account for this class 
having about half the amount of data as the no pregnancy class.

For the live birth prediction models, we also experimented 
with using developmental stage classification for extra domain- 
specific transfer learning. The first step was to add an extra hid-
den layer to the MobileNetV2 model and train it to predict devel-
opmental stage with both the hidden layer and last layer 
trainable (the rest of the network was fixed as before). For stages 
earlier than the blastocyst, we used the classes as in Fig. 1E for 
step 1. For the blastocyst stage, we trained a separate model with 
the before nuclear envelope breakdown (NEBD) class replaced 
with a blastocyst class. In the second step of training, we then 
took this model as a starting point for our live birth prediction 
models, where for this step the only trainable layer was the last 
layer, while all the convolutional and the hidden layers were 
fixed. We repeated these two steps with various numbers of hid-
den units (100, 320, 640, or 960) in the hidden layer to find the 
most suitable model structure.

Model training
Two training strategies were used in this work; cross validation, 
where train/validation/test sets were assigned randomly at the 
start of each repeat training run, and hold out test set, where 
training and validation sets were randomly assigned for each re-
peat run while the test set remained constant. We used an 
80:10:10 train/validation/test split for the former and 60:20:20 
train/validation/test split for the latter. When assigning embryos 
to the test and validation sets, we kept embryos from the same 
cycle together for the live birth prediction models to avoid data 
leakage. We also kept the proportion of SET to DET constant 
throughout the train/validation/test sets. We then performed 
augmentation on the training set by rotating each image by 90, 
180, and 270 degrees and getting the mirror image.
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Each training attempt was repeated twice, the first time we 
ran each model for 10 000 epochs and recorded at what epoch 
the validation set peaked in performance on average across all 
repeat training runs. The second time we trained the model for 
this optimal number of epochs for every repeat training run. We 
did this because our models were prone to overfitting, so finding 
the optimal number of epochs was important; however, the small 
size of our validation set led to a lot of fluctuation, so averaging 
over many repeat runs was required.

Model performance evaluation
For each model setup, we ran 50 repeat training runs and for 
each training run the area under the curve (AUC) of the receiver 
operator characteristic (ROC) was calculated. The ROC is a graph-
ical plot of true-positive rate versus false-positive rate at various 
thresholds. The AUC of this curve is therefore a measure of how 
well the model performs, with a value of 1 corresponding to a 
perfect classifier. We calculate the ROC AUC using Scikit-learn 
python library. The standard error in ROC AUC values over all re-
peat runs was then used to calculate error bar values.

The blastocyst model was compared to the embryologist scor-
ing system using grades assigned by the embryologists at St 
Mary’s. An overall ‘embryologist score’ was calculated from aver-
aging TE, ICM, and expansion scores; while we acknowledge that 
this scoring system is imperfect, as in reality, the embryologist 
selecting the embryo may be able to select the better embryo out 
of embryos given the same grade and may place a different level 
of importance on the individual expansion/TE/ICM scores. 
However, due to the lack of an evidence base for selecting 
amongst embryos of similar grades, we decided that a simple av-
erage would be best for calculating an overall score, allowing for 
a comparison with our blastocyst model.

The comparison of model performance at the optimal time- 
point versus the time-point 6 h before (Fig. 3) was carried out by a 
Student’s t-test. The significance between the success rates of 
subsets of the high-quality blastocysts (HQB) group and the 
whole HQB group (Fig. 4B) was calculated using a binomial test.

Results
In this study, we employed CNNs to analyse the biological pro-
cess of human pre-implantation development and provide infor-
mation of clinical relevance. To this end, we trained and tested 
CNN models on a dataset of time-lapse videos of embryos (700 in 
total) with known transfer outcomes from the IVF clinic at the 
Department of Reproductive Medicine, St Mary’s Hospital, 
Manchester, UK. This is an NHS-funded clinic with stable patient 
population demographics and standardized treatment policies, 
and therefore highly suitable for single-centre treatment out-
come studies [31]. Embryos were cultured in either 
EmbryoscopeTM or EmbryoscopeþTM time-lapse incubator sys-
tem (Vitrolife, Sweden).

Live birth prediction is a difficult task as some embryos fail 
due to maternal factors rather than defects of the embryo itself. 
This essentially adds ‘label noise’ to the data; some 
‘unsuccessful’ embryos will actually be of a high quality and 
likely developmentally competent. This means that there is an 
upper limit to the live birth prediction success rate as it is impos-
sible to be certain or close to certain that a high-quality embryo 
will be successful. Therefore, in addition to predicting live birth, 
we first trained and tested models on the simpler task of develop-
mental stage classification in order to fully evaluate the capabili-
ties of our ML framework on this dataset.

Developmental stage classification
To develop stage classification models, all time-lapse videos had 
one frame manually extracted for each developmental stage, 
resulting in equal class sizes. To reduce the amount of training 
data needed, we used the established practice of transfer learn-
ing, using the MobileNetV2 model with layers pre-trained on 
ImageNet, a large dataset of various images commonly for pre- 
training when classifying human embryos [8, 10, 11, 13, 14, 17– 
19, 22, 26]. The overall workflow is illustrated in Fig. 1B.

First, we trained a binary model to classify embryos as zygote 
or two-cell stage (Fig. 1C). Subsequently, we trained a second bi-
nary model to recognize subtler differences on the subcellular 
level. To this end, we used images of embryos taken before or af-
ter NEBD (Fig. 1D). The two investigated models were trained 
with varying amounts of training data by randomly excluding a 
portion of our dataset. The training set size ranged from 10 to 
1200 (all data used—600 embryos remain after some are assigned 
to test/validation sets and 2 images are taken from each embryo) 
with and without data augmentation. The validation and test 
sets were kept constant at 100 images each. The average test set 
scores (Fig. 1C and D) showed that when all the data were used, 
we reached a test set accuracy of 97.1% for the zygote versus 
two-cell model and 94.6% for the before NEBD versus after 
NEBD model.

For both models, the accuracy increased with the amount of 
training data, as expected, and appeared to be reaching a plateau 
in performance once the number of images in the training set 
rose to around 200–400. This plateau may suggest that the model 
performed close to its optimal level and we are not likely to gain 
much better performance by adding more training data. Visual 
inspection of the images (Supplementary Fig. s1A) also suggested 
that there is an upper limit to the accuracy that could be 
obtained as vacuoles, and cells dividing in a plane that does not 
allow subsequent blastomeres to be immediately identified can 
cause an embryo to appear to be at a different stage when viewed 
without the context of the time-lapse video.

Our results also confirmed that relatively high performances 
can be achieved even with very little data. Over 85% test set ac-
curacy was obtained for both models with a training set size of 
just 10 (five images from each stage). This performance can be 
partly attributed to the fact that the classification task here is 
very straightforward with a clear morphological difference be-
tween the classes and very little label noise; however, it is also 
likely to be due to the pre-training on ImageNet resulting in pre- 
trained features that are transferable to this setting. Figure 1C 
and D also shows that augmentation (see Materials and methods 
section for details) seemed to have a small but positive effect, es-
pecially with limited training data, so we chose to continue using 
augmentation going forward.

We then trained multi-class models to classify images into 
five output classes corresponding to the consecutive stages of 
human pre-implantation development (Fig. 1E). We saw that a 
test set accuracy of 87.7% was achieved, which is much higher 
than the by-chance score of 20%. The results in Fig. 1E show a 
similar trend to the one observed in the binary models, where 
increases in accuracy became small once the training set reached 
about 200–400 images, and a reasonably high test set accuracy 
(69.4%) was achieved even with a training set of just 10. These 
results further confirm that MobileNetV2 with pre-trained layers 
can achieve a high performance, even with a small amount of 
the training data, when analysing routinely collected images of 
pre-implantation human embryos.
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Live birth prediction at blastocyst stage
Following the successful creation of developmental stage classi-
fiers, we next used the same model framework (MobileNetV2 
with transfer learning via layers pre-trained on ImageNet) to pre-
dict live birth based on the blastocyst stage, as this stage is most 
commonly used for embryo assessment and is a good time-point 
for comparisons. We extracted the final frame from each time- 
lapse video to produce a dataset of blastocyst images and trained 
the model on this dataset using 5-fold cross validation with 50 re-
peat training runs for each fold. For each embryo in the dataset, 
we calculated an average model confidence score from all 50 
training runs where that embryo was in the test set. We then cal-
culated the ROC AUC; the AUC (called the ROC curve) that is cre-
ated by plotting true-positive rate versus false-positive rate at 
various thresholds. A ROC AUC of 0.5 is no better than chance 
and 1 is a perfect model, we achieved a ROC AUC of 0.680 for live 
birth prediction at blastocyst stage.

Next, we wished to compare our results against embryologist se-
lection performance. To do this, we used a subset of embryos (141 
in total) for which Gardner grades [32] (a set of ICM, TE, and expan-
sion scores standardly used by embryologists when assessing blas-
tocysts) were available to produce ROC curves using the average 
model confidence scores and embryologist grades. In order to pro-
duce the ROC curve from embryologist grades, we first converted 
the Gardner score letter grades into numbers, as proposed by Alpha 
Scientists in Reproductive Medicine and ESHRE Special Interest 
Group of Embryology [33]. Then an overall score was obtained by 
calculating an average of TE, ICM, and expansion scores.

The ROC curves for both blastocyst assessment methods are 
shown in Fig. 2A. The ROC AUC was similar for embryologist and 
model assessment at 0.720 and 0.726, respectively. This suggests 
our model had a very similar performance to highly trained em-
bryologist grading, as St Mary’s Clinic hosts the UK National 
External Quality Assessment Service (a charitable consortium of 
external quality assessment laboratories) in reproductive biology. 
It is, however, important to note that the ML blastocyst model was 
at a disadvantage due to the use of limited information; only a sin-
gle focal plane from just the final frame was used to train the ML 
model. In contrast, the assessment of the embryologist was done 
using multiple focal points from the final frame, with possible ad-
justment of the score according to the time-kinetic data.

In clinical practice, a numerical scoring system of embryo via-
bility is more useful than a binary ‘successful’ or ‘unsuccessful’ 
prediction, as it allows the embryos in a cohort to be ranked in or-
der of likelihood of live birth. Although our model was trained as 
a binary classifier, the confidence score is continuous. 
Confidence calibration varies between modelling systems [34], 
therefore it was necessary to determine whether our model con-
fidence scores could be useful in ranking embryos. To investigate 
this, we sorted all the embryos in our dataset into buckets by av-
erage test set model score, with bucket 1 being the lowest score 
and bucket 10 being the highest score. The success rate (number 
of successful embryos in bucket/total number of embryos in 
bucket) for each bucket is shown in Fig. 2B. There was a general 
increase in success rate from buckets 1 to 10, suggesting that the 
confidence score was correlated to chance of live birth and there-
fore could be useful as a method to rank embryos in a cohort. 
However, the increase in success rate with bucket number 
appeared to plateau from buckets 7 to 10, suggesting that there is 
a subset of HQB for which any further increase in model score 
has little correlation to increased chance of live birth. Analysing 
embryologist grade versus live birth for a dataset of fresh 

blastocyst transfers from St Mary’s, we observed a similar pla-
teau (Supplementary Fig. S2A), suggesting that this is an issue for 
both ML and embryologist-based approaches.

Our data demonstrated that it is possible to train MobileNetV2 
to predict live birth from blastocyst morphology to a perfor-
mance similar to embryologist assessment, with the potential for 
further improvements to performance. Importantly, using both 
the ML and embryologist scores, we have identified a limitation 
to embryo assessment based on blastocyst images; above a cer-
tain quality threshold, it appears to be difficult to discriminate 
further the most viable embryo from a group.

Identification of developmental time-points most 
indicative of viability
Currently, embryo assessment is based predominantly on the 
morphology of the embryo at the blastocyst stage. To establish 

Figure 2. Live birth predicted from blastocyst stage. The blastocyst 
model predicts live birth using the last frame of the time-lapse video on 
day 5, the predictions produced by this model are a number between 0 
and 1, 0 corresponding to an unsuccessful transfer (no pregnancy) and 1 
corresponding to a successful transfer (resulting in live birth). The model 
scores used here are an average over 50 models (using 5-fold cross- 
validation and 50 training attempts for each fold). (A) A comparison 
between the performance of average model score and embryologist 
grading. Only embryos for which clinical grades were available were 
included, a total of 141. The clinical grades were originally based on the 
Gardner scoring system, and were then converted into numerical grades 
to allow a ROC curve to be generated. (B) The correlation between live 
birth success rate and average model score, using cross-validation test 
scores for the whole dataset (700 embryos). The embryos have been 
sorted into buckets from 1 to 10 based on average model score, bucket 1 
is the lowest scoring embryos and bucket 10 is the highest scoring 
embryos. The success rate of each bucket is the fraction of embryos in 
the bucket that resulted in a live birth.
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whether earlier stages can also be useful in assessing embryo via-
bility, we extracted frames from each time-lapse video in the 
dataset at four pre-blastocyst stages that could be precisely 

defined; 1 h before NEBD completion, the first appearance of 2 
cells, first appearance of 4 cells, and initiation of 8- to 16-cell divi-
sion round, we referred to these stages as pronuclear (PN), 2-cell, 

Figure 3. Predicting Live birth from a transferred embryo using specific time-points across development. All ROC AUC scores shown here are the 
average ROC AUC scores on the test set after 50 training iterations each with a different randomly allocated train/validation/test split with 25 embryos 
in the successful class and 48 embryos in the unsuccessful class for both the test and validation set. The accompanying error bars are the standard 
error across these 50 training attempts. (A) The methodology for developing the live birth prediction models. (B) The ROC AUC scores for models 
trained to predict live birth using images from precisely defined moments of development. ‘PN’ is 1 h before completion of NEBD, ‘2 cell’ is first frame 
with 2 cells, ‘4 cell’ is first frame with 4 cells, ‘8–16’ cell is the first fourth cleavage event, and ‘blastocyst’ is the last frame of the video. (C) The ROC AUC 
scores for models trained to predict live birth using images at various time intervals before and after NEBD. (D) The ROC AUC scores for models trained 
to predict live birth using images at various time intervals after first division (FD). (E) The ROC AUC scores for models trained to predict live birth 
using images at various time intervals after the first frame with 4 cells. (F) The ROC AUC scores of the test set for models trained to predict live 
birth using images at various time intervals after the first fourth cleavage event. (G) The ROC AUC scores for models trained to predict transfer live 
birth using images at various time intervals before the last frame of the time-lapse video.
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4-cell, and 8- to 16-cell, respectively. Subsequently, live birth pre-
diction models were trained using each stage (following the 
workflow illustrated in Fig. 3A).

As predicting live birth from embryo morphology alone is a 
difficult task, we decided to use our multi-class stage classifica-
tion model as an extra domain-specific transfer learning step 
(see Materials and methods section for full details). We experi-
mented with various hyper-parameters, and the results for all 
stages are shown in Supplementary Fig. S3A. Our results suggest 
that this domain-specific transfer learning step generally im-
proved model performance, particularly for the PN and 4- 
cell models.

The ROC AUC values reported in Supplementary Fig. S3A were 
the average of 50 repeat training runs each with a different ran-
domly selected test set, as we had observed that variation due to 
the training uncertainty was minor compared to variation due to 
changes in the test set. This also allowed for a quicker investiga-
tion than the 5-fold cross-validation with 50 training attempts 
used in the previous section. We chose to use varying test sets to 
increase statistical power as we found that separate test sets had 
a higher than desirable variability in performance, reflecting the 
heterogeneity of the data in this ML task (Supplementary Fig. 
S3B). However, the transfer model was trained on the same data-
set, so to check this was not resulting in an unfair bias, it was 
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Figure 4. Ranking embryos by blastocyst model score and combining model outputs. (A) The association between live birth success rate and blastocyst 
model prediction (a model trained to predict live birth from images taken at blastocyst stage). The embryos have been sorted into buckets by blastocyst 
model confidence score, bucket 1 is lowest and bucket 10 is highest. The figure (left) shows the success rate of each bucket, defined as the fraction of 
embryos in each bucket that resulted in a live birth. The table on the right shows the ROC AUC for embryos in buckets 7–10 (‘high quality blastocysts’— 
259 in total) obtained using each of the models trained in this study. (B) B1–4 blastocyst model score versus PN, 2-cell, 4-cell þ14 h, and 8- to 16-cell 
þ21 h model score, respectively. The probability of live birth for HQB (see A above) with a very high pre-blastocyst model score (>0.9) or very low pre- 
blastocyst model score (<0.1) is also shown for each figure.
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necessary to also develop all models from scratch with a true 
‘hold out test set’—a test set separated out at the very start, prior 
to training the transfer model. As shown in Table 1, our results 
continue to hold up in this control experiment, the PN and 4-cell 
stage do significantly better with extra domain-specific transfer 
learning (P<0.05 and P< 0.001, respectively), so going forward, 
we used extra domain-specific transfer learning (with our opti-
mized hyper-parameters) for the PN and 4-cell models in addi-
tion to the transfer learning from ImageNet (via the pre-trained 
layers) used for all other stages.

The average test set ROC AUC (and accompanying standard 
errors as error bars) over 50 training attempts with random train/ 
validation/test split is shown in Fig. 3B for each stage. The blasto-
cyst stage has the most obvious morphological differences be-
tween classes, with unsuccessful embryos less likely to form 
expanded blastocysts, and as expected, this model had the best 
performance. The low ROC AUC reported for pre-blastocyst 
stages is unsurprising due to the difficulty of this prediction task, 
as reflected by the lack of studies reporting highly successful live 
birth prediction using pre-blastocyst stages. In addition to con-
founding maternal factors, at early stages, there is the added 
challenge that the majority of developmentally abnormal em-
bryos are not yet identifiable by morphology. Despite these 
issues, the pre-blastocyst models still gave above chance predic-
tions. From these results, it was clear that different developmen-
tal stages carry different predictive power. To identify specific 
moments in development for which live birth predictions are the 
most successful, we tested multiple time-points at regular inter-
vals using each of the previous developmental stages as refer-
ence points (Fig. 3C–G).

We found that the model performance varied at different 
time-points and appeared to peak at certain moments in devel-
opment as shown in Fig. 3C–G. For the PN stage (Fig. 3C), a perfor-
mance peak was observed just before NEBD. Performance across 
the 2-cell stage (Fig. 3D) was variable with no peak seen. A perfor-
mance peak was observed 14 h after 4-cell (Fig. 3E), this generally 
is within the 4- to 8-cell transition; however, no potential expla-
nation for this peak was found from visually examining the time- 
lapse videos. Another performance peak was observed 21 h after 
initiation of the 8- to 16-cell cycle (Fig. 3F) when embryos tend to 
be in the morula stage. As an initial examination of the time- 
lapse videos suggested that this was generally just before cavita-
tion, we then quantified this by counting the number of cavitat-
ing embryos at this time-point and at time-points just before and 
after. The results, shown in Table 2, confirmed that this perfor-
mance peak corresponds to the moment just before cavitation. 
Lastly, the blastocyst stage showed a gradual improvement in 
model performance towards the end of the time-lapse video 

(Fig. 3G), appearing to reach a plateau 6 h before the last frame, 
by which point the successful embryos have usually formed an 
expanded blastocyst. We found that the peaks at PN, 4-cell þ14 h 
and 8- to 16-cell þ21 h were all statistically significant when 
compared to a time-point 6 h earlier (P-values of 0.0001, 0.0005, 
and 0.0011, respectively), determined by a Student’s t-test on 
scores from the 50 training attempts at each time-point.

Finally, to test the potential benefit of averaging over repeat 
training attempts and also to obtain a single prediction for each 
embryo in our dataset (to be used in further investigations 
reported below), we re-trained each model using 5-fold cross- 
validation with 50 repeat training runs to calculate an average 
test set model score for each embryo as in the previous section. 
The PN, 2-cell, and blastocyst stage models were trained using 
the original time-point and the 4-cell and the 8- to 16-cell stage 
models were trained using the peak performance time-point 
(4-cell þ14 h and 8- to 16-cell þ21 h). The ROC AUC scores calcu-
lated from these average model scores (Table 3) showed that 
slightly better predictions can be made when the model score 
assigned to an embryo is averaged over many separately trained 
models, which is consistent with the existing literature on en-
semble learning [35]. Additionally, we then also used the embryo 
average scores to calculate F1 and precision-recall AUC for each 
model (Supplementary Table S1) for further validation.

Combined model outputs allow refined ranking 
of high-grade blastocysts
We next wanted to investigate whether information from the 
identified developmental time-points could provide insight into 
the HQB group identified previously and assist in embryo selec-
tion. To test this, we calculated the ROC AUC of models at each 
stage on just the HQB group. The results (Fig. 4A) show that the 
blastocyst model performed almost no better than chance and 
worse than all the earlier-stage models, and the PN model per-
formed the best. This suggests that if multiple embryos in a co-
hort fall into this HQB group (blastocyst model score>0.83), then 
pre-blastocyst stage models should be used to choose which one 

Table 1. Performance on a hold out test using either the original MobileNetV2 model with fixed features up to the last layer or the 
MobileNetV2 model with fixed features and extra transfer learning; an extra hidden layer before the last layer has been pre-trained as a 
stage classifier

Stage ROC AUC when standard MobileNetv2 model 
used, 95% CI

ROC AUC when extra transfer learning used, 
95% CI

PN 0.547 (0.540–0.553) 0.557 (0.553–0.562)
2-cell 0.555 (0.546–0.564) 0.520 (0.511–0.528)
4-cell 0.533 (0.524–0.541) 0.578 (0.570–0.586)
8- to 16-cell 0.578 (0.570–0.586) N/A
Blastocyst 0.714 (0.710–0.718) 0.703 (0.700–0.706)

The number of hidden units in the last layer is the amount we found to be optimal for that developmental stage. ROC AUC scores shown here are the average 
scores on the test set over 50 training iterations. The 95% CI has been calculated from the standard error across these 50 training attempts. The test set contained 
50 embryos in the successful class and 96 embryos in the unsuccessful class.
N/A¼Not Applicable.

Table 2. Percent of embryos that have begun cavitating in each 
group at various time-points after first fourth cleavage event

Hour Percent of embryos cavitating

Successful (%) Unsuccessful (%)

21 7.3 4.8
24 27.4 21.9
27 50.9 40.0
30 81.2 50.8
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of these HQB embryos to transfer, rather than simply choosing 
the one with the highest blastocyst score.

To further investigate the benefit of using earlier-stage models 
in conjunction with the blastocyst model, we plotted the pre- 
blastocyst score versus blastocyst score for each embryo, as 
shown in Fig. 4B. These figures provide a visualization of the 
spread of scores assigned by each model and the correlation be-
tween earlier-stage scores and blastocyst score. We noticed that 
the model confidence scores had a tendency to be close to the ex-
treme values; 0 or 1. To further investigate the added value of the 
pre-blastocyst stage models, we calculated the success rate of 
the HQB embryos when the pre-blastocyst model score was >0.9 
versus <0.1. This was then compared with the success rate of the 
HQB group as a whole (0.47) to calculate significance. We found 
that the success rate was significantly lower (P¼ 0.05) when the 
PN, 2-cell, or 4-cellþ14 h model score is <0.1. This suggests that 
the early models are most useful at identifying low-quality em-
bryos in the HQB group. This adds further evidence that there are 
developmentally abnormal embryos in the HQB group and pre- 
blastocyst model predictions should be taken into account when 
selecting from this group.

Discussion
A better understanding of the processes driving human pre-im-
plantation development can help with embryo selection for IVF 
and assure that the best-quality embryos are chosen for the 
transfer. Here, we identified previously unreported windows of 
development that are most closely linked to embryo viability and 
demonstrated that predictions from these developmental stages 
can be used to refine the selection for transfer of high-quality 
blastocysts. Embryo assessment, both manual and ML, typically 
has an emphasis on specifically chosen time-points; however, 
these may not necessarily be the optimal moments of embryo de-
velopment for assessing viability. We found the performance of 
live birth predictor models varied considerably depending on the 
exact moment in development in which they were trained, with 
peaks in performance found at multiple developmental stages. 
This could possibly be part of the reason for disagreements in the 
findings of studies linking embryo morphology to viability (e.g. 
the effect of vacuoles at the zygote stage [36, 37], as it is possible 
that researchers do not always use the exact same moments in 
development. Our findings could inform future embryo viability 
studies, as we have provided guidance on which developmental 
time-points to focus on. This could be particularly valuable for 

the morula, as there has been limited research into this stage, yet 
our research suggests that during a specific window, it may con-
tain important information about embryo viability. Additionally, 
the plateau in performance found at the blastocyst stage sug-
gests the possibility that longer culture of the blastocyst beyond 
this point might not result in increased accuracy in assessment, 
highlighting an interesting avenue for further investigation.

We noticed that the peaks in model performance found at the 
PN stage and 8- to 16-cell þ21 h are both just before certain well- 
described developmental events: NEBD and blastocyst cavitation, 
respectively. There are two possible explanations for this: at 
these pre-event time-points, there is less natural variation in the 
appearance of viable embryos (compared to time-points where 
the embryo is undergoing processes such as PN growth or com-
paction) so it is easier to distinguish important developmental 
abnormalities, or these may be biologically important moments 
where any deviation from normal development can prevent the 
embryo from developing properly. For example, the ability of em-
bryos to correctly prepare and execute the first mitosis is one of 
the defining moments of development and any anomalies 
around this time, such as problems with the NEBD process, can 
result in developmental failure. The peak during the transition 
from the 4- to 8-cell stage coincides with embryonic genome acti-
vation in human embryos [38, 39], raising the possibility that 
there are some morphological manifestations that can indicate 
the successful activation of the genome.

Finally, we investigated whether the previously identified key 
moments of development could help to understand the nature of 
the HQB group—a sub-group of embryos that all had a blastocyst 
model score above a certain threshold where any further in-
crease in model score seemed to be unrelated to further increase 
in viability. It was not clear whether all the embryos in this group 
were of high quality and just failing for non-embryonic (e.g. uter-
ine) reasons, or if there were embryos within the group that had 
developed abnormally despite receiving a high blastocyst model 
score. Our findings suggested the latter is true, as we found that 
it was possible to use the pre-blastocyst models to identify HQB 
embryos that were less likely to result in live birth. This provides 
evidence that predictions from early development may be used 
in conjunction with predictions from the blastocyst stage to give 
a better assessment of embryo quality than the blastocyst model 
alone. In addition to embryo selection, it is also possible that the 
pre-blastocyst models could be used to help diagnose the reason 
for IVF transfer failure, if all HQB blastocysts in cohort fail to re-
sult in live birth, then the earlier model predictions could provide 
an indication of whether there were embryonic issues not detect-
able at blastocyst stage or if the issue is more likely to be related 
to the uterus.

Additionally, our findings could be used to support earlier 
transfers. Extending the culture until the blastocyst stage is asso-
ciated in some studies with a number of adverse outcomes, such 
as pre-term birth, altered birthweight, mono-zygotic twinning, 
and shortened telomeres [40–44]. These disadvantages are not 
unexpected, since blastocyst culture acts to expose embryos to 
selection stress in a non-physiological in vitro environment, at 
the precise time in development when the embryonic genome 
and epigenome are being reset as part of the formation of a new 
individual [44–46]. Blastocyst culture is currently favoured as it 
leads to significantly higher live birth rate per transfer and per 
embryo [47]; however, the cumulative live birth rate, including 
transfer of all fresh and frozen embryos from a single egg collec-
tion event, is not necessarily increased using this policy. Our 
findings provide the flexibility of making viability assessments at 

Table 3. Effect of averaging score from many models rather than 
using just one model

Stage Average Individual  
ROC AUC

ROC AUC using  
average confidence score

PN 0.591 ± 0.0115 0.603
2-cell 0.555 ± 0.00779 0.575
4-cell 0.567 ± 0.0114 0.581
8- to 16-cell 0.585 ± 0.00779 0.585
Blastocyst 0.686 ± 0.00937 0.680

The average individual ROC AUC scores are the average scores on the test set 
after 50 training iterations each with a different randomly allocated train/ 
validation/test split with 25 embryos in the successful class and 48 embryos in 
the unsuccessful class for both the test and validation set. The accompanying 
errors are the standard error across these 50 training attempts. For the ROC 
AUC using average confidence score, the average confidence score was first 
calculated from 50 models (using 5-fold cross-validation and 50 training 
attempts) and these average confidence scores were then used to calculate the 
ROC AUC.
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various points in development, supporting various clini-
cal strategies.

One of the biggest common limitations to ML is large data 
requirements. However, the models trained here demonstrate 
the potential of carrying out a CNN-based analysis of a biological 
process without needing large amounts of training data. Our 
blastocyst model was competitive with highly trained embryolo-
gists and obtained a similar performance to other studies that 
used CNNs to predict live birth [20–22], despite being trained on a 
single-clinic dataset. This suggests that our algorithms could be 
easily re-trained on an individual clinic’s patient population to 
become specifically tailored to that clinic, which is an important 
factor as most clinics have distinct treatment policies and patient 
populations [48]. The high performance achieved in stage classi-
fication also demonstrates the high capability of our chosen 
model on this limited dataset, even for quite subtle subcellular 
differences such as classifying embryos as before NEBD versus 
after NEBD. Our stage classification models showed that 
increases in performance became small when the training set 
size was increased beyond around 200–400, suggesting that the 
data amount was not likely to be the main limiting factor in 
performance.

There are a few limitations to this study which need to be ac-
knowledged. One limitation is that only transferred embryos 
could be included; ideally, the models would be trained on all 
embryos in the cohort. However, this is not possible, as a ground 
truth label can only be assigned to transferred embryos. It would 
only be possible to determine whether a model could improve 
live birth rates by conducting a prospective randomized con-
trolled trial. Another limitation is that the comparison between 
the blastocyst model and embryologist scores slightly underesti-
mates the embryologist’s performance, as in reality, the embryol-
ogist would use their professional knowledge to differentiate 
between embryos of the same grade. Additionally, another limi-
tation is that as only one clinic dataset was used in this study, we 
cannot yet be sure that our findings of the most informative 
moments in development are universal, it will be necessary to re-
peat our investigation on datasets from other clinics to verify 
this. We also only included embryos that resulted in live birth or 
no pregnancy. Exploring the relevance of our model to miscar-
riage is an interesting area for future research which would re-
quire a larger dataset.

The aim of this study was to provide a better understanding of 
pre-implantation development in the context of embryo assess-
ment; therefore, we focused on investigating the utility of various 
developmental stages rather than developing a new state-of-the- 
art algorithm. With the constant development of different mod-
els, it is quite possible that different or more advanced ML techni-
ques could lead to improvements in performance, a comparison 
of different models would be necessary to get the best possible 
predictions of live birth. We hope the information provided here 
can inform future studies on embryo assessment via deep learn-
ing and contribute to improving embryo selection procedures be-
fore IVF.

There are many areas of further work leading on from this 
study. For example, further investigation is required to refine the 
value of the blastocyst model score threshold at which earlier 
models should be consulted, as an exact threshold would be nec-
essary for clinical decision making. It would also be interesting to 
try to combine model scores from all stages to try to get an over-
all improved performance. Previous studies have used multiple 
stages simultaneously [12, 15, 17, 22, 23], and in some cases have 
found this can improve performance [11], likely due to the 

inclusion of temporal information about how the embryo devel-

ops over time, as well as providing more information to guide the 
model overall. As far as we are aware, no studies include all 
frames, but rather extract frames at given intervals, possibly due 
to computational restraints or concerns about overfitting. 

Therefore, it would be interesting to see if an improvement could 
be found if our findings were used to guide frame selection and 
ensure the most informative moments were included. 

Additionally, it could also be interesting to see if better overall 
predictions could be obtained from a model combining embryolo-
gist grades and CNN model scores.

Conclusion
In summary, we have identified specific windows of early devel-
opment that are most predictive of live birth by applying a read-
ily accessible, pre-trained CNN (MobileNetV2) to hospital-specific 

image data. We have also provided evidence that information 
from the identified developmental time-points most indicative of 
viability could be combined with blastocyst stage model predic-
tions to give better overall embryo assessment than selecting 

based solely on blastocyst morphology. Finally, the application to 
a single-clinic dataset, of limited size, highlights the feasibility of 
exploiting state-of-the-art ML techniques in individual clinic set-

tings, while being able to capture and cater for local protocols 
and data heterogeneity.
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