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Abstract
The transcription factor NRF2, governed by its repressor KEAP1, protects cells against oxidative stress. There is interest in 
modelling the NRF2 response to improve the prediction of clinical toxicities such as drug-induced liver injury (DILI). How-
ever, very little is known about the makeup of the NRF2 transcriptional network and its response to chemical perturbation in 
primary human hepatocytes (PHH), which are often used as a translational model for investigating DILI. Here, microarray 
analysis identified 108 transcripts (including several putative novel NRF2-regulated genes) that were both downregulated by 
siRNA targeting NRF2 and upregulated by siRNA targeting KEAP1 in PHH. Applying weighted gene co-expression network 
analysis (WGCNA) to transcriptomic data from the Open TG-GATES toxicogenomics repository (representing PHH exposed 
to 158 compounds) revealed four co-expressed gene sets or ‘modules’ enriched for these and other NRF2-associated genes. 
By classifying the 158 TG-GATES compounds based on published evidence, and employing the four modules as network 
perturbation metrics, we found that the activation of NRF2 is a very good indicator of the intrinsic biochemical reactivity 
of a compound (i.e. its propensity to cause direct chemical stress), with relatively high sensitivity, specificity, accuracy and 
positive/negative predictive values. We also found that NRF2 activation has lower sensitivity for the prediction of clinical 
DILI risk, although relatively high specificity and positive predictive values indicate that false positive detection rates are 
likely to be low in this setting. Underpinned by our comprehensive analysis, activation of the NRF2 network is one of several 
mechanism-based components that can be incorporated into holistic systems toxicology models to improve mechanistic 
understanding and preclinical prediction of DILI in man.
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Abbreviations
ARE	� Antioxidant response element
DILI	� Drug-induced liver injury
GO	� Gene ontology
IPA	� Ingenuity pathway analysis
KEAP1	� Kelch-like ECH-associated protein 1
NRF2	� Nuclear factor erythroid 2 related factor 2
PHH	� Primary human hepatocytes
WGCNA	� Weighted gene co-expression analysis

Introduction

Drug-induced liver injury (DILI) remains a leading cause 
of clinical liver failure and a hindrance to the development 
of new therapies, making it a priority area for the advance-
ment of new risk prediction methods (Chen et al. 2014). 
Hepatocellular perturbation is often coupled to the activa-
tion of stress-responsive transcription factors that regulate 
networks of cytoprotective genes. By reflecting activation 
of stress-inducible transcriptional networks, such genes 
are considered useful mechanistic markers of the cellu-
lar consequences of chemical insult (Wink et al. 2014). 
The increasing availability of public data sets describ-
ing transcriptional responses to large numbers of com-
pounds provides an excellent opportunity to explore the 
behaviour of key stress-responsive networks from a broad 
perspective. One example of such a data set is the Japa-
nese Toxicogenomics Project’s Open TG-GATES reposi-
tory, which contains transcriptomic data from primary 
human hepatocytes (PHH) exposed to 158 compounds 
(primarily therapeutic drugs, but also experimental tox-
ins, cytokines and growth factors) at up to three different 
concentrations and time points (Igarashi et al. 2015). This 
and other resources can support a deeper understanding of 
the molecular make-up of stress-inducible transcriptional 
networks, which is key to the design of, and interpretation 
of data from, preclinical assays and in silico models that 
can reliably reflect their perturbation, and thus provide a 
necessary level of confidence in the understanding and 
prediction of relevant human risk (Oshida et al. 2015a, b, 
c; Sutherland et al. 2018).

Chemical and oxidative stresses are associated with the 
adverse effects of many compounds, particularly electro-
philes and free radicals that react with critical macromol-
ecules and disrupt normal redox processes (Park et al. 2011; 
Pereira et al. 2012). In mammalian cells, these insults are 
counteracted by an antioxidant stress response directed by 
the transcription factor nuclear factor erythroid 2 related 
factor 2 (NRF2 or NFE2L2) (Bryan et  al. 2013). Gov-
erned by its repressor Kelch-like ECH-associated protein 1 
(KEAP1), NRF2 regulates the basal and inducible expres-
sion of cytoprotective genes which contain antioxidant 

response elements (AREs) in their promoter and/or enhancer 
regions (Bryan et al. 2013). Despite the mechanistic associa-
tion of NRF2 with DILI and other forms of drug toxicity in 
rodents (Clarke et al. 2016), and the increasing interest in 
using translationally relevant human platforms to improve 
hazard prediction in man, relatively little is known about 
the makeup of the NRF2 transcriptional network and its 
response to chemical perturbation in PHH, which are often 
used as a translational in vitro model for investigating DILI. 
To address this knowledge gap, we have used siRNA to 
modulate NRF2 activity and identify genes that respond 
robustly to perturbation of the network in freshly-isolated 
PHH. Using an unbiased weighted gene co-expression net-
work analysis (WGCNA) approach (Langfelder and Hor-
vath 2007; Sutherland et al. 2016) we have also exploited 
the wealth of data available in TG-GATES to highlight the 
complex response of the NRF2 network to a range of chemi-
cal insults in PHH, and considered how perturbation of this 
pathway can be used in the context of understanding why 
certain compounds are associated with DILI in man. Our 
findings have important implications for the ongoing devel-
opment of in vitro platforms and in silico models designed to 
improve the prediction of clinical DILI risk at an early stage 
of preclinical drug development.

Materials and methods

PHH isolation, culture and drug treatment

Liver tissue was obtained from the Liver Cell Lab at the 
Karolinska University Hospital (Huddinge, Sweden) or 
Aintree University Hospital (Liverpool, UK) by qualified 
medical staff. All patients donated tissue as part of planned 
liver resections for various indications (Table S1). Informed 
consent in writing was obtained from each patient and 
the study protocol conformed to the ethical guidelines of 
the 1975 Declaration of Helsinki. Immediately following 
removal from the patient, excess healthy liver parenchyma 
was separated from the specimen and placed in cold Eagle’s 
minimum essential medium, and transported to the labo-
ratory on ice. Tissue dissociation and hepatocyte isolation 
were performed using a two-step collagenase perfusion pro-
cedure, as described previously (Strom et al. 1996). Only 
cell preparations with viability of ≥ 75% (as per Trypan blue 
exclusion test) were used for the experiments described here. 
The cell suspension was diluted in William’s medium E 
without phenol red, supplemented with 25 mM HEPES and 
2 mM l-glutamine, pH adjusted to 7.4 (modified William’s 
medium E) plus 10% FBS. Cells were seeded at a density of 
1 × 106 cells/mL onto Type I collagen-coated plates (Beck-
ton Dickinson, UK) and maintained at 37 °C in a 5% CO2 
atmosphere. After 3 h, the medium was replaced with fresh 
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modified William’s medium E not supplemented with FBS. 
After being allowed to adhere to the plates for a total of 16 h, 
untransfected cells were exposed to 1 mM diethylmaleate 
for 2 h, or 10 µM sulforaphane for 24 h. Compounds were 
dissolved in DMSO and the solvent content of the media was 
controlled to 0.5% in all cases.

siRNA transfection

For siRNA transfections, siRNA duplexes targeted against 
either human NRF2 (D-003755-05, subsequently referred to 
as siNRF2) or human KEAP1 (D-012453-03, subsequently 
referred to as siKEAP1), and a scrambled non-targeting con-
trol siRNA duplex (D-001210-03, subsequently referred to 
as siCON), were obtained from the Dharmacon siGENOME 
library (Thermo Fisher Scientific, UK). Immediately prior 
to plating, cells from individual donors were reverse-trans-
fected with 20 nM siRNA using Lipofectamine RNAiMAX 
(Life Technologies, UK) in accordance with the manufac-
turer’s instructions. Plated cells were maintained at 37 °C 
in a 5% CO2 atmosphere for 48 h to enable NRF2 or KEAP1 
knockdown.

Microarray analysis and bioinformatics

Total RNA (50 ng, free from genomic DNA) was labelled 
and amplified using a Low-Input Amplification Kit (Agi-
lent, USA). Amplified Cy3-labelled RNA (600 ng) was 
fragmented and loaded onto SurePrint G3 Human Gene 
Expression 8 × 60K v2 arrays (Agilent). Following overnight 
hybridisation at 65 °C, the arrays were analysed at the Liver-
pool Centre for Genomic Research, according to the manu-
facturer’s instructions, using an Agilent G2505C Microar-
ray Scanner. The data were extracted using Agilent Feature 
Extraction software v11.0.1.1. Differential gene expression 
analysis was conducted using the limma package within 
the R programming environment (R-Development-Core-
Team 2005), enabling simultaneous comparisons between 
multiple treatments using design and contrast matrices via 
a linear regression model. To account for inter-individual 
differences in basal gene expression, the level of each gene 
was determined in siNRF2- or siKEAP1-transfected cells 
relative to siCON-transfected cells derived from the same 
donor. The significance (raw P-value) of estimated log2 fold 
changes for the contrasts was evaluated using limma func-
tion eBayes, and the impact of multiple testing was adjusted 
using the Benjamini and Hochberg approach (Benjamini and 
Hochberg 1995). Differentially expressed genes were defined 
as those with an adjusted P value < 0.05 when compared 
with the level in siCON-transfected cells. Ingenuity Path-
way Analysis (IPA; http://www.ingen​uity.com) enrichment 
statistics were used to reveal biological pathways perturbed 
in siRNA-transfected cells. Pathways represented by a single 

gene/protein were excluded for robustness. Gene ontology 
(GO) term enrichment analysis was performed using GOrilla 
(cbl-gorilla.cs.technion.ac.il).

WGCNA and bioinformatics

Affymetrix HGU133-2 microarray CEL files generated from 
all PHH experiments were downloaded from the Open TG-
GATES repository, jointly normalized using Robust Multi-
array Average (RMA) using the Affy R package. Brainar-
ray CDF (version 19) annotation were used to map probe 
sets to Entrez IDs (http://brain​array​.mbni.med.umich​.edu/
Brain​array​/Datab​ase/Custo​mCDF/genom​ic_curat​ed_CDF.
asp). Under this annotation, every gene is defined by a sin-
gle probe set. This resulted in 17,500 probe sets, each map-
ping to a single gene, used for analysis. The TG-GATES 
repository contains 941 PHH experiments. An experiment 
denotes expression results for PHH treated with a given 
combination of compound, concentration and time com-
pared to time-matched PHH treated with DMSO. For each 
experiment, log2 fold change values were calculated for all 
genes by subtracting average log2 intensity for DMSO arrays 
from average log2 intensity for treatment arrays. To iden-
tify co-expressed genes from the PHH data, we used the 
WGCNA R package (Zhang and Horvath 2005) and applied 
it to a matrix consisting of 941 rows (PHH experiments) and 
17,500 columns (log2 fold change values for probes). We 
created unsigned modules (i.e. grouping together co-induced 
and repressed genes). The soft power-selection algorithm in 
WGCNA produces asymptotic curves which requires selec-
tion of an arbitrary level of agreement with a scale-free net-
work topology (e.g. 90%). Small changes in the threshold 
can lead to large changes in the selected power. We reasoned 
that non-expressed genes in PHH, which represent ‘noise’ 
in microarray experiments, should not be co-expressed and, 
therefore, not contained within any module. Therefore, we 
created modules for each soft-power parameter setting of 4, 
6, 8 and 10, and performed t tests assuming unequal vari-
ance on the category “yes/no” (indicating whether a gene is 
member of any module) vs. genes’ intensity in DMSO con-
trol. We selected 6 as the optimal soft-power parameter, as 
it maximized the t-statistic. Using WGCNA to merge similar 
modules (having correlation of their eigengene values ≥ 0.8), 
we obtained 399 modules containing 10,275 genes. As 
described previously (Sutherland et al. 2016, 2018), for 
each experiment we calculated the eigengene (or module 
score) which summarizes log2 fold change of their constitu-
ent genes. Briefly, this protocol deviates from the standard 
WGCNA approach in two steps: (a) when calculating a mod-
ule score for a given experiment, log2 fold change values 
are scaled only (not centred and scaled) to avoid producing 
non-zero module scores for experiments where all underly-
ing genes are unperturbed, and (b) the raw module score 

http://www.ingenuity.com
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/genomic_curated_CDF.asp
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/genomic_curated_CDF.asp
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/genomic_curated_CDF.asp
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is normalized to unit variance (Z-score scaling) facilitating 
comparison across modules and across treatments. A nor-
malised module score summarises the level of gene activa-
tion or repression caused by a given treatment in the context 
of the large collection of compound perturbations. As such, 
an eigengene greater than + 2.0 or smaller than − 2.0 is a 
large (and significant) perturbation in the context of the 941 
experiments. Finally, we calculated the correlation between 
a module eigengene vs. underlying genes’ log2 fold change 
across the 941 experiments, indicating the extent to which 
the eigengene summarizes the underlying gene’s behaviour. 
To identify WGCNA modules that were enriched for genes 
found in the siRNA screen, canonical hypergeometric tests 
and subsequent correction for multiple comparisons (Bon-
ferroni) were performed amongst modules that contained at 
least one gene identified in the siRNA screen.

Calculation of performance indicators

An eigengene value of ≥ 2.0 was considered a positive (and 
significant) perturbation of a module. When a compound 
provoked a positive response at several time points and/or 
concentrations, the experiment with the highest eigengene 
value was used. For the combined metric, an eigengene 
value of ≥ 2.0 for any of the NRF2-associated modules was 
considered a positive perturbation. Negative control mod-
ules were selected using the following criteria: (a) com-
parable number of genes (6–11) to the NRF2-associated 
modules, (b) absence of enriched GO biological processes 
associated with the response to oxidative stress and related 
terms. After classifying the compounds based on features 
associated with DILI, as described in the supplementary 
methods, performance indicators were calculated as follows 
(using compounds with intrinsic biochemical reactivity as 
an example): sensitivity, positive perturbations by intrinsi-
cally reactive compounds divided by the total number of 
such compounds; specificity, 1 minus (positive perturba-
tions by non-reactive compounds divided by the total num-
ber of such compounds); accuracy, (positive perturbations 
by intrinsically reactive compounds plus non-perturbations 
by non-reactive compounds) divided by the total number 
of intrinsically reactive and non-reactive compounds; posi-
tive predictive value, positive perturbations by intrinsically 
reactive compounds divided by the total number of positive 
perturbations (i.e. by intrinsically reactive and non-reactive 
compounds); negative predictive value, non-perturbations 
by non-reactive compounds divided by the total number of 
non-perturbations (i.e. by intrinsically reactive and non-
reactive compounds). ROC curve analysis was performed 
using GraphPad Prism version 7.

Supplementary methods

Details of the methods used for quantitative PCR, determi-
nation of cellular glutathione content, immunoblotting and 
the classification of compounds based on features associated 
with DILI are provided as supplementary material.

Results

Genetic modulation of NRF2 activity in PHH

In light of our interest in characterising the NRF2 transcrip-
tional network in PHH, we first examined our previously 
published proteomic data sets (Bell et al. 2016; Heslop et al. 
2017) to confirm that canonical NRF2 targets are expressed 
at comparable levels in PHH and the liver tissue from which 
they were isolated, and are relatively stable in cells cultured 
in 2D for up to 7 days, in contrast to e.g. cytochrome P450 
drug metabolising enzymes which are known to exhibit a 
marked time-dependent decrease in expression under cul-
ture conditions (Fig. S1). These analyses justified the use of 
cultured PHH for investigating NRF2-regulated processes. 
Next, we sought to modulate NRF2 activity in PHH from 
four donors (Table S1A) by transfecting them with either 
siRNA targeting the transcription factor (siNRF2), siRNA 
targeting KEAP1 (siKEAP1) or a scrambled, non-targeting 
control duplex (siCON). Knockdown of NRF2 and KEAP1 
mRNA in cells from each donor was confirmed by qPCR 
(Fig. 1a, b) and immunoblotting (Fig. 1d), and was associ-
ated with a decrease and increase, respectively, in expression 
of the canonical NRF2 target gene NQO1 at both mRNA and 
protein levels (Fig. 1c, d). In addition, significant changes in 
glutathione content were detected in PHH transfected with 
siNRF2 and siKEAP1, compared with the level in cells 
transfected with siCON (Fig. 1e). These data demonstrate 
the successful genetic modulation of NRF2 activity in PHH 
and the expected impact on thiol-based redox status.

Characterisation of the NRF2 transcriptional 
network in PHH

To provide a detailed characterisation of the NRF2 net-
work in PHH, we performed microarray analysis on RNA 
extracted from the cells transfected with siCON, siNRF2 or 
siKEAP1. Of the 50,740 probes recognised in all samples, 
2281 probes (1288 up, 993 down; Fig. 2a) were differen-
tially expressed in cells transfected with siNRF2, whilst 
1975 probes (1176 up, 799 down; Fig. 2b) were differentially 
expressed in cells transfected with siKEAP1 (Table S3). 
The response of NQO1 in the microarray analysis of cells 
transfected with siNRF2 or siKEAP1 showed good corre-
lation with the targeted qPCR analysis performed on the 
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Fig. 1   Genetic modulation of NRF2 activity in PHH. PHH isolated 
from four donors (Table S1A) were transfected with 20 nM siCON, 
siNRF2 or siKEAP1 for 48  h. a–c qPCR analysis of a NRF2, b 
KEAP1 and c NQO1 mRNA levels in cells transfected with siCON, 
siNRF2 or siKEAP1. mRNA levels are normalised to GAPDH and 
expressed as a percentage of the levels in siCON-transfected cells. 
d Immunoblot analysis of NRF2, KEAP1 and NQO1 protein levels 
in cells transfected with siCON, siNRF2 or siKEAP1. Representa-

tive blots from one PHH donor are shown. β-Actin was probed as a 
loading control. *Non-specific antibody signals. e Quantification of 
GSH levels in cells transfected with siCON, siNRF2 or siKEAP1, 
or exposed to 1  mM diethylmaleate (DEM) for 2  h. Data represent 
mean + SD. of PHH from n = 4 donors, transfected and analysed sepa-
rately. Statistical analysis of qPCR and GSH data was performed with 
a paired t test; *P ≤ 0.05 , ***P ≤ 0.001 versus siCON

Fig. 2   Characterisation of the NRF2 transcriptional network in PHH. 
Microarray analysis was performed on PHH, isolated from four 
donors, 48 h after transfection with siCON, siNRF2 or siKEAP1. a, 
b Volcano plots depicting differentially expressed genes in cells trans-
fected with a siNRF2 and b siKEAP1, compared with cells from the 
same donor transfected with siCON. Each point represents a single 

gene probe, with those shaded orange (raw P value) and red (adjusted 
P value) found to be significantly different (P < 0.05) between groups. 
c Overview of microarray data sets and the strategy for the identifica-
tion of genes that are highly sensitive to modulation of NRF2 activity. 
DE differentially expressed. The relevant supplementary tables are 
indicated in the boxes
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same samples (Fig. S2), indicating the robustness of the 
microarray data. IPA mapping of the 993 probes that were 
significantly down-regulated in siNRF2-transfected cells, 
or the 1176 probes that were significantly up-regulated in 
siKEAP1-transfected cells, demonstrated that the ‘NRF2-
mediated Oxidative Stress Response’ was one of the most 
significantly enriched pathways in both cases (Table S4), 

further supporting the genetic modulation of NRF2 activ-
ity in PHH. Other pathways commonly affected by both 
siNRF2 and siKEAP1 included ‘Xenobiotic Metabolism 
Signaling’, ‘Glutathione Mediated Detoxification’ and the 
‘Pentose Phosphate Pathway’ (Table S4), consistent with 
established biological roles of NRF2. GO term enrichment 
analysis yielded comparable results (Table S5).

Fig. 3   Validation of NRF2-regulated genes in PHH. a Microarray, 
b qPCR and c immunoblot determination of the indicated genes/
proteins in PHH 48  h after transfection with siCON, siNRF2 or 
siKEAP1. a Note that the Agilent SurePrint G3 Human Gene Expres-
sion 8 × 60K v2 arrays contained a probe (A_23_P129903) that 
is homologous to sequences in the TRIM16 and TRIM16L genes. 
b By qPCR, TRIM16L-specific primers yielded data that essen-
tially matched that generated in the microarray, whilst TRIM16 was 
barely detectable (data not shown). For qPCR, gene expression levels 

are normalised to GAPDH. c β-Actin was probed as a loading con-
trol. Representative blots from one PHH donor are shown. d qPCR 
determination of the indicated genes in a separate batch of PHH 
(Table  S1B) 24  h after exposure to 10  µM sulforaphane. Data rep-
resent mean + SD of PHH from n = 4 donors, treated and analysed 
separately. Statistical analysis of qPCR data was performed with (a, 
b) a t test or d a Kruskal–Wallis (Conover-Inman) test; *P ≤ 0.05; 
**P ≤ 0.01;  ***P ≤ 0.001 versus siCON or DMSO



391Archives of Toxicology (2019) 93:385–399	

1 3

To identify genes that were most reflective of NRF2 
modulation in PHH, and minimise the impact of potential 
off-target effects of the individual siRNAs, we focused on 
genes that were oppositely regulated in cells transfected with 
siNRF2 and siKEAP1. We identified 129 probes (represent-
ing 108 unique genes) that were significantly downregulated 
in siNRF2-transfected cells and upregulated in siKEAP1-
transfected cells and, therefore, judged to be positively 
controlled by NRF2 (Fig. 2c; Table S6). Again, IPA map-
ping revealed that the ‘NRF2-mediated Oxidative Stress 
Response’ was amongst the most significantly altered path-
ways represented by these genes (Table S7), whilst ‘oxida-
tion–reduction process’ was the most significantly enriched 
GO term (Table S8). In addition to genes known to be NRF2 
targets in other cells (including AKR1B10, NQO1, PIR, 
SRXN1 and TXNRD1), our filtering strategy also revealed 
several putative novel NRF2-regulated genes, including 
F2RL2, LOC344887 and TRIM16L (Fig. 3a). We used qPCR 
and/or immunoblotting to confirm the altered expression of 
these genes in the siRNA-transfected PHH samples used to 
generate the microarray data (Fig. 3b, c). Furthermore, we 
demonstrated that these genes were upregulated in response 
to pharmacological activation of NRF2 by exposing PHH 
from four new donors (Table S1B) to sulforaphane for 24 h 
(Fig. 3d). Only 15 probes (representing 15 unique genes) 
were both significantly upregulated in siNRF2-transfected 
cells and downregulated in siKEAP1-transfected cells 
(Table S6), and thus judged to be negatively controlled by 
NRF2. IPA mapping identified ‘Granulocyte Adhesion and 
Diapedesis’ (related to the chemokines CXCL1 and CXCL2) 
as the only significantly altered pathway represented by the 
15 genes (Table S7), consistent with GO term enrichment 
analysis (Table S8) and the reported link between NRF2 
and the inhibition of nuclear factor kB and inflammatory 
processes (Wardyn et al. 2015). Taken together, these data 
highlight established and putative novel NRF2-regulated 
genes, representing important physiological pathways and 
functions, in PHH.

Mapping individual NRF2‑regulated genes 
to networks using WGCNA

To further characterise the NRF2-driven gene network and 
provide a systems level insight into its response to chemi-
cal insult in PHH, we used WGCNA which provides a 
unsupervised and quantitative assessment of the intercon-
nectedness of genes. Specifically, within a large set of gene 
expression data, WGCNA identifies genes that exhibit co-
regulated behaviour and organizes them into defined sets of 
highly interconnected genes or ‘modules’, thereby reducing 
dimensionality and providing an unbiased interpretation 
of network or pathway responses (Langfelder and Horvath 
2007; Zhang and Horvath 2005). We first applied WGCNA 

to the entire TG-GATES PHH dataset, representing expres-
sion results for 17,500 probes in cells treated with one of 
158 drugs/cytokines/growth factors at up to three concen-
trations and three time points, compared to time-matched 
PHH treated with DMSO (Grinberg et al. 2014; Igarashi 
et al. 2015). Using this approach, we identified 399 modules 
comprising 10,275 genes (full details to be published sepa-
rately). Of the 108 NRF2-associated genes identified in our 
PHH siRNA screen (Fig. 2), 66 were found to be members of 
31 modules (Table S9). Amongst the remaining 42 genes, 31 
(including 17 unknown/uncharacterised transcripts) were not 
represented in the 17,500 probes within the TG-GATES data 
set. Therefore, 11 NRF2-associated genes that were present 
in the TG-GATES data set did not meet the co-expression 
criteria for module membership (Table S9). Whilst the 66 
NRF2-associated genes were distributed across 31 modules, 
five modules (namely 2, 144, 192, 224 and 325) were sig-
nificantly enriched for genes identified in the siRNA screen, 
suggesting tight co-regulation in response to NRF2 activa-
tion (Table 1). In light of the size of module 2 (743 genes, 
including 15 NRF2-associated genes identified in our siRNA 
screen) we focussed on the remaining four modules, which 
comprised 6–11 genes. The hub genes for these modules 
(those most correlated with the eigengene value, which sum-
marises the induction or repression of the module as a whole 
(Langfelder and Horvath 2007)) were TXNRD1, CYP4F11, 
CD109 and CBR3, respectively. In addition, several of the 
remaining genes in the four modules were either down-reg-
ulated by siNRF2 or up-regulated by siKEAP1 in our PHH 
experiments (Table 1). Amongst these genes was F2RL2 
(module 325), further highlighting it as a novel NRF2-regu-
lated gene in PHH. In keeping with this, we noted that many 
of the genes in the four modules have been shown by ChIP-
Seq to be direct NRF2 targets in human lymphoblastoid cells 
(Chorley et al. 2012), whilst the modules were represented 
by GO terms consistent with a role in xenobiotic metabolism 
and/or the oxidative stress response (Table 1 and S10). These 
observations support the enrichment of modules 144, 192, 
224 and 325 with NRF2-associated genes that exhibit con-
sistent co-regulated behaviour in PHH exposed to a broad 
range of chemical insults.

Response of NRF2‑associated gene sets to chemical 
insult in PHH

Having identified modules that were enriched for NRF2-
associated genes with consistent co-expression behaviour 
across many treatments, we sought to distinguish compounds 
that produced significant perturbations in these modules, 
and by inference the NRF2 pathway, in PHH according to 
the TG-GATES data set. In total 47 compounds (includ-
ing 34 therapeutic drugs) caused a significant change (i.e. 
eigengene value ≥ 2.0) of at least one of the four modules 
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(Table 2). Notably, modules 144 and 192 responded to more 
compounds (36 and 35, respectively) than modules 224 (26 
compounds) and 325 (19 compounds). Indeed, some com-
pounds were found to cause the upregulation of selected 
NRF2-associated modules/genes but not others. For exam-
ple, the established hepatotoxins azathioprine, diclofenac, 
flutamide and isoniazid provoked significant changes in four, 
three, two and one of the NRF2-associated modules, respec-
tively (Fig. 4). These data highlight the complex responses 

of NRF2-associated modules and their constituent genes to 
chemical insult in PHH, and highlight the value of using 
modules (rather than selected individual genes) to quantify 
network perturbation.

Table 1   Features of co-expression modules statistically enriched for NRF2-regulated genes

Genes comprising modules 144, 192, 224 and 325 are shown, along with their status in the PHH siRNA screen. Genes identified by ChIP-
Seq as direct NRF2 targets (29) are indicated. Within each module, genes are ranked according to eigengene correlation, which indicates how 
well (hub-like) each individual gene is correlated with the module eigengene (1.0 is a perfect correlation). The top five enriched GO processes 
(ranked according to P-value) are shown for each module; the complete list for each module is provided in Table S10

Module Gene Down siNRF2 Up siKEAP1 Direct 
NRF2 
target

Eigengene 
correlation

Enriched GO processes

144 TXNRD1 + + + 0.87 GO:0006081 cellular aldehyde metabolic process
GO:1990748 cellular detoxification
GO:0098869 cellular oxidant detoxification
GO:0098754 detoxification
GO:0006979 response to oxidative stress

SRXN1 + + + 0.85
GPAT3 + 0.76
CMTM8 0.75
GCLM + 0.74
SLC6A6 + + 0.69
PGD + + + 0.66
AKR1C1 + + 0.59
ADCK2 0.57
ADGRG7 − 0.57
DCX + − 0.59

192 CYP4F11 + 0.75 GO:0051187 cofactor catabolic process
GO:0055114 oxidation–reduction process
GO:0033015 tetrapyrrole catabolic process
GO:0046149 pigment catabolic process
GO:0042373 vitamin K metabolic process

BLVRB + 0.74
NQO2 + 0.73
DNPEP 0.71
SLC48A1 + + + 0.69
GSR + + + 0.64
ZDHHC9 0.64
PELI3 0.55
ZNF608 − 0.61

224 CD109 + 0.73 GO:0002573 myeloid leukocyte differentiation
GO:0006108 malate metabolic process
GO:0051901 positive regulation of mitochondrial depolarization
GO:1904181 positive regulation of membrane depolarization
GO:0055114 oxidation–reduction process

PIR + + + 0.73
TMEM206 0.71
ME1 + + 0.70
FOPNL + 0.68
MLLT11 + + 0.67
NCF2 + 0.67
LACC1 0.66

325 CBR3 + + 0.80 GO:0006809 nitric oxide biosynthetic process
GO:0046209 nitric oxide metabolic process
GO:2001057 reactive nitrogen species metabolic process
GO:1903409 reactive oxygen species biosynthetic process
GO:0072593 reactive oxygen species metabolic process

EMC3 + 0.76
GLA 0.68
NQO1 + + + 0.67
HTATIP2 + + + 0.63
F2RL2 + + 0.55
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Table 2   Compounds perturbing 
NRF2-associated gene sets in 
PHH

The 47 compounds causing a significant change (i.e. ≥ 2; values in bold) in the eigengene value of least 
one of the four NRF2-associated modules, according to the TG-GATES PHH data set. Therapeutic drugs 

Compound Eigengene values for NRF2-
associated modules

Thera-
peutic 
drug

DILI concern Reactivity/ 
bioactivation 
status

144 192 224 325

Allyl alcohol 4.2 2.3 2.7 2.2 Reactive
Azathioprine 5.2 2.8 5.7 6.4 + Most Reactive
Butylated hydroxyanisole 5.0 5.8 2.2 4.2 Bioactivated
Diethyl maleate 4.5 2.7 3.2 7.6 Reactive
Furosemide 3.2 3.2 2.1 3.8 + Ambiguous Bioactivated
Lomustine 2.2 2.7 2.5 3.8 + Less Reactive
Nitrofurantoin 6.3 5.1 3.2 2.5 + Most Bioactivated
Nitrofurazone 3.0 2.1 3.9 4.9 + Not BR
Phorone 2.6 2.3 2.2 3.6 Reactive
Propylthiouracil 5.5 3.8 4.5 3.9 + Most Reactive
Acetaminophen 7.9 3.0 1.8 2.9 + Most Bioactivated
Benzbromarone 4.7 2.7 2.6 0.2 + Most Bioactivated
Bromoethylamine 0.5 2.4 4.4 3.6 Bioactivated
Danazol 2.5 2.5 2.1 0.3 + Most Bioactivated
Diclofenac 4.9 3.7 2.5 1.5 + Most Bioactivated
Doxorubicin − 0.2 6.3 3.6 2.0 + Less Bioactivated
Galactosamine 0.6 3.7 2.7 2.8 Unknown
Methylene dianiline 2.9 2.8 3.6 0.7 Bioactivated
N-methyl-n-nitrosourea 2.2 3.4 2.4 1.0 Reactive
Omeprazole 7.2 4.7 3.5 1.4 + Less Bioactivated
Phalloidin 0.5 2.1 2.0 2.0 Unknown
Phenobarbital 2.3 3.1 4.7 1.4 + Less Not BR
Tunicamycin 2.5 4.0 1.5 4.1 Unknown
Valproic acid 2.1 2.0 2.8 1.5 + Most Bioactivated
2,4-Dinitrophenol 2.0 2.2 2.7 0.0 Bioactivated
Adapin 3.0 0.7 2.6 0.2 + Less Unknown
Aflatoxin B1 − 0.7 3.5 3.5 1.2 Bioactivated
Coumarin 3.3 1.6 2.0 2.6 + Bioactivated
Diazepam 5.1 2.9 0.1 0.1 + Ambiguous Bioactivated
Flutamide 3.3 2.5 0.9 0.3 + Most Bioactivated
Ketoconazole 3.3 2.4 1.6 0.4 + Most Bioactivated
Naphthyl isothiocyanate 4.6 2.6 2.0 2.0 Reactive
Nefazodone 0.1 4.4 2.1 − 0.1 + Most Bioactivated
Rosiglitazone maleate 2.5 2.5 0.6 − 0.3 + Less Bioactivated
Sulindac 2.2 2.4 − 0.3 − 1.1 + Most Bioactivated
Colchicine 2.4 1.5 − 2.0 − 1.3 + Ambiguous Bioactivated
Dantrolene 0.1 − 0.3 1.2 2.9 + Most Not BR
Enalapril 1.9 1.1 1.3 3.2 + Less Bioactivated
Isoniazid 2.0 0.1 1.3 0.0 + Most Bioactivated
Labetalol 2.0 0.9 1.6 1.1 + Most Not BR
Methapyrilene 4.5 1.2 0.2 0.5 + Bioactivated
Methimazole 2.5 1.1 0.0 0.3 + Most Bioactivated
Moxisylyte 2.4 1.6 1.0 1.8 + Most Unknown
Papaverine 0.4 3.2 0.6 − 0.1 + Most Unknown
Perhexiline 2.2 0.9 1.2 0.6 + Most Unknown
Phenylbutazone 1.7 2.1 0.4 0.2 + Bioactivated
Ranitidine 2.3 − 0.3 0.2 0.8 + Less Bioactivated
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Perturbation of NRF2‑associated gene sets 
as an indicator of compound features associated 
with DILI

Finally, we sought to test whether the perturbation of NRF2-
associated modules, and by inference the stimulation of the 
NRF2 transcriptional network, could be a useful indicator of 

clinical DILI risk and/or compound features associated with 
hepatotoxicity. We surveyed the literature to classify the 158 
TG-GATES compounds as; (a) those with intrinsic biochem-
ical reactivity towards cellular biomolecules (10 compounds; 
Fig. 5a; Table S11), (b) those bioactivated to a chemically 
reactive metabolite in rodent and/or human in vitro or in vivo 
systems (83 compounds; Fig. 5b; Table S11), and (c) those 

are indicated. Bioactivation status and clinical DILI risk assignments as described in the main textTable 2   (continued)

Fig. 4   Response of NRF2-associated gene sets to chemical insult in 
PHH. Individual gene expression levels (% vehicle) and eigengene 
scores for modules 144, 192, 224 and 325 in PHH exposed to high 

concentrations of azathioprine (72.8 µM), diclofenac (400 µM), fluta-
mide (50 µM) or isoniazid (10 mM) for the indicated times. All data 
were obtained from the TG-GATES PHH data set
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with experimental evidence for a lack of intrinsic biochemi-
cal reactivity and bioactivation (17 compounds; Table S11). 
To the best of our knowledge, the metabolic bioactivation 
status or intrinsic biochemical reactivity of the remaining 
48 compounds (including seven cytokines and growth fac-
tors) has not been reported, and so these compounds were 
excluded from the relevant analyses. Separately, we found 
that 107 of the 158 compounds used in the TG-GATES PHH 
experiments were present in DILIrank (Chen et al. 2016), 
with 51 classified as ‘most DILI concern’ and 45 as ‘less/

no DILI concern’ (Fig. 5c; Table S12). The 11 compounds 
classified as ‘ambiguous DILI concern’, along with the 51 
compounds not present in DILIrank, were excluded from 
the analyses.

In keeping with the responsiveness of NRF2 to direct 
chemical stress, perturbation of the NRF2-associated mod-
ules was found to be a very good indicator of intrinsic 
biochemical reactivity, with relatively high sensitivities, 
specificities and positive/negative predictive values in each 
case (Fig. 5a and Fig. S3; Table S13). Importantly, the 

Fig. 5   Perturbation of NRF2-associated gene sets as an indicator of 
compound features associated with DILI. The 158 TG-GATES com-
pounds were classified based on a intrinsic biochemical reactivity, 
b metabolic bioactivation status and c clinical DILI concern. Com-
pounds classified as ‘unknown’ or ‘ambiguous DILI concern’ were 
excluded from the relevant analyses. Based on the module eigengene 

values for each compound (see Tables S12–15), performance indi-
cators were calculated (see “Experimental Procedures” for details) 
to determine the association between module perturbation and the 
respective toxicity features. See Fig. S3 for performance indicators 
associated with individual NRF2-associated modules. P/NPV = posi-
tive/negative predictive value

Table 3   Area under the 
curve (AUC) values for 
NRF2-associated gene sets as 
indicators of compound features 
associated with DILI

Receiver operator characteristic (ROC) curve analysis was performed, based on the eigengene values of 
modules 144, 192, 224 and 325 for relevant compounds, to determine the association between module per-
turbation and the respective toxicity features (an AUC value of 1 = a perfect indicator, 0.5 = random). ROC 
curves are provided in Fig. S4

Module 144 Module 192 Module 224 Module 325

Intrinsic biochemical reactivity 0.818 0.806 0.800 0.847
Metabolic bioactivation status 0.556 0.629 0.572 0.535
Clinical DILI concern 0.598 0.600 0.593 0.502
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high sensitivity values associated with the perturbation 
of the NRF2-associated modules were not observed with 
a selection of similarly-sized gene sets (modules 140, 181 
and 269; see Table S16 for compositions) enriched for GO 
processes not linked to the oxidative stress response (Fig. 
S4 and Table S13). NRF2 module perturbation was found 
to be a less sensitive indicator of metabolic bioactivation 
status and clinical DILI concern, with sensitivity values 
below 50% in all cases (Fig. 5b, c and Fig. S3; Table S14-
15). However, specificity and positive predictive values 
remained relatively high in both contexts, suggesting that 
false positive detection rates should be low in these set-
tings. These observations were supported by ROC curve 
analysis, with area under the curve (AUC) values above 
0.8 for the prediction of intrinsic biochemical reactivity 
and generally below 0.6 for the prediction of metabolic 
bioactivation status or clinical DILI concern (Table 3 and 
Fig. S5). Using the two NRF2-associated modules (42 m 
and 320) identified in our previous WGCNA depiction of 
co-regulated gene sets in rat liver (Sutherland et al. 2016, 
2018), we observed similar trends (relatively low sensitiv-
ity but high specificity and positive predictive values for 
the prediction of metabolic bioactivation status or clinical 
DILI concern) when analysing the associated TG-GATES 
in vivo data set (Fig. S6), indicating that our findings are 
relevant across species and experimental models. Taken 
together, these analyses show that stimulation of the NRF2 
transcriptional network is a very good indicator of intrinsic 
biochemical reactivity/chemical stress, but is a less sensi-
tive indicator of metabolic bioactivation status and clinical 
DILI concern.

Discussion

There is an urgent need to develop a more holistic pre-
clinical approach to relate chemical insults to relevant 
biological events to better predict DILI risk in man. 
Given its mechanistic association with hepatotoxicity in 
rodents (Clarke et al. 2016), NRF2 activation has been 
considered a relevant biological event that could be incor-
porated into next-generation models affording a greater 
understanding of DILI, and thus an improved prediction 
of clinical hazard. The selection of robust marker genes 
representing NRF2 activation, and other stress responsive 
transcriptional networks, is critical to such endeavours. In 
this study, we have used an unbiased approach, combining 
siRNA gene knockdown, transcriptomics and WGCNA, to 
reveal the molecular landscape of the NRF2 transcriptional 
network in PHH and identify co-expressed genes sets with 
consistent responses across many compounds. In doing 
so, we have determined the ability of NRF2 activation to 

reflect compound features associated with DILI. Our find-
ings illustrate a number of important points.

This study has demonstrated the high sensitivity of the 
NRF2-driven stress response in PHH to compounds with 
intrinsic biochemical reactivity towards cellular macro-
molecules, i.e. those compounds most likely to induce 
direct chemical stress. Whilst our findings will need to be 
confirmed with transcriptomics data from a larger selec-
tion of intrinsically reactive compounds, when such a 
resource becomes available, our observations are consist-
ent with the canonical mechanism underpinning chemical 
stimulation of NRF2 signalling, whereby the transcription 
factor responds to agents that react with cysteine residues 
in KEAP1 to induce a chemopreventive phenotype at sub-
toxic concentrations (Bryan et al. 2013). Notably, all of the 
TG-GATES PHH experiments used minimally cytotoxic 
concentrations of each compound. Hence, the observed 
NRF2-driven responses can be regarded as transcriptional 
adaptations to relatively minor chemical insults, further 
exemplifying the sensitivity of the network to direct chem-
ical stress.

It is important to note that chemical stress may or may 
not result in DILI and/or others forms of overt toxicity, 
depending on the extent of exposure and engagement 
of critical cellular targets. Consistent with this, we have 
shown that activation of NRF2 in PHH by itself is not a 
sensitive predictor of clinical DILI risk. However, in light 
of the complexity of DILI (reflected in the range of hepato-
toxicity mechanisms represented by the TG-GATES com-
pound set) it is inconceivable that a single cell signalling 
pathway could adequately reflect the range of chemical 
and biological perturbations necessary to afford a holis-
tic prediction of DILI risk in man. Given that NRF2 has 
evolved as one of several stress-responsive transcription 
factors that serve to protect the liver and other organs from 
the consequences of a range of environmental burdens, it 
will be important to also consider the activities of these 
other cellular networks to better determine the balance 
between benign adaptation and deleterious progression in 
the face of a given chemical insult, thereby improving our 
mechanistic understanding and ability to predict clinical 
DILI risk. Such efforts will be aided by the emergence of 
large, granular data sets encompassing measurements of 
several stress response pathways alongside other pertinent 
endpoints (Huang et al. 2016; Wink et al. 2017, 2018).

We have also shown the relatively low sensitivity of 
NRF2 network perturbation as an indicator of the propen-
sity of a compound to undergo bioactivation to a reactive 
metabolite. Critically, reactive metabolite formation was not 
measured as part of the TG-GATES experiments, making it 
difficult to relate chemistry to biology in the same experi-
mental setting. It is also known that reactive metabolite 
formation is neither necessary nor sufficient for all forms 
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of DILI. Therefore, it is unlikely that all instances of drug 
bioactivation represent a genuine chemical insult, as exem-
plified by acetaminophen, which is safe at therapeutic doses 
despite 5–10% bioactivation to a reactive quinoneimine 
metabolite, and only toxic following overdose. NRF2 activa-
tion may, therefore, better reflect the cellular consequences 
of drug bioactivation, complementing chemistry-based reac-
tive metabolite screens in the early phases of drug devel-
opment, where consideration of drug exposure at relevant 
organs (e.g. through physiologically-based pharmacokinetic 
modelling) may support an improved understanding of the 
clinical relevance of stress response network perturbations 
observed in preclinical settings.

An interesting finding of our work is that the NRF2-
associated modules and their constituent genes respond 
in a complex manner to chemical insult. Indeed, we have 
identified several compounds that alter the expression level 
of some but not all NRF2 targets. Although the detailed 
underlying mechanisms require further investigation, the 
influence of other transcription factors, cellular signalling 
events and post-translational modifications may underlie 
the ability of a set of compounds to commonly activate the 
NRF2 stress response yet augment the expression of differ-
ent subsets of NRF2 target genes, and/or to different degrees. 
Using WGCNA, we have demonstrated that one approach 
to reducing this complexity is to consider genes as com-
ponents of modules that, based on co-regulated behaviour 
across a large set of experiments, reflect perturbation of 
transcriptional networks associated with important cellular 
processes (Sutherland et al. 2016, 2018). Such an approach 
can provide an unbiased means of selecting appropriate 
genes as the basis for targeted analysis of stress response 
network perturbations. Indeed, amongst the few published 
investigations of NRF2 signalling responses in PHH, most 
have used pre-curated lists (often based on other cell types) 
as the basis for the selection of NRF2-regulated genes (for 
example, see Souza et al. 2017). However, not all of these 
genes may be robust markers of NRF2 activation in PHH per 
se. In this regard, our demonstration that SRXN1 is oppo-
sitely regulated following siRNA knockdown of NRF2 and 
KEAP1 in PHH, and highly correlated with the eigengene 
of NRF2-associated module 144, supports our selection of 
this gene as a marker of NRF2 activation within a panel 
of HepG2 cell lines expressing green fluorescent protein-
tagged components of key cellular stress response pathways, 
which can be used to provide a deeper understanding of the 
consequences for cell health of activating NRF2 and other 
signalling pathways in the context of different chemical tox-
icities (Wink et al. 2017, 2018). Interestingly, Srxn1 is not 
present in Nrf2-associated modules previously defined in rat 
liver (Sutherland et al. 2016, 2018), further illustrating the 
utility of the module-based approach and context-specific 
nature of marker gene selection.

We and others have previously used transcriptomics 
and proteomics to detail the biological processes that are 
altered in the livers of Nrf2- or Keap1-null transgenic mice 
(Kitteringham et al. 2010; Walsh et al. 2014; Wu et al. 
2012). In keeping with the findings of those investiga-
tions, the present study has shown that, in PHH, NRF2 
regulates the expression of a battery of genes that coor-
dinate the response to chemical and oxidative stress, the 
disposition of xenobiotics, and the provision of NADPH 
and other cellular fuels, supporting a role for NRF2 in 
the maintenance of normal hepatic function in man. Our 
study also highlights several putative novel NRF2 target 
genes, including F2RL2, TRIM16L and the pseudogene 
LOC344887. Whilst further work is needed to define the 
biological significance of the interaction between NRF2 
and these genes, LOC344887 (also known as NMRAL2P) 
was recently shown to respond to sulforaphane and reg-
ulate the NRF2-dependent induction of NQO1 in colon 
cancer cells (Johnson et al. 2017). In addition, our data 
highlight differences between the regulatory roles of NRF2 
in the human and mouse liver, such as the high responsive-
ness to NRF2 modulation of members of the AKR family 
primarily in PHH, and the GST family predominantly in 
mouse liver (Kitteringham et al. 2010; Walsh et al. 2014; 
Wu et al. 2012). Therefore, whilst the over-arching cyto-
protective function of NRF2 is conserved across mammals, 
it is clear that subtle differences in the regulatory roles of 
the transcription factor exist between species. It will be 
important to consider the preservation of the NRF2 net-
work relationships described here when designing assays 
and in silico models intended to bridge across species. 
Examination of gene expression changes following non-
canonical activation of the transcription factor via the 
glycogen synthase kinase-3 axis (Hayes et al. 2015) may 
further expand the landscape of the NRF2 network.

In summary, we have performed an unbiased characteri-
sation of the NRF2 transcriptional network in PHH, used 
WGCNA to identify robust marker genes reflecting NRF2 
activation, and shown that the perturbation of this signal-
ling pathway is a very good indicator of the ability of a 
compound to cause direct chemical stress in cells. We have 
also shown that the activation of NRF2 signalling is a less 
sensitive indicator of clinical DILI concern, yet false posi-
tive detection rates are likely to be low in this setting due 
to the relatively high specificity and positive predictive val-
ues associated with perturbation of NRF2-associated gene 
sets by non-hepatotoxic compounds. In the early stages of 
preclinical drug toxicity assessment, high specificity assays 
are desirable such that safe compounds are not inappro-
priately terminated, whilst high sensitivity assays become 
more important at later stages as compounds move closer 
to human trials. Therefore, in this context, a positive NRF2 
signal would likely merit further investigation of the toxic 
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potential of a drug candidate. On the other hand, compounds 
that do not provoke a chemical stress response are unlikely to 
stimulate NRF2 signalling, although a lack of NRF2 signal 
could not guarantee safety. A better understanding of what 
NRF2 activation, and other relevant stress responses, can 
and cannot tell us about the risks associated with a given 
compound will contribute to the improved prediction of 
DILI, ensuring that drug development programs are not 
unnecessarily halted and supporting the progression of safe 
and effective new drugs into the clinic.
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